
HAL Id: hal-02373686
https://amu.hal.science/hal-02373686

Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Influence Maximization in Independent Cascade
Networks Based on Activation Probability Computation

Wenjing Yang, Leonardo Brenner, Alessandro Giua

To cite this version:
Wenjing Yang, Leonardo Brenner, Alessandro Giua. Influence Maximization in Independent Cascade
Networks Based on Activation Probability Computation. IEEE Access, 2019, 7, pp.13745-13757.
�10.1109/ACCESS.2019.2894073�. �hal-02373686�

https://amu.hal.science/hal-02373686
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2018.DOI

Influence Maximization in Independent
Cascade Networks Based on Activation
Probability Computation
WENJING YANG1, LEONARDO BRENNER1, AND ALESSANDRO GIUA2, (Fellow, IEEE)
1Information and Systems Laboratory, Aix-Marseille University, Marseille 13397, France
2Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari 09124, Italy

Corresponding author: Wenjing Yang (e-mail: wenjing.yang@lis-lab.fr).

This work was supported in part by the China Scholarship Council (CSC), the project PHC CAI YUANPEI 2017 from Campus France
under Project No. 38908TK, and the National Natural Science Foundation of China under Grant No. 61703321 and 61672400.

ABSTRACT Based on the concepts of “word-of-mouth” effect and viral marketing, the diffusion of
an innovation may be triggered starting from a set of initial users. Estimating the influence spread is a
preliminary step to determine a suitable or even optimal set of initial users to reach a given goal. In
this paper, we focus on a stochastic model called the Independent Cascade model, and compare a few
approaches to compute activation probabilities of nodes in a social network, i.e., the probability that a user
adopts the innovation. First we propose the Path Method which computes the exact value of the activation
probabilities but has high complexity. Second an approximated method, called SSS-Noself, is obtained by
modification of the existing SteadyStateSpread algorithm, based on fixed-point computation, to achieve
a better accuracy. Finally an efficient approach, also based on fixed-point computation, is proposed to
compute the probability that a node is activated though a path of minimal length from the seed set. This
algorithm, called SSS-Bounded-Path algorithm, can provide a lower-bound for the computation of activation
probabilities. Furthermore, these proposed approaches are applied to the influence maximization problem
combined with SelectTopK algorithm, RankedReplace algorithm and greedy algorithm.

INDEX TERMS Independent Cascade model, influence maximization, social networks

I. INTRODUCTION
In recent years, a large number of social network sites have
appeared to connect people and groups together. Networks
have been proved to be a good tool to obtain information and
communicate ideas. Besides, they are becoming an effective
marketing platform, through which it is possible to spread
information or products to a large scale with a high speed.

Consider the following marketing example: a company
designs a new app for online users and aims to market it
through the social network. It can only choose a small
number of users to try the app initially (because usually a
company has limited budget and manpower on a product).
Then the company encourages these users to recommend the
app to their friends. And their friends would use it and
recommend to their friends and so on. Whether users adopt
an innovation is strongly influenced by their acquaintances.
That is called the “word-of-mouth” effect [9] and this type of
marketing is called the viral marketing [9] since it is similar
to the spread of an epidemic.

The studies on the diffusion of innovations in social
networks began in the middle of the 20th century [10], [12].
Motivated by the application of viral marketing, Domingos
and Richardson [9] proposed a general framework for the
application of data mining and modeled the social network
as a Markov random field. Kempe et al. [2] proposed two
diffusion models, namely the Independent Cascade model
and the Linear Threshold model, to model the propagation
of innovations. As a type of epidemic models, the
Independent Cascade model assumes that an individual
adopts an innovation with a certain probability if at least one
of its in-neighbors has adopted it. Differently, the Linear
Threshold model assumes that an individual adopts an
innovation if a certain ratio of its in-neighbors have already
adopted it. Besides, Kempe et al. [5] also formulated the
issue of choosing influential sets of individuals as a discrete
optimization problem. It aims to identify a small subset of
initial adopters in a social network to maximize the
influence propagation under a given diffusion model. They

VOLUME 4, 2016 1

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

also proved this influence maximization problem [24], [25],
[28], [29] is NP-hard and gave a greedy approximation
algorithm which guarantees, under certain conditions, that
the influence spread approximates the optimal one within a
factor of (1 − 1/e), where e is the base of the natural
logarithm. However, this approach requires long time to run
the simulation, thus later much effort was devoted to derive
more efficient algorithms. Leskovec et al. [13] proposed a
“Cost-Effective Lazy Forward” (CELF) scheme to reduce
the number of evaluations on the influence spread,
nevertheless it still satisfies the approximation guarantee. To
further improve the CELF heuristic, Chen et al. [11]
presented MixedGreedyIC algorithm for the Independent
Cascade model and MixedGreedyWC algorithm for the
Weighted Cascade model. Goyal et al. [19] explored the
CELF++ approach. Recently, Zhou et al. [4] derived an
upper bound for the influence spread and further proposed
the Upper Bound based Lazy Forward algorithm (UBLF).
Borgs et al. [20] developed an elegant framework, named
Reverse Influence Sampling (RIS), focusing on the
reduction of running time. Tang et al. [21], [22] proposed
the hop-based algorithm for both the Independent Cascade
model and Linear Threshold model.

A preliminary step to determine a suitable or even optimal
set of initial users when the goal is that of maximizing the
influence spread is to compute the set of final adopters for
any given set of initial users. When the Independent Cascade
model is considered, the measure of the influence spread is
given by the activation probability of an individual, i.e., the
probability that the individual adopts the innovation. It has
been proved that computing the exact influence spread under
the Independent Cascade model is #P-hard by Chen et
al. [3]. Monte Carlo simulation applied in many studies [2],
[5], [13], [19] is basic and simple but quite time-consuming.
Aggarwal et al. [6] gave a more efficient approximate
algorithm called SteadyStateSpread. However, the computed
solution may be far from the exact one, depending on the
network structure, and there are no guaranteed bounds.
Besides, they did not discuss the convergency of their
iterative equation and the uniqueness of the final solution.

In order to improve the accuracy of activation probability
computation, in our previous paper [23], we proposed a new
SSS-Noself algorithm for the influence spread evaluation
under the Independent Cascade model. Experimental results
show that our SSS-Noself algorithm performs well in terms
of value approximation. In this paper, we considerably
extend our previous paper [23] under several aspects: First,
we enhance the theoretical analysis by proving the
convergence of the iteration function and the uniqueness of
the final solution for SteadyStateSpread, as well as proving a
fixed relationship among the influence spread values given
by different approaches. Second, we apply our proposed
algorithms for activation probability computation to the
influence maximization problem. These approaches are
exploited in combination with selection algorithms such as
SelectTopK, RankedReplace and the traditional greedy

algorithm. Third, we present a set of new experiments to
show that our proposed algorithms perform well for
approximately computing the influence spread and
maximizing the final influence.

Focusing on the Independent Cascade model, we analyse
different approaches for computing the activation
probabilities as well as for selecting the seed set for
influence maximization. Our main contributions can be
summarised as following:

1) To compute the exact solution to the influence spread in
small networks, we propose a method that explores all
possible evolutions of a model: we call this approach
Path Method. We point out that, due to its complexity,
this method is only viable for small networks but it is
useful to test the correctness of different approaches.

2) We discuss the convergence problem [15] and the
multiple solutions problem [16] of SteadyStateSpread,
proving that it converges to a unique solution using
fixed-point theory [14]. Moreover, we point out two
factors leading to the gap between the result of
SteadyStateSpread and the exact solution: the
dependent relation of individuals and the existence of
circuits in network structures. To partially overcome
the error caused by circuits, we further propose a new
SSS-Noself algorithm which updates the activation
probability of one node assuming that it has not been
activated at all before.

3) We propose an efficient way to compute the activation
probabilities along paths of bounded length and
provide a lower-bound for the activation probabilities
by SSS-Bounded-Path.

4) We combine the algorithms for activation probability
computation with SelectTopK, RankedReplace and
greedy algorithm to select seed set for solving the
influence maximization problem.

The rest of the paper is organized as follows. Section 2
reviews the Independent Cascade model and formally
defines the problems of activation probability computation
and influence maximization. Section 3 proposes different
approaches for both exact computation and approximate
computation of activation probabilities. Section 4 evaluates
the algorithms proposed in Section 3 for solving the
influence maximization problem. Section 5 presents a series
of experimental results. We conclude the paper in Section 6.

II. BACKGROUND
In this paper, we use the Independent Cascade model to
describe the propagation of innovations through social
networks. For convenience, the variables used extensively
throughout the paper are listed in Table 1.

A. NETWORK STRUCTURE
As in most literatures, a social network is represented by a
directed graph G = (V, E), in which V is a set of nodes
representing individuals in the network: we use the terms

2 VOLUME 4, 2016

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

TABLE 1. Notation.

Symbol Description
G = (V, E) a network with node set V and edge set E

GIC = (V, E, p) an Independent Cascade model
G[q]
IC = (V, E [q], p[q]) an Independent Cascade model without node q’s influence

N number of nodes in G
K number of seed nodes to be selected

N in
j set of nodes with direct influence on node j

N out
j set of nodes on which node j has direct influence
φ0 seed set
|φ0| number of nodes in the seed set
πj activation probability of node j
πp
j activation probability of node j computed by Path Method
πs
j activation probability of node j computed by SteadyStateSpread
πn
j activation probability of node j computed by SSS-Noself

π
[q]
j activation probability of node j without node q’s influence
πbp
j activation probability of node j computed by SSS-Bounded-Path
N set of non-negative integers
N+ set of positive integers

individual or node interchangeably. An edge (i, j) ∈ E
denotes that node i influences node j directly [2].

To describe all individuals with direct influence on node
j, we denote the in-neighbors of node j as
N in
j = {i ∈ V|(i, j) ∈ E}. The out-neighbors of node j

denoted as N out
j = {i ∈ V|(j, i) ∈ E} represent the

individuals on which node j has direct influence.

B. INDEPENDENT CASCADE MODEL
The Independent Cascade model [17] is a type of epidemic
models, which is based on the assumption that a node may
adopt an innovation when one of its in-neighbors has
adopted the innovation. In the Independent Cascade model,
every edge (i, j) ∈ E is associated with a propagation
probability p : (V × V) → (0, 1], where pi,j represents the
probability that node j is influenced by node i through the
edge (i, j) at step t when node i is activated at step t − 1.
Thus, we denote an Independent Cascade model by a triple
GIC = (V, E , p).

In the Independent Cascade model, each node can be
either active or inactive. When it adopts the innovation (is
activated), it becomes active, otherwise is said to be inactive.
We also assume that nodes can switch from being inactive to
being active, but can not switch in the other direction. It
means that the adoption of an innovation is permanent and
for this reason the model is called progressive [1].

Let us define φ0 as the seed set, i.e., the set of nodes
which have adopted the innovation at step t = 0. Then the
innovation propagates from the seed set step by step. The
activation progress can be described as follows. At each step
t = 1, 2, ..., an inactive node j is activated with a
propagation probability pi,j by its in-neighbor i which is
activated at step t − 1. Note that every active node has only
one chance to influence each of its out-neighbors. If there is
more than one in-neighbor of inactive node j activated at
step t− 1, the order in which they attempt to activate node j
at step t does not affect the final probability of node j being
activated. This activation process ends when no more nodes
adopt the innovation. The final probability that nodes are

activated during the propagation process is denoted as the
measure of influence spread in this paper.

C. PROBLEM FORMULATION
We give a mathematical description of the two problems
studied in this paper: activation probability computation and
influence maximization.

Activation Probability Computation. We focus on the
evaluation of influence spread under the Independent
Cascade model given a seed set. In this paper, we denote the
influence spread as the sum of activation probabilities of all
nodes in a network.

Definition 1 (Activation Probability). Given an
Independent Cascade model GIC = (V, E , p) and a seed set
φ0, the probability that a node j ∈ V is activated during the
innovation propagation process is defined as the activation
probability of node j, denoted as πj .

The final influence spread σ(φ0) is given by

σ(φ0) =
∑
j∈V

πj .

Influence Maximization. This problem aims to maximize
the influence spread through a social network, by targeting
a subset of individuals to adopt an innovation initially. We
formalize it under the Independent Cascade model as follows.

Problem 1. Given an Independent Cascade model GIC =
(V, E , p) and a constant integer K, find a seed set φ0 ⊆ V
of cardinality |φ0| = K, such that the final influence spread
σ(φ0) is maximized, i.e.,

φ0 = argmax
φ0⊆V

{σ(φ0)||φ0| = K}.

III. ACTIVATION PROBABILITY COMPUTATION
The preliminary step to determine a seed set for achieving a
large influence spread is to evaluate the final innovation
adoption, i.e., the activation probability of all nodes in a
network. The methodology for both exact and approximate
activation probability computation is given in this section.

A. EXACT COMPUTATION OF ACTIVATION
PROBABILITIES
In this part, we propose an algorithm to compute the exact
solution to the influence propagation called Path Method. The
value of activation probability computed by Path Method for
node j ∈ V is defined as πpj . Since Path Method can give an
exact value, we have πpj = πj .

Path Method takes into account all evolutions of a model,
so that it can offer a precise result of the final influence
propagation. Firstly, it creates an evolution graph for a
model, which is composed of cells shown in Fig. 1. Each
cell Ck consists of three elements: past active nodes is a set
Apk which contains all the nodes activated before the current
step; current active nodes is a set Ack which contains the
nodes activated in the current step; cell probability Pk is the

VOLUME 4, 2016 3

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

probability that the evolution described by Apk and Ack
occurs. A cell whose current active nodes is null is called a
terminal cell. Every non-terminal cell Ci = (Api , A

c
i , Pi) is

connected with each of its successor cells
Ck = (Apk, A

c
k, Pk) by a directed arc with which is

associated the arc probability P (i,k)
a that an evolution that

reaches cell Ci proceed to reach Ck. Adding together all the
cell probabilities of terminal cells whose past active nodes
contains node j, the exact activation probability of node j
can be computed.

kC
p
kA

c
kA

kP

FIGURE 1. Cell of evolution graph.

TABLE 2. Symbols used in Algorithm 1.

Symbols Descriptions
Ck cell k
Ap

k past active nodes of cell k
Ac

k current active nodes of cell k
Pk cell probability of cell k

P
(i,k)
a arc probability of the arc Ci → Ck

k label of cell
i label of no-terminal cell
n number of cells in the evolution graph
new set of cells to be explored
S inactive out-neighbors of the current active nodes of a cell
S′ one subset of S

N out
Ac

k
union of all out-neighbors of nodes in Ac

k

Algorithm 1 creates the evolution graph of an
Independent Cascade model and computes the activation
probabilities of nodes. The symbols used in Algorithm 1 are
described in Table 2. The algorithm defines as initial cell
C1 = (∅, φ0, 1) because initially no node has been
previously explored (Ap1 = ∅), the set of currently active
nodes is the seed set (Ac1 = φ0) and the probability of
reaching this condition during a run is 1 (P1 = 1). C1 is also
added to the set new containing cells that need to be
explored.

Then, while the set new is not empty a cell i ∈ new is
selected and its child cells are computed as follows. From a
cell Ci the innovation can propagate to any subset of

S = N out
Ac

i
− (Api ∪A

c
i),

which contains the out-neighbors of Aci that have not yet
adopted the innovation.

Two cells are called equivalent if both their sets of past
active nodes and sets of current active nodes are the same. For
any subset Sk ⊆ S, a new cell Ck = (Apk, A

c
k, Pk) is created

when it is not equivalent with any other existing cell, with

Algorithm 1 Path Method
Input: An independent cascade network GIC = (V, E , p);

seed set φ0 ⊂ V
Output: Activation probability πpj for all nodes j ∈ V

1: /∗ construct the evolution graph ∗/
2: Let Ap1 = ∅, Ac1 = φ0, P1 = 1
3: Add cell C1 = (Ap1, A

c
1, P1) to the graph

4: new = {C1}, k = 1
5: while new 6= ∅ do
6: PickCi = (Api , A

c
i , Pi) ∈ new, let new = new\{i}

7: S = N out
Ac

i
− (Api ∪Aci)

8: for all S ′ ⊆ S do
9: k = k + 1

10: Sk = S ′, Ack = Sk
11: Apk = Api ∪Aci

12:

P
(i,k)
a =

∏
q∈Ac

i
r∈S−Ac

k

(1− p(q, r))·

(1−
∏

q′∈Ac
i
∩Nin

r′
r′∈Ac

k

(1− p(q′, r′)))

13: if ∃Ck′ , s.t. Ack′ = Ack and Apk′ = Apk then
14: P

(i,k′)
a = P

(i,k)
a

15: Add an arcCi → Ck′ with probability P (i,k′)
a

16: Pk′ = Pk′ + Pi · P (i,k)
a

17: k = k − 1
18: else
19: Add cell Ck = (Apk, A

c
k, Pk) to the graph

20: Add an arc Ci → Ck with probability P (i,k)
a

21: if Ack 6= ∅ then
22: new = new ∪ {Ck}
23: end if
24: end if
25: end for
26: end while
27: n = k
28: /∗ activation probability computation ∗/
29: for j ∈ V do
30: πpj = 0
31: for k = 1 to n do
32: if Ack = ∅ and j ∈ Apk then
33: πpj = πpj + Pk
34: end if
35: end for
36: end for
37: return πpj for j ∈ V

Apk = Api ∪ Aci and Ack = Sk. The probability of reaching
cell Ck from Ci is

P (i,k)
a =

∏
q∈Ac

i
r∈S−Ac

k

(1−p(q, r)) ·(1−
∏

q′∈Ac
i
∩Nin

r′
r′∈Ac

k

(1−p(q′, r′))),

Hence we have
Pk = Pi · P (i,k)

a .

If the new cell Ck has active nodes (Ack 6= ∅) then Ck is
added to the set new, else it is a terminal cell and will not be

4 VOLUME 4, 2016

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

explored further. If the cell Ck is equivalent to another cell
C ′k already in the graph, we just add an arc from Ci to Ck′
with P (i,k′)

a = P
(i,k)
a and increase the value of Pk′ by this

amount. Finally after cell Ci has been explored it is removed
from set new.

After constructing the evolution graph, we can search for
the terminal cells whose set of past active node contains node
j ∈ V . Adding all the cell probabilities of these terminal
cells, then πpj can be computed.

For example, the evolution graph for the model in Fig. 2
with seed set φ0 = {5} is shown in Fig. 3. We briefly
explain how to construct the evolution graph of this model.
In C1, only seed node 5 is activated, thus Ap1 = ∅ and
Ac1 = {5} with P1 = 1. Since the out-neighbor set of node 5
only contains node 3, only C2 and C3 can be obtained from
C1: C2 corresponds to an evolution that does not activate
node 3, while C3 corresponds to an evolution that activates
node 3. C2 is a terminal cell since Ac2 = ∅. Moreover,
P

(1,3)
a = p5,3 = 0.4 and P1 = 1, thus
P3 = P1 ∗ P (1,3)

a = 0.4. Four cells can be reached from C3

according to which subset of out-neighbor of node 3 will be
activated. Based on this procedure, the evolution graph
corresponding to the network can be obtained. The value of
each terminal cell Ck represents the probability of observing
a run whose set of finally active nodes is Apk. For example,
C13 corresponds to the evolution where nodes {1, 2, 3, 5}
are influenced by the order 5 → 3 → {1, 2} or
5 → 3 → 1 → 2, and no other node is activated. Thus the
terminal cells which contain node j as a past active node
describe all final evolutions in which node j can be
activated. The sum of the cell probabilities of these terminal
cells is the activation probability of node j. For the network
in Fig. 2, the activation probabilities obtained from the
evolution graph in Fig. 3 are shown in the second row of
Table 3.

1

3

4

5

2

0.4

0.1
0.2

0.3

0.4

0.2

FIGURE 2. An Independent Cascade model with 5 nodes.

There are three possible states for each node j ∈ V in a
cell of the evolution graph: belonging to past active nodes,
belonging to current active nodes or in neither of these two
sets. Thus the maximal number of cells in an evolution graph
is 3N . The number of subsets of S is 2|S|. Since S ⊂ V we
have that number of subsets of S is bounded by 2N . Thus the

5

1

3

3,5

0.6

1-0.4

0.4

0.4

(1-0.1)*(1-0.2)

(1-0.2)*0.1 (1-0.1)*0.2
0.1*0.2

1-0.2

(1-0.3) 0.3

1-0.2

5

5

0.288

3,5

1

0.072

3,5 1,2

0.008

3,5 2

0.032

2,3,5

0.0256

1,3,5

0.0504

1,3,5 2

0.0216
1,2,
3,5 4

0.00592

0.2

0.2 1,2,
3,5

1-0.2

0.02368

1,2,3,
4,5

2,3,5 4

0.2

0.0064

2,3,
4,5

0.0064

0.00592

1C2C

3C
4C

5C 6C 7C8C

9C
10C 11C

12C

13C

14C

15C

1

1

FIGURE 3. Evolution graph of the network in Fig. 2.

complexity of the part that constructs the evolution graph is
O(6N). We need one pass of j ∈ V for each cell to obtain
πpj . Thus the time complexity of the part that computes the
activation probability is O(N · 3N). The total complexity of
Algorithm 1 is O(6N). Due to its exponential complexity,
this method is only viable for small networks.

B. APPROXIMATE COMPUTATION OF ACTIVATION
PROBABILITIES BY FIXED-POINT APPROACHES
Aggarwal et al. [6] proposed the SteadyStateSpread
algorithm to evaluate the activation probabilities of nodes.
This iterative method computes an approximated value of
the node activation probability by solving a non-linear
system of equations. Though Aggarwal et al. [6] also gave
an iterative algorithm, as mentioned in a subsequent
work [7], they did not prove that their iterative method can
converge to only one final result. In this paper, we define the
approximate value of activation probability computed by
SteadyStateSpread algorithm for node j ∈ V as πsj .

Basic Fixed-Point Approach. In this part, we discuss the
SteadyStateSpread algorithm based on fixed-point theory.

Definition 2 ([14]). Given a real function of a real variable
f : R→ R, a real number x is a fixed point of f if it satisfies

x = f(x)

Given a point x0 in the domain of f , the fixed-point iteration
is

x(s+ 1) = f(x(s)), s = 0, 1, 2, . . .

which generates the sequence x(0), x(1), x(2), . . . If the
sequence converges to a point x and f is continuous, then
one can prove that x is a fixed point of f .

To apply this theory for iterative activation probability
computation, it is necessary to construct a function for

VOLUME 4, 2016 5

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

computing πsj . In the Independent Cascade model, node j
can be activated by any of its in-neighbors. Equivalently, in
order for node j to not be activated, it must not be activated
by any of its in-neighbors. Assuming that the activation of
the in-neighbors are independent events and that they do not
depend on the activation of node j, the probability of that
can be written as

∏
i∈N in

j
(1 − πsi · pi,j). Thus the

computation function can be constructed as following:

πsj (s+ 1) =


1 if j ∈ φ0

1−
∏

i∈N in
j

(1− πsi (s) · pi,j) if j 6∈ φ0

(1)
To prove that Equation 1 converges, we recall a classic

monotone convergence theorem.

Theorem 1 ([8]). If a sequence of real numbers is increasing
and bounded above, then its supremum is the limit.

From Theorem 1 next result follows.

Proposition 1. The sequence {πsj (s)} generated by
Equation 1 converges to a unique fixed-point.

Proof. Equation 1 generates a sequence for each node j,
πsj (0), π

s
j (1), π

s
j (2), ... in which,

πsj (0) =

{
1 if j ∈ φ0

0 if j 6∈ φ0
(2)

Such a sequence is non decreasing since there are more and
more in-neighbors of node j that can propagate the
innovation as the iteration proceeds. Also this sequence is
upper bounded by 1. As the iteration unfolds, the sequence
converges to the supremum.

Hence according to the monotone convergence
theorem [8], the sequence {πsj (s)} converges to the
supremum, i.e., a fixed-point of Equation 1.

In practice, the convergence to the fixed-point is
asymptotic. However, we stop the iteration when the
absolute difference between the computing results of
adjacent iterations exceeds a given stopping criterion
ε∗ > 0, i.e.,

∑
j /∈φ0
|πsj (s+ 1)− πsj (s)| ≥ ε∗.

As an example, applying SteadyStateSpread to the network
in Fig. 2, we can compute the activation probabilities shown
in the third row of Table 3.

Inaccuracy of the Basic Fixed-Point Approach.
SteadyStateSpread is generally not correct because
Equation 1 holds only assuming that the activation events of
node j’s in-neighbors are independent events and that these
events do not depend on the activation of node j itself. Thus
it can not provide exact solution for every structure of
networks, especially graphs containing bidirectional edges
or dependent sub-structures. Yang et al. [7] discussed the
scenario of structural defect, corresponding to this situation:
nodes i, j /∈ φ0 and every path from φ0 to j has to pass i,

nevertheless according to a certain computation algorithm,
πi depends on πj .

Comparing the results for the network in Fig. 2 computed
by Path Method and SteadyStateSpread shown in Table 3,
we find πs2 > πp2 and πs4 > πp4 (shown in bold in Table 3).
As mentioned by Yang et al. [7], one reason is: in
Equation 1, πs2 depends on πs4, i.e., node 4 increases πs2.
However, node 4 can be activated only after node 2’s
activation. Another reason is that the dependent relation
between node 2’s in-neighbors (node 1 and node 3)
increases the final result of node 2. Ignoring the influence of
node 4, the equation to compute the activation probability of
node 2 by SteadyStateSpread is

πs2 = 1− (1− πs3p3,2) · (1− πs1p1,2)
= πs3p3,2 + πs1p1,2 − πs1πs3p3,2p1,2

(3)

Nevertheless, the exact equation to compute the activation
probability of node 2 should be

π2 = π3 · (p3,2 + (1− p3,2) · p3,1p1,2)
= π3p3,2 + π1p1,2 − π3p3,2p1,2p3,1

(4)

Moreover, circuits among more than two nodes also
contribute to the error in the solution computed by
SteadyStateSpread.

Overall, circuits and dependent relations among nodes lead
to computing activation probabilities by SteadyStateSpread
that are equal to or greater than the exact solution.

Improving the Fixed-Point Approach. For partly
solving the inaccuracy caused by circuits, we propose in the
following an improved algorithm to assure that the iteration
process to compute activation probability of node j is not
influenced by itself. The new algorithm, that we call
SSS-Noself, updates the activation probability of a node by
Equation 1 without the influence of the node itself. We
define the value of activation probability computed by
SSS-Noself for node j ∈ V as πnj .

Given an Independent Cascade model GIC = (V, E , p), a
new network G[q] = (V, E [q], p[q]) is obtained from G by
removing the input and output arcs of node q. The total
number of these new nets is N ′, where N ′ = N − |φ0|, |φ0|
is the number of nodes in a seed set. For node j ∈ V one can
proceed to compute at each step s the activation probability
of j assuming that q has not been activated π[q]

j (s). Finally,
when updating the activation probability of node j by
Equation 1, the used value of every j’s in-neighbor i is π[j]

i

obtained by previous iterations. Let us define the activation
probability vector of network G[q] p[q] as:

p
[q]
i,j =

{
0 if q = i or q = j

pi,j otherwise
(5)

Then the computation function for π
[q]
j (s + 1) is

constructed as:

6 VOLUME 4, 2016

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

π
[q]
j (s+1) =


1 if j ∈ φ0

1−
∏

i∈N in
j

(1− π[q]
i (s) · p[q]i,j) if j 6∈ φ0

(6)

Algorithm 2 SSS-Noself
Input: An independent cascade network GIC = (V, E , p);

seed set φ0 ⊂ V; stopping criterion ε∗ > 0
Output: Activation probability πnj for all nodes j ∈ V

1: s = 0
2: ε = ε∗ + 1
3: for q ∈ V \ φ0 do
4: π

[q]
j (0) = 1, ∀j ∈ φ0

5: π
[q]
j (0) = 0, ∀j ∈ V \ φ0

6: end for
7: πj(0) = 1, ∀j ∈ φ0
8: πj(0) = 0, ∀j ∈ V \ φ0
9: while ε ≥ ε∗ do

10: for q ∈ V \ φ0 do
11: for j ∈ V do
12: if j ∈ φ0 then
13: π

[q]
j (s+ 1) = 1

14: πj(s+ 1) = 1
15: else
16: π

[q]
j (s+1) = 1−

∏
i∈N in

j
(1−p[q]i,j ·π

[q]
i (s))

17: πj(s+1) = 1−
∏
i∈N in

j
(1−pi,j ·π[j]

i (s))

18: end if
19: end for
20: end for
21: ε1 =

∑
j /∈φ0
|πj(s+ 1)− πj(s)|

22: ε2 =
∑
j /∈φ0
|π[q]
j (s+ 1)− π[q]

j (s)| (q ∈ V \ φ0)
23: ε = max(ε1, ε2)
24: s = s+ 1
25: end while
26: return πnj = πj(s− 1)

Algorithm 2 is a modified version of SteadyStateSpread
where the activation probability of node j is computed
disregarding the influence of itself. The computation result
for the network in Fig. 2 by Algorithm 2 is shown in the
fourth row of Table 3. The results of node 2 and node 4 are
in bold in Table 3 to highlight that they are different from
their results by Path Method and SteadyStateSpread. It is
obviously that the result of SSS-Noself is closer to the result
of Path Method than SteadyStateSpread, i.e., SSS-Noself is
more precise than SteadyStateSpread. In fact, SSS-Noself
always gives a result between the result of Path Method and
the result of SteadyStateSpread.

Different from SteadyStateSpread, for all nodes j ∈ V ,
SSS-Noself not only computes the activation probability of
node j at step s, but also the activation probability of node j
at step s assuming that any node q ∈ V \φ0 remains inactive.

Thus the time complexity of SSS-Noself isO(N2), while that
of SteadyStateSpread is O(N).

Fixed-Point Computation of Activation Probabilities
Along Paths of Bounded Length. In this part, we propose
an efficient algorithm, called SSS-Bounded-Path, to compute
activation probabilities along paths of bounded length by
applying Equation 1. It represents a family of efficient
approaches for activation computation that is parameterized
by the value of the bound b0. The value of activation
probability computed by SSS-Bounded-Path with bound
b0 ∈ N for node j ∈ V is denoted as πbp(b0)j .

Let us firstly define the length of the shortest path from
the seed set to a node j ∈ V \ φ0 as spj and assume each
node j ∈ V \ φ0 is reachable from the seed set. Kimura et
al. [18] proposed SPM and SP1M, where node j can be
activated only at step b = spj in SPM, or only at step
b = spj as well as step b = spj + 1 in SP1M. Nevertheless,
they did not discuss how to compute these probabilities
without previously determining the corresponding paths, a
procedure that may be computationally expensive. Chen et
al. [3] and Yang et al. [7] computed the maximum influence
paths by the Dijkstra algorithm, which has high complexity.

We propose an approach based on fixed-point
computation that does not require preliminarily computing
the shortest path. In our procedure we compute spj as step s
when πbpj firstly changes from zero to non-zero. Besides, we
set the path bound to compute πbpj involving not only the
shortest paths but also the paths whose length is no greater
than spj + b0, where b0 is a constant integer called bound.
Obviously, we have SPM when b0 = 0, and SP1M when
b0 = 1. Besides, when b0 is large enough, this algorithm is
equivalent to SteadyStateSpread.

The procedure of SSS-Bounded-Path is shown in
Algorithm 3. We denote the upper bound of iteration time
for node j as bj and it is initialized as infinity. Lines (11-12)
find the step when πbpj firstly changes from zero to non-zero
and record this step s + 1 as spj . Then bj is set as
s + 1 + b0. The computation result for the network in Fig. 2
by SSS-Bounded-Path with b0 = {0, 1, 2, 3, 4} is shown in
the fifth row of Table 3.

The SSS-Bounded-Path algorithm generalizes SPM [18]
and SP1M [18], exploiting the efficient fixed-point
computation of SteadyStateSpread. The result of
SSS-Bounded-Path (b0 = 0) can be regarded as a
lower-bound for the exact activation probability. Same with
SteadyStateSpread, the time complexity of
SSS-Bounded-Path is O(N). However, in most cases
SSS-Bounded-Path (b0 = 0) stops the iteration before it
converges, thus SSS-Bounded-Path (b0 = 0) is usually less
time-consuming than SteadyStateSpread.

C. COMPARISON OF DIFFERENT FIXED-POINT
APPROACHES
We show the activation probability computation results by
different approaches for the network in Fig. 2 in Table 3. As

VOLUME 4, 2016 7

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

Algorithm 3 SSS-Bounded-Path
Input: An independent cascade network GIC = (V, E , p);

seed set φ0 ⊂ V; path bound b0 ∈ N; stopping criterion
ε∗ > 0

Output: Activation probability πbpj for all nodes j ∈ V
1: Initialize πbpj (0) = 1, j ∈ φ0; πbpj (0) = 0, j ∈ V \ φ0;
s = 0; bj = inf , j ∈ V \ φ0

2: stop = 0
3: ε = ε∗ + 1
4: while ε ≥ ε∗ do
5: while stop = 0 do
6: stop = 1
7: for j ∈ V do
8: πbpj (s+ 1) = πbpj (s)
9: if j /∈ φ0 and s ≤ bj then

10: πbpj (s+1) = 1−
∏
i∈N in

j
(1−pi,j ·πbpi (s))

11: stop = 0
12: end if
13: if πbpj (s+ 1) 6= 0 and πbpj (s) = 0 then
14: bj = s+ 1 + b0
15: end if
16: end for
17: s = s+ 1
18: end while
19: ε =

∑
j /∈φ0
|πbpj (s+ 1)− πbpj (s)|

20: end while
21: return πbpj = πbpj (s− 1)

discussed above, Path Method provides the exact value,
while SteadyStateSpread gives a larger value. SSS-Noself
gives a more precise result than SteadyStateSpread, while
SSS-Bounded-Path (b0 = 0) provides a lower-bound. In fact,
the activation probabilities value computed by these
algorithms must satisfy the inequality, shown in
Proposition 2.

TABLE 3. Comparison of activation probability values for the network in Fig. 2.

Node 1 2 3 4 5
Path Method 0.08 0.0616 0.4 0.0123 1

SteadyStateSpread 0.08 0.0678 0.4 0.0132 1
SSS-Noself 0.08 0.0630 0.4 0.0126 1

SSS-Bounded-Path (b0 = 0) 0.08 0.0400 0.4 0.0080 1
SSS-Bounded-Path (b0 = 1) 0.08 0.0630 0.4 0.0126 1
SSS-Bounded-Path (b0 = 2) 0.08 0.0660 0.4 0.0132 1
SSS-Bounded-Path (b0 = 3) 0.08 0.0678 0.4 0.0136 1
SSS-Bounded-Path (b0 = 4) 0.08 0.0680 0.4 0.0136 1

Proposition 2. Given an Independent Cascade model
GIC = (V, E , p) and a set of initial nodes φ0 ⊂ V , the
activation probabilities of node j computed by Path Method
(πpj), SteadyStateSpread (πsj), SSS-Bounded-Path (b0 = 0)
(πbp(0)j) and SSS-Noself (πnj) satisfy:

π
bp(0)
j ≤ πpj ≤ π

n
j ≤ πsj (7)

Proof. First, we prove that πnj ≤ πsj . During the computing
process of πsj by Equation 1, the activation probabilities of
N in
j may include the influence of node j. This extra influence

erroneously increases the final value of mode j. SSS-Noself
algorithm disregards this extra influence during the iteration,
hence πnj ≤ πsj .

Second, we prove that πpj ≤ πnj . Although SSS-Noself
avoids the influence of j when computing πnj , it has not
eliminated the increase caused by dependent relation and
other redundant influence in circuits while applying
Equation 1. Hence for some special network structures, πnj
is still bigger than πpj .

Finally, we prove that πbp(0)j ≤ πpj . SSS-Bounded-Path
(b0 = 0) only consider the influence to node j through the
shortest path, i.e., it disregards the influence through the
paths from φ0 to node j whose lengths are greater than spj .
However, this is just a fraction of the influence on node j,
hence we have πbp(0)j ≤ πpj .

Considering SteadyStateSpread and SSS-Bounded-Path,
we also have the following remarks:

Remark 1. Given an Independent Cascade model GIC =
(V, E , p) and a set of initial nodes φ0 ⊂ V , for ∀j ∈ V , we
have πbp(b)j ≤ πbp(b

′)
j when 0 ≤ b < b′.

Obviously, πbp(b
′)

j is computed considering more paths
than πbp(b)j , i.e., the paths whose lengths are between b and

b′. Hence, we have πbp(b)j ≤ πbp(b
′)

j when 0 ≤ b < b′.

Remark 2. Given an Independent Cascade model
GIC = (V, E , p) and a set of initial nodes φ0 ⊂ V , for
∀j ∈ V , we have lim

b→∞
π
bp(b)
j = πsj when the same stopping

criterion ε∗ is used for both SteadyStateSpread and
SSS − Bounded − Path .

SSS-Bounded-Path limits the computation iteration to b
steps. When b goes to infinity, only the satisfaction of
stopping criterion halts the computation. In that case,
SSS-Bounded-Path is equivalent to SteadyStateSpread,
hence we have lim

b→∞
π
bp(b)
j = πsj .

IV. INFLUENCE MAXIMIZATION
As discussed above, activation probability computation is an
important preliminary step for the influence maximization,
which consists in maximizing the influence spread by
targeting a subset of individuals to adopt an innovation
initially. In this section, we give three basic algorithms,
named SelectTopK, RankedReplace and greedy algorithm,
which will later be combined with the approaches for
activation probability computation in Section 3 to solve the
influence maximization problem.

A. SELECTTOPK ALGORITHM
In order to select a set of K nodes to maximize the final
influence spread, a basic idea is as follows: let each node
j ∈ V be the single seed node, i.e., φ0 = {j}, then compute

8 VOLUME 4, 2016

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

the total activation probabilities by one of algorithms
discussed in Section 3. Having known the influence spread
when each node is as the single seed node, we select the K
nodes with the largest influence spread as seed set φ0. The
detail is described in Algorithm 4.

Algorithm 4 SelectTopK
Input: An independent cascade network GIC = (V, E , p);

an integer K ∈ N+

Output: Seed set φ0
1: Compute the influence spread σ({j}) for each node j ∈
V

2: Select K nodes with the highest value of σ(·) as seed set
φ0

3: return seed set φ0

Let T to be the time complexity required to compute the
activation probability for a given net with N nodes. As we
have previously discussed, these value has order O(N · 3N)
for Path Method, O(N) for SteadyStateSpread, O(N2) for
SSS-Noself and O(N) for SSS-Bounded-Path. Then the time
complexity of Algorithm 4 is O(NT) since it computes the
influence spread for each node j ∈ V as a single seed node.

B. RANKEDREPLACE ALGORITHM
To further improve the SelectTopK algorithm, a number of
replacements of seed nodes happen after the selection of
initial seed set. As shown in Algorithm 5 [6], the nodes in
V \ φ0 are sorted in descending order of the influence spread
value σ(φ0). Then in each iteration, the nodes in φ0 are
sorted in ascending order of influence spread value σ(φ0).
We pick in order the node in V \ φ0 to replace a node in φ0,
if this replacement can increase the final influence spread.
Note that in ascending order only the first replacement of a
node in φ0 which increases σ(φ0) is executed.

Algorithm 5 RankedReplace
Input: An independent cascade network GIC = (V, E , p);

an integer K ∈ N+

Output: Seed set φ0
1: Compute the influence spread σ({j}) for each node j ∈
V

2: Initialize seed set φ0 by K nodes with the highest value
of σ(·)

3: Sort nodes j ∈ V \ φ0 in descending order of σ({j})
4: for j ∈ V \ φ0 in descending order of σ(j) do
5: Sort nodes i ∈ φ0 in ascending order of σ({i})
6: for i ∈ φ0 in ascending order of σ({i}) do
7: if σ(φ0 ∪ {j} \ {i}) > σ(φ0) then
8: φ0 = φ0 ∪ {j} \ {i}
9: break

10: end if
11: end for
12: end for
13: return seed set φ0

Let T to be the time complexity required to compute the
activation probability for a given net with N nodes. As we
have previously discussed, these value has order O(N · 3N)
for Path Method, O(N) for SteadyStateSpread, O(N2) for
SSS-Noself and O(N) for SSS-Bounded-Path. Then the time
complexity of Algorithm 5 isO(K(N−K)T), withN = |V|
and K = |φ0|.

C. GREEDY ALGORITHM FOR INFLUENCE
MAXIMIZATION
Algorithm 6 describes the general greedy algorithm for
influence maximization which can guarantee that the
influence spread φ0 is within (1− 1/e) of the optimal value,
as pointed by Kempes et al. [2]. In this algorithm, the node
which maximizes the incremental influence spread is
selected in each iteration.

Algorithm 6 Greedy Algorithm for Influence Maximization
Input: An independent cascade network GIC = (V, E , p);

an integer K ∈ N+

Output: Seed set φ0
1: Initialize φ0 = ∅
2: for q = 1 to K do
3: Select i = argmaxj∈V\φ0

{σ(φ0 ∪ {j})− σ(φ0)}
4: φ0 = φ0 ∪ {i}
5: end for
6: return seed set φ0

Let T to be the time requiring to compute the activation
probability (i.e., O(N · 3N) for Path Method, O(N) for
SteadyStateSpread, O(N2) for SSS-Noself and O(N) for
SSS-Bounded-Path), then the time complexity of
Algorithm 6 is O(KNT), with N = |V| and K = |φ0|.

V. EXPERIMENTAL RESULTS
Our experiment is performed in two parts. First, we compare
the influence spread with fixed seed set computed by Monte
Carlo simulation, Path Method, SteadyStateSpread,
SSS-Noself and SSS-Bounded-Path. Second, we evaluate the
performances of SteadyStateSpread and SSS-Noself in terms
of seed set selection for influence maximization combined
with the SelectTopK, RankedReplace and greedy algorithm.

All approaches are implemented in MATLAB. All
experiments are run on a PC with 2.40GHz Intel Core i5
Processor and 8GB memory.

A. ACTIVATION PROBABILITY COMPUTATION
Data Set. We consider two datasets for comparing the
different algorithms we have discussed for activation
probability computation.

First, we construct a series of bidirectional grid graphs
with a parameter m such that the m−th grid graph contains
m2 nodes. Fig. 4 shows the grid graphs for m ∈ {2, 3, 4}.
For each edge (i, j), we uniformly at random select pi,j
from the set {0.1, 0.2, 0.5}. We represent this dataset as
Series-Grid.

VOLUME 4, 2016 9

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

1 4

2 3

1 4

2 3

9

8

5 6 7

1 4

2 3

9

8

5 6 7

16

15

10 11 12

14

13

2m 3m 4m

...

FIGURE 4. Series of grid graphs.

The second dataset is a real-world network —
airportsinUS [27] which is a benchmark network widely
used in social network analysis. It is a weighted network of
the 500 airports with the largest amount of traffic from
publicly available data in the United States. Nodes represent
US airports and edges represent air travel connections
among them. There are 5960 edges in total. Based on the
weights wi,j of edges, we obtain pi,j by wi,j \

∑
i wi,j .

Experimental Setup. We compare Monte Carlo
simulation, Path Method, SteadyStateSpread, SSS-Noself
and SSS-Bounded-Path for activation probability
computation in terms of effectiveness and efficiency. For
each network dataset, the seed set is randomly chosen with a
certain size. The tested algorithms are briefly described as
follows:

Monte Carlo simulation: the average of 10,000 simulation
runs. Kempe et al. [2] showed that the quality of
approximation after 10,000 iterations is comparable to that
after 300,000 or more iterations. The simulation process is
described as: assume node i attempts to activate node j at
step t, then generate a random number uniformly distributed
in the interval [0, 1]. The innovation successfully propagates
from node i to node j when the random number does not
exceed pi,j .

Path Method: the exact computation method proposed in
Section 3.1.

SteadyStateSpread: the heuristic [6] described in Section
3.2.

SSS-Noself: the improved algorithm proposed in Section
3.2.

SSS-Bounded-Path: the algorithm proposed in Section 3.2.
Experimental Results. First, we present the computation

results of activation probabilities on Series-Grid using
Monte Carlo simulation, Path Method, SteadyStateSpread,
SSS-Noself and SSS-Bounded-Path. We randomly select one
node as seed node for the grid graphs with m = {2, 3} and
two nodes for the grid graphs with m = {4, 5, 6, 7}. We set
ε∗ = 10−8 for the iterations of SteadyStateSpread,
SSS-Noself and SSS-Bounded-Path. In order to show the
convergence of SSS-Bounded-Path, we set
b0 = {0, 1, 2, 3, 4, 20, 40, 65, 85, 135}. The sum of
activation probabilities of nodes on Series-Grid with
m = {2, 3, 4, 5, 6, 7} using Monte Carlo simulation, Path

Method, SteadyStateSpread and SSS-Noself is shown in
Table 4. The value for m = {4, 5, 6, 7} by the Path Method
is not given since the running time is more than 8 hours, i.e.,
out of time (o.o.t). The sum of activation probabilities of
nodes on Series-Grid with m = {2, 3, 4, 5, 6, 7} using
SSS-Bounded-Path is shown in Table 5. As a particular case,
we list activation probability of each node for the grid graph
with m = 3 in Table 6 and Table 7 to show the difference of
every node by these five methods.

We can observe that while SSS-Bounded-Path (b0 = 0)
provides a lower-bound, the result by SSS-Noself is always
between the exact result by Path Method and the result by
SteadyStateSpread for both activation probability of each
node and sum of activation probabilities of all node. It
verifies the relationship among these four methods in
Proposition 2. We can also figure out that within certain
paths, the results computed by SSS-Bounded-Path converges
to the results computed by SteadyStateSpread. This is
proved in Remark 2. Moreover, it shows that our SSS-Noself
algorithm provides more precise results than
SteadyStateSpread.

TABLE 4. Sum of activation probabilities computed by Monte Carlo
simulation, Path Method, SteadyStateSpread, and SSS-Noself on Series-Grid
with m = {2, 3, 4, 5, 6, 7}.

Method m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
Monte Carlo simulation 1.4343 1.9055 3.2171 4.5072 4.5527 5.1308

Path Method 1.4428 1.9098 o.o.t o.o.t o.o.t o.o.t
SteadyStateSpread 1.4467 2.0936 5.2166 5.8790 7.0053 13.1089

SSS-Noself 1.4428 1.9502 4.0661 5.0710 5.7296 9.1891

TABLE 5. Sum of activation probabilities computed by SSS-Bounded-Path
with path bound b0 = {0, 1, 2, 3, 4, 20, 40, 65, 85, 135} on Series-Grid with
m = {2, 3, 4, 5, 6, 7}.

Path bound m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
b0 = 0 1.4396 1.8769 2.8447 3.9560 4.0748 4.5891
b0 = 1 1.4396 1.8769 3.0590 4.1876 4.2843 4.8252
b0 = 2 1.4466 2.0078 3.3066 4.7612 4.8362 5.6117
b0 = 3 1.4466 2.0172 3.5094 4.9387 4.9569 5.7510
b0 = 4 1.4467 2.0566 3.6957 5.2234 5.3128 6.2450
b0 = 20 1.4467 2.0936 5.0722 5.8717 6.8181 10.1654
b0 = 40 1.4467 2.0936 5.2119 5.8790 6.9949 12.5893
b0 = 65 1.4467 2.0936 5.2166 5.8790 7.0050 13.0701
b0 = 85 1.4467 2.0936 5.2166 5.8790 7.0053 13.1045
b0 = 135 1.4467 2.0936 5.2166 5.8790 7.0053 13.1089

TABLE 6. Activation probabilities computed by Monte Carlo simulation, Path
Method, SteadyStateSpread, and SSS-Noself on Series-Grid with m = 3.

Node 1 2 3 4 5 6 7 8 9
Monte Carlo simulation 1 0.5076 0.0962 0.1099 0.1048 0.0302 0.0151 0.0168 0.0249

Path Method 1 0.5032 0.1009 0.1136 0.1049 0.0302 0.0161 0.0169 0.0238
SteadyStateSpread 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320

SSS-Noself 1 0.5049 0.1119 0.1182 0.1093 0.0345 0.0206 0.0227 0.0280

Second, we compare the running time of these five
methods for the activation probability computation, shown
in Table 8 and Table 9. We can observe that Path Method
takes exponential time to give exact results as the size of
network increases. SSS-Noself provides better results than

10 VOLUME 4, 2016

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

TABLE 7. Activation probabilities computed by SSS-Bounded-Path with
b0 = {0, 1, 2, 3, 4, 20, 40, 65, 85, 135} on Series-Grid with m = 3.

Node 1 2 3 4 5 6 7 8 9
b0 = 0 1 0.5000 0.0975 0.1000 0.1000 0.0296 0.0161 0.0137 0.0200
b0 = 1 1 0.5000 0.0975 0.1000 0.1000 0.0296 0.0161 0.0137 0.0200
b0 = 2 1 0.5296 0.1189 0.1264 0.1191 0.0432 0.0236 0.0203 0.0266
b0 = 3 1 0.5296 0.1213 0.1315 0.1191 0.0434 0.0238 0.0208 0.0276
b0 = 4 1 0.5354 0.1279 0.1382 0.1264 0.0491 0.0268 0.0233 0.0296
b0 = 20 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320
b0 = 40 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320
b0 = 65 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320
b0 = 85 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320
b0 = 135 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320

SteadyStateSpread with an acceptable increase of
computation time for the considered small networks. As b0
increases, SSS-Bounded-Path involves more paths of the
network, thus it cost a little more time to compute.

TABLE 8. Running time for activation probability computation by Monte Carlo
simulation, Path Method, SteadyStateSpread, and SSS-Noself on Series-Grid
with m = {2, 3, 4, 5, 6, 7}.

Running time (s) m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
Monte Carlo simulation 0.48 1.25 0.95 1.40 1.82 1.58

Path Method 0.11 0.31 o.o.t o.o.t o.o.t o.o.t
SteadyStateSpread 0.01 0.02 0.10 0.09 0.34 0.55

SSS-Noself 0.01 0.06 0.66 1.42 4.80 11.41

TABLE 9. Running time for activation probability computation by
SSS-Bounded-Path with b0 = {0, 1, 2, 3, 4, 20, 40, 65, 85, 135} on
Series-Grid with m = {2, 3, 4, 5, 6, 7}.

Running time (s) m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
b0 = 0 0.01 0.01 0.01 0.01 0.01 0.01
b0 = 1 0.01 0.01 0.01 0.01 0.01 0.01
b0 = 2 0.01 0.01 0.01 0.01 0.01 0.01
b0 = 3 0.01 0.01 0.01 0.01 0.01 0.01
b0 = 4 0.01 0.01 0.01 0.01 0.01 0.01
b0 = 20 0.01 0.01 0.01 0.01 0.01 0.02
b0 = 40 0.01 0.01 0.01 0.01 0.02 0.03
b0 = 65 0.01 0.01 0.01 0.02 0.03 0.02
b0 = 85 0.01 0.01 0.01 0.03 0.03 0.04
b0 = 135 0.01 0.02 0.02 0.03 0.05 0.07

Another experiment of activation probability computation
is performed on airportsinUS network data. We evaluate the
sum of activation probabilities for all nodes by Monte Carlo
simulation, SteadyStateSpread, SSS-Noself and
SSS-Bounded-Path given different sizes of seed sets, shown
in Fig. 5. We have not given the value computed by Path
Method since it can not be obtained within limited time for
this size of network. The seven seed sets are randomly
generate with size |φ0| = {1, 5, 10, 15, 20, 25, 30}. The
result of Monte Carlo simulation is obtained by the average
of 10,000 simulation runs proceeded as described in the first
experiment. The stopping criterion is fixed as ε∗ = 0.01 for
SteadyStateSpread, SSS-Noself and SSS-Bounded-Path. The
path bound b0 is chosen from {0, 1, 5, 10, 15, 20, 25, 30} for
SSS-Bounded-Path. We can observe that the results
computed by these approaches are consistent with
Equation 7. According to the proved relationship in
Proposition 2, although we have not been able to compute
the exact value by Path Method because of the net size, we
can figure out that SSS-Noself is more precise than

SteadyStateSpread. Moreover, we can see that the results of
SSS-Bounded-Path increase as the path bound b0’s increase.
As a lower-bound, the values computed by
SSS-Bounded-Path (b0 = 0) are the smallest among all
approaches under the same seed set size.

1 5 10 15 20 25 30
Seed set size

0

20

40

60

80

100

120

140

160

180

In
flu

en
ce

 s
pr

ea
d

SteadyStateSpread
SSS-Noself
Monte Carlo Simulation
SSS-Bounded-Path (b0=0)

SSS-Bounded-Path (b0=5)

FIGURE 5. Sum of activation probabilities computed by Monte Carlo
simulation, SteadyStateSpread, SSS-Noself, SSS-Bounded-Path (b0 = 0)
and SSS-Bounded-Path (b0 = 5) on airportsinUS network data.

However, as shown in Table 10, the running time of
SSS-Noself is much longer than SteadyStateSpread when the
size of the network is large since SSS-Noself needs one more
pass of all nodes in a network than SteadyStateSpread. For
this reason we think that it may be necessary to further
improve the efficiency of SSS-Noself. Compared with the
running time of SSS-Bounded-Path in Table 11,
SSS-Bounded-Path is obviously faster than
SteadyStateSpread when b0 = {0, 1, 5, 10, 15, 20}. As b0
increases, the running time of these two approaches will be
similar.

TABLE 10. Running time for activation probability computation by Monte
Carlo simulation, SteadyStateSpread and SSS-Noself on airportsinUS
network data given different sizes of seed sets |φ0|.

Running time (s) |φ0| = 1 |φ0| = 5 |φ0| = 10 |φ0| = 15 |φ0| = 20 |φ0| = 25 |φ0| = 30
Monte Carlo simulation 3.86 6.23 36.39 57.70 68.81 98.59 110.99

SteadyStateSpread 5.05 3.20 1.35 1.18 1.10 0.94 0.82
SSS-Noself 1143.62 892.77 719.44 467.74 512.77 383.86 350.49

TABLE 11. Running time for activation probability computation by
SSS-Bounded-Path on airportsinUS network data given different sizes of seed
sets |φ0| with path bound b0 = {0, 1, 5, 10, 15, 20, 25, 30}.

Running time (s) |φ0| = 1 |φ0| = 5 |φ0| = 10 |φ0| = 15 |φ0| = 20 |φ0| = 25 |φ0| = 30
b0 = 0 0.12 0.12 0.11 0.14 0.12 0.11 0.12
b0 = 1 0.16 0.22 0.16 0.18 0.16 0.15 0.16
b0 = 5 0.26 0.28 0.28 0.30 0.27 0.27 0.28
b0 = 10 0.36 0.38 0.38 0.40 0.38 0.37 0.37
b0 = 15 0.61 0.57 0.56 0.58 0.56 0.56 0.57
b0 = 20 0.57 0.64 0.63 0.65 0.64 0.63 0.62
b0 = 25 0.87 0.87 0.86 0.88 0.86 0.86 0.86
b0 = 30 0.90 0.90 0.91 0.91 0.89 0.88 0.89

VOLUME 4, 2016 11

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

Fig. 6 shows the error between SSS-Bounded-Path and
SSS-Noself which is measured by
|
∑
j∈V\φ0

πbpj −
∑
j∈V\φ0

πnj | \
∑
j∈V\φ0

πnj . We do not
present the curve for |φ0| = 25 due to the limit of space, but
point out that it is similar to the curves for
|φ0| = {15, 20, 30}. We can find that in the beginning the
error decreases as the path bound b0’s increases. At certain
path bound the error is the smallest and then increases a bit.
Results show that the path bound corresponding to the
smallest error varies with different seed set size.

0 1 5 10 15 20 25 30
Path bound b

0

0

0.2

0.4

0.6

0.8

1

E
rr

or
 w

ith
 S

S
S

-N
os

el
f

(a) |φ0| = 1

0 1 5 10 15 20 25 30
Path bound b

0

0

0.2

0.4

0.6

0.8

1

E
rr

or
 w

ith
 S

S
S

-N
os

el
f

(b) |φ0| = 5

0 1 5 10 15 20 25 30
Path bound b

0

0

0.2

0.4

0.6

0.8

1

E
rr

or
 w

ith
 S

S
S

-N
os

el
f

(c) |φ0| = 10

0 1 5 10 15 20 25 30
Path bound b

0

0

0.2

0.4

0.6

0.8

1

E
rr

or
 w

ith
 S

S
S

-N
os

el
f

(d) |φ0| = 15

0 1 5 10 15 20 25 30
Path bound b

0

0

0.2

0.4

0.6

0.8

1

E
rr

or
 w

ith
 S

S
S

-N
os

el
f

(e) |φ0| = 20

0 1 5 10 15 20 25 30
Path bound b

0

0

0.2

0.4

0.6

0.8

1

E
rr

or
 w

ith
 S

S
S

-N
os

el
f

(f) |φ0| = 30

FIGURE 6. Error between SSS-Bounded-t and SSS-Noself on airportsinUS
network data given different sizes of seed sets |φ0| with path bound
b0 = {0, 1, 5, 10, 15, 20, 25, 30}.

B. OPTIMAL SEED SET SELECTION
Data Set. In this part, the real-world dataset used in seed set
selection for influence maximization is HighSchool [26]. It
is a directed network, containing friendship links among 73
boys in a small high-school in Illinois. A node represents a
boy and an edge from node i to node j shows that the i−th
boy chose the j−th boy as a friend. The activation probability
pi,j is randomly selected from the set {0.1, 0.2, 0.5}.

Experimental Setup. In this part of experiment, we
evaluate the performances of SteadyStateSpread and
SSS-Noself in terms of selecting seed set to maximize the
influence propagation. During the process of seed set

selection by SelectTopK, RankedReplace or greedy
algorithm, we apply SteadyStateSpread or SSS-Noself to
compute the activation probability. After selecting the seed
set by these different combination of methods, the influence
spread of the selected seed set is evaluated by running
Monte Carlo simulation for 10,000 times. The tolerance for
SteadyStateSpread and SSS-Noself is fixed as ε∗ = 0.01.
The tested algorithms are briefly described as following:

Random: Randomly select a set of nodes to be activated.
SelectTopK-SSS: Compute the activation probability of

each node by SteadyStateSpread and then select K nodes
with the largest influence spread as the seed nodes.

SelectTopK-SN: Compute the activation probability of
each node by SSS-Noself and then select K nodes with the
largest influence spread as the seed nodes.

Replace-SSS: Compute the activation probability of each
node by SteadyStateSpread and then select seed nodes by
RankedReplace.

Replace-SN: Compute the activation probability of each
node by SSS-Noself and then select seed nodes by
RankedReplace.

Greedy-SSS: Select seed nodes by greedy algorithm, in
which computing the activation probability by
SteadyStateSpread.

Greedy-SN: Select seed nodes by greedy algorithm, in
which computing the activation probability by SSS-Noself.

Experimental Results. We evaluate the algorithms
above on the Highschool network under the Independent
Cascade model in terms of the influence spread and the
running time. The influence spread is denoted with the total
activation probabilities of all nodes in the network. After
selecting a seed set by any one of the above algorithms, the
influence spread is computed by Monte Carlo simulation.

The influence spread with a seed set of size
K = {1, 5, 10, 15, 20, 25} computed by different algorithms
is shown in Fig. 7. Regardless of which approach computes
the activation probability, either SteadyStateSpread or
SSS-Noself, it is obvious that greedy algorithm performs
better than RankedReplace, and RankedReplace performs
better than SelectTopK when K = {5, 10, 15, 20, 25}.
Moreover, based on the same algorithm for seed set
selection (SelectTopK, RankedReplace or greedy
algorithm), SSS-Noself can select a better set of seed nodes,
i.e., give a larger influence spread, compared with
SteadyStateSpread.

Fig. 8 shows the running time for selecting nodes by
different algorithms above. Greedy-SN takes much longer
time than other algorithms. Although SelectTopK-SN takes
a bit longer time than SelectTopK-SSS and as well
Replace-SN takes a bit longer time than Replace-SSS, these
four algorithms are efficient enough.

VI. CONCLUSION
In this paper, we analyzed different approaches for influence
spread computation in an Independent Cascade model. We
initially proposed an approach which can compute the exact

12 VOLUME 4, 2016

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

K=1 K=5 K=10 K=15 K=20 K=25
Seed set size

0

10

20

30

40

50

60

In
flu

en
ce

 s
pr

ea
d

Random
SelectTopK-SSS
SelectTopK-SN
Replace-SSS
Replace-SN
Greedy-SSS
Greedy-SN

FIGURE 7. Influence spread computed by different algorithms on Highschool
network data given size of seed set K = {1, 5, 10, 15, 20, 25}.

K=1 K=5 K=10 K=15 K=20 K=25
Seed set size

0

200

400

600

800

1000

R
un

ni
ng

 ti
m

e

Random
SelectTopK-SSS
SelectTopK-SN
Replace-SSS
Replace-SN
Greedy-SSS
Greedy-SN

FIGURE 8. Running time for selecting seed nodes by different algorithms on
Highschool network data given size of seed set K = {1, 5, 10, 15, 20, 25}.

value of the influence spread called Path Method. We also
discussed the convergence properties of the existing
algorithm SteadyStateSpread, showing that it converges to a
fixed solution by fixed-point theory. We also considered the
elements resulting in the inaccuracy of SteadyStateSpread:
the dependent relation between nodes and the existence of
circuits. Furthermore, we showed how to compute a lower
approximation of activation probabilities by
SSS-Bounded-Path and proposed an improved algorithm
called SSS-Noself which partially decreases the error caused
by circuits.

Moreover, focusing on the influence maximization
problem, we evaluated these approaches in terms of
selecting seed set by combining a selection strategy based
on SelectTopK, RankedReplace and greedy algorithm.

Aware of the factors which cause the inaccuracy of

SteadyStateSpread, proposing new algorithms to improve
the effectiveness will be the objective of our future work.
Besides, since we observed that SSS-Noself is quite time
consuming in large-scale networks, another interesting line
of research could be to improve the efficiency of the
SSS-Noself. Besides, opposite to the influence maximization
problem, the influence minimization problem has also
received much attention recently in the domain of
innovation diffusion through social networks. We believe
that these computational approaches to determine influence
spread can also be applied to solve this problem: our future
research will explore this issue.

REFERENCES
[1] D. Rosa and A. Giua, “On the spread of innovation in social networks,” in

NecSys, Rhine-Moselle-Hall, Koblenz, Germany, 2013, pp. 322-327.
[2] D. Kempe, J. M. Kleinberg, and É. Tardos, “Maximizing the spread of

influence through a social network,” in Proc. 9th KDD, Washington, DC,
USA, 2003, pp. 137-146.

[3] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proc. 16th
KDD, Washington, DC, USA, 2010, pp. 1029-1038.

[4] C. Zhou, P. Zhang, J. Guo, X. Zhu, and L. Guo, “Ublf: an upper bound
based approach to discover influential nodes in social networks,” in IEEE
13th ICDM, Dallas, Texas, 2013, pp. 907-916.

[5] D. Kempe, J. M. Kleinberg, and É. Tardos, “Influential nodes in a diffusion
model for social networks,” in Int. Colloq. Autom. Lang., Program.,
Lisbon, Portugal, 2005, pp. 1127-1138.

[6] C. C. Aggarwal, A. Khan, and X. Yan, “On flow authority discovery in
social networks,” in Proc. SDM, Mesa, Arizona, USA, 2011, pp. 522-533.

[7] Y. Yang et al., “On approximation of real-world influence spread,” in
ECML-PKDD, Bristol, United Kingdom, 2012, pp. 548-564.

[8] E. Schechter, “Handbook of analysis and its Foundations,” Academic
Press, 1996.

[9] P. Domingos and M. Richardson, “Mining the network value of
customers,” in Proc. 7th KDD, San Francisco, CA, USA, 2001, pp. 57-
66.

[10] B. Ryan and N. C. Gross, “The diffusion of hybrid seed corn in two lowa
communities,” Rural Sociology, vol. 8, no. 1, pp. 15-24, 1943.

[11] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in Proc. 15th KDD, Paris, France, 2009, pp. 199-208.

[12] J. S. Coleman, E. Katz, and H. Menzel, “Medical innovation: a diffusion
study,” Bobbs-Merrill Co., 1966.

[13] J. Leskovec et al., “Cost-effective outbreak detection in networks,” in Proc.
13th KDD, San Jose, CA, USA, 2007, pp. 420-429.

[14] S. Kakutani, “A generalization of brouwer’s fixed point theorem,”
Duke Mathematical Journal, vol. 8, no. 3, pp. 457-459, 1941, doi:
10.1215/s0012-7094-41-00838-4.

[15] J. C. P. Bus, “Convergence of Newton-like methods for solving systems of
nonlinear equations,” Numerische Mathematik, vol. 27, no. 3, pp. 271-281,
1976, doi: 10.1007/bf01396177.

[16] C. Grosan and A. Abraham, “Multiple solutions for a system of nonlinear
equations,” Int. J. Innov. Comput. Inf. Control, vol. 4, no. 9, pp. 2161-2170,
2008.

[17] J. Goldenberg, B. Libai, and E. Muller, “Talk of the network: a complex
systems look at the underlying process of word-of-mouth,” Marketing
Lett., vol. 12, no. 3, pp. 211-223, 2001.

[18] M. Kimura and K. Saito, “Tractable models for information diffusion in
social networks,” in ECML-PKDD, Berlin, Germany, 2006, pp. 259-271.

[19] A. Goyal, W. Lu, and L. V. S. Lakshmanan, “Celf++: optimizing the greedy
algorithm for influence maximization in social networks,” in Proc. 20th
WWW, Hyderabad, India, 2011, pp. 47-48.

[20] C. Borgs et al., “Maximizing social influence in nearly optimal time,” in
Proc. 25th ACM-SIAM Symp. Discrete Algorithms, Porland, Oregon, USA,
2014, pp. 946-957.

[21] J. Tang, X. Tang, and J. Yuan, “Influence maximization meets efficiency
and effectiveness: a hop-based approach,” in Proc. IEEE/ACM ASONAM,
Sydney, Australia, 2017, pp. 64-71.

VOLUME 4, 2016 13

Yang et al.: Influence Maximization in Independent Cascade Networks Based on Activation Probability Computation

[22] J. Tang, X. Tang, and J. Yuan, “An efficient and effective hop-based
approach for influence maximization in social networks,” SNAM, vol. 8,
no. 1, pp. 10, 2018, doi: 10.1007/s13278-018-0489-y.

[23] W. Yang, L. Brenner, and A. Giua, “Computation of activation
probabilities in the independent cascade model,” in 5th CoDIT,
Thessaloniki, Greece, 2018, pp. 791-797.

[24] F. Ye et al., “Identifying influential individuals on large-scale social
networks: a community based approach,” IEEE Access, vol. 6, pp. 47240-
47257, 2018, doi: 10.1109/access.2018.2866981.

[25] Q. Yu, H. Li, Y. Liao, and S. Cui, “Fast budgeted influence maximization
over multi-action event logs,” IEEE Access, vol. 6, pp. 14367-14378, 2018,
doi: 10.1109/access.2018.2809547.

[26] J. S. Coleman, Introduction to Mathematical Sociology, London, Collier-
Macmillan, 1964.

[27] V. Colizza, R. Pastor-Satorras, and A. Vespignani, “Reaction-diffusion
processes and metapopulation models in heterogeneous networks,” Nature
Physics, vol. 3 no. 4, pp. 276, 2007, doi: 10.1038/nphys560.

[28] X. Deng, Y. Dou, T. Lv, and Q. V. H. Nguyen, “A novel centrality
cascading based edge parameter evaluation method for robust influence
maximization,” IEEE Access, vol. 5, pp. 22119-22131, 2017, doi:
10.1109/access.2017.2764750.

[29] H. Wu et al., “LAIM: a linear time iterative approach for efficient influence
maximization in large-scale networks,” IEEE Access, vol. 6, pp. 44221-
44234, 2018, doi: 10.1109/access.2018.2864240.

14 VOLUME 4, 2016

