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Abstract 

This work focuses on the understanding of the production mechanism of negative-ions 

on surface in low pressure plasmas of H2/D2. The negative ions are produced on a HOPG sample 

(Highly Oriented Pyrolitic Graphite) negatively biased with respect to plasma potential. The 

negative ions created under the positive ion bombardment are accelerated towards the plasma, 

self-extracted and detected according to their energy and mass by a mass spectrometer placed 

in front of the sample. The shape of the measured Negative-Ion Energy Distribution Function 

(NIEDF) strongly differs from the NIEDF of the ions emitted by the sample because of the 

limited acceptance angle of the mass spectrometer. To get information on the production 

mechanisms, we propose a method to obtain the distribution functions in energy and angle 

(NIEADFs) of the negative-ions emitted by the sample. It is based on an a priori determination 

of the NIEADF and on an a posteriori validation of the choice by comparison of the modelled 

and experimental NIEDFs.  
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1. Introduction 

 
Negative-ion (NI) production in low-pressure plasma has many applications and is 

studied in various areas, such as microelectronics1,2,3,4,5,6, magnetically confined fusion7,8, space 

propulsion9,10,11 and sources for particle accelerators12,13,14. NI in low pressure plasmas are 

usually created by dissociative attachment of electrons on molecules (volume 

production)15,16,17, but they can also be created on surfaces by the bombardment of positive ions 

or hyperthermal neutrals18,19,20,21,22,23,24. Volume-produced NI sources are mainly used in 

microelectronic 1,2,3,4,5,6 and space propulsion applications9,10,11 while surface production of NI 

is employed in magnetically confined fusion devices7,8 and sources for particle 

accelerators12,13,14. Surface production of negative-ions is also observed in sputtering processes 

as shown in 25,26,27.  

In magnetically-confined fusion devices (tokamaks), NI can be used to generate a fast 

neutral beam through interaction with a stripping gas target; such beam is used to heat the 

plasma and to implement the current drive. Given the huge dimensions of the ITER device and 

its successor DEMO, neutral beam energies in the range of 1–2 MeV are required; at these 

energies the neutralization of positive ions becomes very inefficient. Indeed, the yield of 

neutralization of the positive ions by a D2 gas tends to zero above 100 keV, while its value is 

around 55% at 1 MeV for NI28. Therefore, there is a great research effort dedicated to the 

development of a high current NI source (50A D– beam for ITER)29,30,31,32,33,34,35,36,37. This 

source uses cesium injection inside the plasma in order to increase strongly the NI extracted 

current38,39,40. However, as the use of cesium complicates noticeably the neutral beam injection 

device, there is a demand for the development of cesium-free NI sources in H2/D2 plasmas41 or 

for the reduction of the cesium consumption in fusion negative-ion sources42. Several papers 

dedicated to this subject have been recently published19,42,43,44, 45,46,47,48,49. In the present paper, 

we are pursuing our studies on NI surface production in cesium-free low-pressure H2/D2 

plasmas. 

In our experimental set-up47 a sample is introduced in the plasma and negatively biased 

with respect to the plasma potential. The negative ions formed on the surface are accelerated 

by the sheath in front of the sample and self-extracted on the other side of the plasma towards 

a mass spectrometer. Negative ions are detected according to their energy and mass and 

Negative-Ion Energy Distribution Function (NIEDF) is measured. HOPG (Highly Oriented 

Pyrolitic Graphite) has been chosen as a reference material for the study, because of its high 

yield of production of negative-ions and because of its simplicity to cleave and clean. In order 

to gain an insight on the mechanisms of the NI surface production, it is important to analyze 

and characterize the shapes of the measured NIEDFs. 

It has been shown that the measured NIEDFs strongly differ from those of the ions 

emitted by the sample surface because of the limited acceptance angle of the mass 

spectrometer47. Furthermore, the measurements provide only information about energy and 

mass of the negative ions, and no information is obtained concerning their angle of emission 

from the surface. To get information on the production mechanisms, it is mandatory to 

determine the distribution functions in energy and angle of the negative-ions (NIEADFs) 

emitted by the sample. A model has been developed to obtain the NIEADFs earlier47. The 
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principle was to choose a priori the NIEADF f(E, and to compute NIEDF from the chosen 

NIEADF. The good agreement between the NIEDFs measured by the mass spectrometer and 

the modelled ones allowed us to validate the choice of the chosen NIEADF. However, it was 

shown that only few ions among all the emitted ones are collected by the mass spectrometer 

(5% of collection), hence a good agreement between the model and the experiment only 

validated the choice of a small part of the NIEADF. Indeed, because of the low acceptance 

angle of the mass spectrometer, only ions emitted at small angles with respect to the axis of the 

mass spectrometer can be collected. In the present paper NIEDFs are measured for different tilt 

angles of the sample, allowing the collection of ions emitted from the surface at any angle and 

energy. The corresponding NIEDFs are then computed using the chosen NIEADF and 

compared to the experimental ones in order to further validate the choice of the NIEADF.  

The paper is organized in three parts. In the first one, the experimental set-up is briefly 

described. The second part is dedicated to the improvement of the model developed 

previously47, which allows taking into account a tilt of the sample with respect to the mass 

spectrometer axis. In the last part the computed NIEDFs are presented and compared to the 

experiments. Finally, the other outputs of the model are presented and discussed.  

 

2. Experimental set-up 

The reactor, diagnostic instruments and plasma conditions used were described in detail 

elsewhere47. The measurements are performed in a helicon reactor consisting of an upper 

cylindrical source chamber (Pyrex tube, 360 mm long and 150 mm diameter) and a lower 

spherical diffusion chamber (stainless steel chamber, radius 100 mm). The plasma is created in 

the source chamber by an external antenna surrounding the Pyrex tube and connected to a 13.56 

MHz RF generator. The HOPG sample is inserted in the diffusion chamber. Its surface exposed 

to the plasma is a disc of 8 mm in diameter facing the mass spectrometer nozzle located at 37 

mm away. The mass spectrometer axis passes through the center of the sample and the latter 

can be rotated in the direction perpendicular to this axis (Figure 1). It has been found that the 

rotation of the sample strongly reduces the intensity of the recorded NIEDFs. Increasing the RF 

power applied to the plasma to increase both the positive-ion flux and the resulting NI flux is 

not a satisfying solution since it also increases the RF oscillations of the plasma potential, 

perturbing the measurements. Therefore, instead of the RF source used in a capacitive mode to 

generate the plasma, an ECR source (Electron Cyclotron Resonance) from Boreal Plasma was 

installed in the diffusion chamber, 5 cm away from the sample. The ECR source was operated 

at 2.45 GHz, which gives electron resonance for a B field of 845 Gauss (such value is reached 

less than one centimeter away from the magnet). A more detailed description of the ECR source 

can be found in 16. The plasma density was increased by one order of magnitude and the RF 

fluctuations problem was avoided. It has been checked that NIEDF shapes are not affected by 

the magnetic field of the ECR source, which is around 50 gauss at the sample surface. In 

addition, the orifice diameter in the mass spectrometer nozzle has been increased from 35 µm 

to 100 µm. This leads to an increase of the signal by a factor ~10. Moreover, the clamping part 

of the sample holder (see Figure 1 in 47) has been made much thinner (0.1 mm) improving 

measurements at high tilt angle when the signal is low.   
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Measurements were performed at 1 Pa H2 and 60 W of injected power. The plasma 

density, as measured by Langmuir probe, is 2.5·1015 m-3, the electron temperature is 1 eV and 

the plasma potential is 7 V. The positive ion flux composition is determined by mass 

spectrometry. H3
+ flux represents around 75 % of the total ion flux, H2

+ flux around 14% and 

H+ 11%. As explained in 19, due to the variation of the transmission probability of the mass 

spectrometer, this is only an estimation of the ion fractions, which can vary by few percent 

depending on the mass spectrometer tuning. The sample was biased to Vs = -130 V leading to 

the dominant positive ion impact energy of 45 eV per proton. The energy of H- ions entering 

the plasma is between 130 eV (ion created at rest on the surface) and 175 eV (ion created with 

initial energy of 45 eV, see Figure 2). In this energy range the electron detachment cross section 

(H- + H2) is between 5.3·10-20 and 5.9·10-20 m2 50, giving a mean free path for negative-ion 

detachment in the range of 70–80 mm. As the distance between the sample and the mass 

spectrometer is 37 mm, this leads to a loss of around 40% of the ion flux. However, as the 

detachment cross section is largely dominating over other processes (such as momentum 

transfer50), and because detachment cross section is not varying too much (from 5.3·10-20 to 

5.9·10-20 m2), this does not affect the NIEDF shape as demonstrated previously46. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Sketches of the NI trajectory between the sample surface and the mass spectrometer for the tilt angle α = 0 (a) 

and α ≠ 0 (b). The figure is not on scale, the sample size is enlarged.  
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3. Modelling 

As explained in the introduction, a model has been previously developed to obtain the 

NIEADF on the sample from the NIEDF measured by the mass spectrometer. The principle is 

to choose a priori the NIEADFs f(E, and to validate a posteriori this choice. In this model 

the NI trajectories between the sample and the mass spectrometer are computed based on their 

energy and angle of emission. All ions missing the entrance of the mass spectrometer or arriving 

to it with an angle θMS higher than the acceptance angle θaa are eliminated from the calculations 

(Figure 1). The energy and angle distribution of the remaining ions is labelled f’(E,). The 

transmission probability of the ions passing through the mass spectrometer itself is calculated 

using the SIMION software51. The energy distribution function of the ions collected by the mass 

spectrometer f”(E) is obtained by summing up all the ions over the angles weighted by their 

transmission probability at a given angle and energy. This NIEDF is then compared with the 

experimental one to validate the choice of f(E,, and if required the method is iterated. In our 

previous paper47 we have shown that the distribution f’(E) at the mass spectrometer nozzle is 

not strongly different from the distribution at the mass spectrometer detector f”(E). Therefore, 

in order to speed up the calculations, only f’(E) is considered in the present paper. 

In previous papers we have shown that the negative-ions are formed by the 

backscattering of positive ions as NI and by the sputtering of adsorbed hydrogen (deuterium) 

atoms as NI19,43,44. The energy and angular distribution of backscattered and sputtered particles 

computed by the SRIM code52 has been chosen as the initial NIEADF f(E,. As SRIM does 

not take into account the surface ionization, this choice implicitly assumes that the surface 

ionization probability is independent of the angle and energy of the particles emitted. On metals, 

the ionization probability is usually dependent on the outgoing velocity53,54,55,56,57. Assuming a 

constant ionization probability is a strong assumption that has been largely discussed 

previously47. Positive ions impacting the surface have been divided in the modelling in three 

groups corresponding to the three ion types observed experimentally: H3
+, H2

+, H+. To take into 

account molecular ion dissociation at impact, the H3
+ ion is modelled by proton impact at one 

third of H3
+ energy with a flux three times higher than the H3

+ one (3 protons at 45 eV for each 

H3
+ impact). In the same way, H2

+ is modelled by the impact of protons at half the H2
+ energy 

and twice the H2
+ flux (2 protons at 67 eV for each H2

+ impact). The sample material is assumed 

to be an amorphous a-C:H layer (30% H), since the graphite surface exposed to plasma is 

subjected to hydrogen implantation and defect creation in the subsurface layer, which has been 

confirmed by Raman spectroscopy measurements45,46. The parameters of the SRIM calculation 

are listed elsewhere48 and reminded in Table 1.  107 incident positive ions have been used in 

these calculations yielding in ~2·106 H particles emitted from the surface, including 

backscattered and sputtered ones. The acceptance angle aa as computed by SIMION is 1° with 

the present mass spectrometer settings.  
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Species % in the layer Displacement energy (eV) 
Lattice energy 

(eV) 

Surface binding energy 

(eV) 

C 70 25 3 4.5 

H 30 2.5 3 3 

Table 1: Parameters used for the SRIM calculations. a-C:H layer is modelled with a density of 2.2 g/cm3. The 

type of calculation used is “Surface sputtering / Monolayer Collision Steps”. 107 proton impacts with 

incidence angle of 0° (with respect to the sample normal) are simulated. The impact energies are given in the 

text. 
 

Figure 2 shows a comparison between the measured (black) and the computed (red for 

the case of 100% H3
+ or blue for the case of 75% H3

+, 14% H2
+, 11% H+) NIEDFs in the ECR 

plasma. When the three populations of positive ions are taken into account, the model 

reproduces quite well the shape of the NIEDF, which presents a main peak at low-energy (0–

10 eV), a tail with a slight decreasing slope at intermediate energy (10–30 eV) and a slope 

breaking around 30 eV followed by the high energy tail. In case when only the H3
+ ion flux, 

which is dominating under the present experimental conditions, is considered, the measured 

distribution is globally well fitted by the model with the exception of the high-energy tail (above 

30 eV). It is due to the fact that only H2
+ and H+ ions with higher energy per proton can 

contribute to the formation of negative-ions with such high energy (see considerations on the 

maximum H- energy in 19). Let us note however that the modelling with H3
+ positive ion only 

gives a good agreement for 95% of the negative-ion population (only few negative-ions have 

energy higher than 35 eV). Finally, Figure 2 demonstrates that only a part of the emitted ions 

is collected by the mass-spectrometer: the distribution function of the collected ions f’(E), 

shown with empty symbols, differs strongly from the distribution function of the emitted ions 

f(E), shown with filled symbols.  
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Figure 2. Comparison between the calculated energy distribution function f ’(E) of the negative ions collected 

by the mass spectrometer (empty symbols) and the experimental one (black line) obtained at 1 Pa, 60 W with 

the ECR source. Red circle correspond to the case of 100% H3
+, blue squares to the case of 75% H3

+, 14% H2
+ 

and 11% H+. The energy distribution functions of ions on the sample f(E) calculated by SRIM and used as input 

in the model are shown with filled symbols. All NIEDFs are normalized to the peak value. 

 

 

  
 
Figure 3. Left: normalized angular distributions f(θ) of ions leaving the sample surface, either given by SRIM (red) or 

artificial (blue and magenta). Right: corresponding energy distribution functions of the collected NI f’(E) given by the 

model (empty symbols) compared to the experimental curve (black). The input of the model is the same f(E) for all cases, 

as given by SRIM when only H3
+ is considered (filled red symbols). All NIEDFs are normalized to the peak value. 

 

Left: normalized angular distributions f(θ) of ions leaving the sample surface, either 

given by SRIM (red) or artificial (blue and magenta). Right: corresponding energy distribution 

functions of the collected NI f’(E) given by the model (empty symbols) compared to the 
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experimental curve (black). The input of the model is the same f(E) for all cases, as given by 

SRIM when only H3
+ is considered (filled red symbols). All NIEDFs are normalized to the peak 

value.Figure 3 demonstrates the sensitivity of the modelled NIEDF f’(E) to the input angular 

distribution f(θ) of ions leaving the sample surface. As it will be shown in the following section, 

only the ions with polar angle of emission θ close to zero can be collected when the sample is 

perpendicular to the mass spectrometer axis. Artificial shift of f(θ) given by SRIM towards θ = 

0 favors collection of NI in the whole range of energies (see blue curves on the left and on the 

right), while shifting f(θ) to 90° leads to a considerable decrease of collection at higher energies 

(magenta curves). Therefore, the shape of the resulting f’(E) is highly sensitive to the assumed  

f(E,θ) at the sample surface and can be used to validate a priori the choice of f(E,θ). 

The sheaths in front of the sample and in front of the mass spectrometer can be 

considered planar in our experimental conditions47 so that the electric field vector is reduced to 

one component in the X direction (Figure 1). Indeed, the sheath thickness is 4.5 mm while the 

8 mm diameter sample is placed at the centre of a 20 mm × 35 mm surface defined by the clamp 

size. As this surface is much larger than the sheath size we can assume that sheath edge effects 

concern only the clamp edges and not the sample. Furthermore, as the clamp has been made 

very thin (0.1 mm), we can consider that the sheath is planar above the whole surface of the 

sample. Same reasoning shows that the sheath in front of the mass spectrometer nozzle can also 

be considered as planar.  The potential variation along the X axis in the sheaths is calculated 

from the Child Langmuir law. Then a simple calculation of the ion trajectories in the sheath can 

be done. The input parameters for the trajectory calculations, such as the electron density, the 

electron temperature, the plasma potential and the applied surface bias which allow the 

computation of the sheath potential, are taken from the experiment (see section 2, 

“Experimental set-up”). These parameters correspond to the ECR H2 plasma at 1 Pa and 60 W. 

These calculations have already been detailed in the previous paper47 for the sample 

perpendicular to the mass spectrometer axis. The same method is used here for a tilted sample. 

Each NI ejected from the surface is characterized by its kinetic energy E and the angles of 

emission: polar angle and azimuth angle  in spherical coordinate system associated with the 

sample surface. The distribution in E,  is taken from the SRIM calculations; note that the 

negative ions are emitted with a uniform distribution in . α is the tilt angle between the normal 

of the sample and the mass spectrometer axis. For α = 0° there is a cylindrical symmetry around 

the mass spectrometer axis, and the angle  has no importance in the calculations. For α ≠ 0° 

there is no more symmetry and the angle  matters. Two output values are mandatory to 

determine if an ion can be collected by the mass spectrometer:  

 

i) the arrival angle MS of the negative ion at the mass spectrometer entrance. This angle is 

compared to the mass spectrometer acceptance angle aa determined by the SIMION 

simulations. The ion is eliminated from the simulation if MS is higher than aa.  

 

ii) the lateral deviation, which is the distance in the YZ plane (plane perpendicular to the mass 

spectrometer axis, see Figure 1) between the starting location of the negative ion on the sample 

and its arrival location in the plane of the mass spectrometer. When the sample is not tilted, the 

lateral deviation must be lower than the sample radius (4 mm) otherwise the ion is eliminated 
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from the calculation. Indeed, an ion emitted from the sample surface cannot reach the mass 

spectrometer entrance hole if it is laterally deviated by more than 4 mm. When the sample is 

tilted, the deviation must verify the equation (
𝐷𝑒𝑣𝑦

𝑅
)2 + (

𝐷𝑒𝑣𝑧

𝑅 𝑐𝑜𝑠𝛼
)2 ≤ 1  where Devy and Devz are 

the deviation components in the YZ plane, R is the sample radius. This relation describes an 

ellipse which is the projection of the sample surface (disc) in the plane perpendicular to the 

mass spectrometer nozzle.  

 

4. Results and discussion 

As it is mentioned above, only the negative ions with certain energies and angles of 

emission can be detected by the mass-spectrometer; the accepted energies and angles vary with 

the tilt of the sample α. This is illustrated by Figure 4 which shows polar plots of emitted NI 

(grey dots) and collected NI (blue dots) for different α. The radial position gives the NI emission 

energy normalized to the impact energy Eimpact = 45 eV of the impinging positive ions (only H3
+ 

ions are considered in this calculation). The angular position gives the emission angle of a NI 

with respect to the normal of the sample. Angle and energy of emission are obtained from the 

SRIM calculations (emitted ions) and from the modelling (collected ions). The normalized 

angular distribution of either emitted NI (black line) or collected NI (red line) is also shown in 

Figure 4. 

The maximum of the emitted NI distribution is always at θ = 45°, however the maximum 

of the collected NI distribution depends on α; for example, at α = 0° it is located at θ = 4°, 

although the range of collection extends up to θ = 27°. It may be explained by the fact that the 

ions emitted from the surface with small angles and energies have trajectories which are easily 

rectified by the electric field present in the sheaths; hence, NI arrive to the mass spectrometer 

entrance with the angle θMS < θaa and are collected. The trajectories of the ions emitted at high 

energies are not rectified efficiently unless θ is close to 0°. Hence in the experiment one favors 

the collection of NI emitted with small angles θ and/or small energies at α = 0°. 

When the sample is tilted, the collected ions come from a different part of the initial 

distribution f(E,θ). This may be observed in Figure 4 where the polar plots for α = 5°, 10°, 15° 

show the shift of the maximum of the angular distribution of the collected NI to higher θ. 

Therefore, by tilting the sample it is possible to collect the NI of all emission angles and 

energies. It is important to note that the whole distribution of emitted ions is scanned (not shown 

here) when using α angles from 0° to 30° in the case of proton impact at 45 eV (H3
+ impacting 

on the surface at 135 eV).  
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The NIEDFs from the experiment and the model are compared for different tilt angles 

of the sample from 0° to 20° in Figure 5. The peak of the NIEDF measured at  

α = 0° is normalized to unity, and the NIEDFs measured at other tilt angles are normalized 

accordingly. The peak of the distribution computed for α = 2° is normalized to the experimental 

one measured at α = 2° and the other computed distribution are normalized accordingly. This 

choice (normalization at α = 2° rather than at α = 0°) is discussed below.  

The shapes of the distributions at any alpha angle are well reproduced by the model. 

When α increases, the energy onset of the distribution shifts to higher energies. These shifts in 

the measured NIEDFs are reproduced by the model. The global experimental intensities are 

decreasing with α and this decrease is also well reproduced by the model with one exception at 

 
Figure 4. The polar plots of NI emitted from HOPG surface (f (E,θ), grey dots, from SRIM calculations) and NI 

collected by the mass-spectrometer (f’(E,θ), blue dots) as given by the model for different angles α of the sample 

tilt. The surface bias is Vs = -130 V. The radial position gives the negative-ion emission energy normalized to 

the impact energy of the positive ions Eimpact = 45 eV. Black line is the normalized angular distribution of the 

emitted negative ions. Red line is the normalized angular distribution of the collected negative ions.  Input 

parameters of the modelling correspond to the situation of an ECR H2 plasma at 1 Pa, 60 W, Vs = -130 V. 
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α = 0° (see the discussion below). The distributions measured at different alpha always 

superimpose with the tails of the previous ones. This is also reproduced by the model. The 

agreement between the experiment and the calculation is good enough to conclude that the 

improved model can be used to simulate the trajectories with a tilted sample. It validates the 

use of the distribution function f(E,θ) calculated by SRIM for all the values of energy and angle 

of the emitted NI. Up to now this choice was validated for small angles only since at α = 0° 

only ions emitted at small angles are collected47 (Figure 4). Thus, for HOPG, the surface-

produced NI distribution can be approximated by the distribution of neutrals calculated by 

SRIM with the parameters listed above.  

 

One can notice that the variations in the distribution intensity with α is well reproduced 

by the model except for α = 0°. For α = 0°, the intensity calculated by the model is higher than 

the experimental one. In other words, the drop in intensity between α = 0° (symmetrical 

situation) and α  0° (non-symmetrical situation) predicted by the modelling is observed in the 

experiment but is less important than expected. We have no explanation at the moment. It could 

arise from imperfect determination of the angle α = 0° in the experiment. Further studies are 

required to clarify this point. Let us note that the normalization between model and experiment 

for α = 0° (as done on Figure 2) would have given modelled NIEDFs with lower intensity than 

the experimental ones for all angles α > 0 °.  

The decrease of the NIEDF peak intensity with the growth of α can be understood by 

simple geometrical considerations. For α = 0° there is a cylindrical symmetry around the mass 

spectrometer axis. The criteria of collection of an ion by the mass spectrometer only depends 

on E and , there is no restriction on The ions collected for a given (E,originate from a 

circle on the sample, i.e.  ∈ [0:2π]. When the symmetry is broken (α ≠ 0°), only a part of the 

 
 

Figure 5. Comparison of the experimental NIEDF (solid lines) with the modelled ones (symbols) for different 

tilts of the sample (from α = 0° to 20°, with a step of 5°).  ECR H2 plasma 1 Pa, 60 W, Vs = -130 V. 
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distribution in  is collected, so the signal strongly decreases. In order to illustrate this, the 

following calculation was performed. A distribution of ions emitted from the surface was 

created, each ion having a unique combination of E, θ and φ with E, θ and φ distributed 

uniformly (from 0 to 50 eV, 0 to 90°, 0 to 180° correspondingly). Transmission of these ions in 

the plasma was calculated by the model for different α. As a result, one could construct the 

distribution f’(θ, φ) for each energy individually from calculations for different sample tilts α. 

Two examples of f’(θ, φ) are shown in Figure 6: for E = 2 eV on the left and for 17 eV on the 

right. Each dot in Figure 6 corresponds to an ion and its color indicates the tilt angle α at which 

this ion can be measured. One can see that the measured range of φ is strongly reduced for 

higher energies and/or higher α and θ. One can also note that the minimum number of different 

sample tilts α, which has to be measured to cover the total range of θ at a given energy, increases 

with energy. 

The fact that at higher values of α the angular distribution of the collected NI shifts to 

higher θ (Figure 4, Figure 6) has an important consequence. It has been shown before that NI 

originate from both sputtered and backscattered particles from the sample surface induced by 

the positive ion bombardment and the angular emission yield is strongly dependent on the 

process considered48. The emission yield for sputtered particles shows a maximum at θ = 20° 

and goes to zero above 45°; as far as backscattering is considered, the yield is maximal at 45° 

and goes to zero above 70° 48. Therefore, by varying the tilt angle α we can collect preferentially 

either sputtered or backscattered NI; this is illustrated in Figure 7. 

Figure 8 shows the spatial distribution of the original locations of NI on the sample 

surface collected for each tilt angle. The spatial origin of the ion is simply inferred from its 

deviation which is computed based on E, of the particle. A uniform distribution of E, 

has been chosen for this calculation as an example of an arbitrary NIEADF, in order to enlarge 

the discussion from the NI surface production on HOPG to the general case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Distribution f’(θ, φ) of the NI collected by the MS obtained from different sample tilts α for a given energy: E = 

2 eV (left) and E = 17 eV (right). The distribution of emitted ions has been chosen uniform in E,  for this calculation. 

Input parameters of the modelling correspond to an ECR H2 plasma at 1 Pa, 60 W, Vs = -130 V. 
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The ions collected at α = 0° originate from a circle on the sample (see Figure 8)When 

the symmetry is broken (α ≠ 0°), only a part of the distribution in  is collected and the signal 

strongly decreases. Moreover, the spot of origin of the ions transforms into an ellipse and shifts 

in the direction of the mass spectrometer, perpendicular to the rotation axis, see Figure 8. The 

spot remains small in dimensions (~2 mm) compared to the total sample surface (8 mm in 

diameter). Despite the shift, it can be seen that even at the tilt angle α = 30°, NI never originate 

from the sample holder (or even the edge of the sample), which justifies our measurement 

scheme. Figure 8 shows that it would be possible to work with smaller samples if required.  

 

 

The main output of the present work is the experimental confirmation that backscattered 

and sputtered neutral distribution functions as computed by SRIM can be used for negative-

ions. It implies that the surface ionization probability under the present experimental conditions 

is not dependent on the angle and energy of the outgoing particle. This is not usually the case 

for metals, while it can be possible for insulators. Further studies are required to clarify the 
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Figure 7. Fraction of sputtered and backscattered NI, which are collected by the mass-spectrometer, for different 

tilts of the sample α; the calculation is done in SRIM with Eimpact = 45 eV.  Input parameters of the modelling 

correspond to the situation of an ECR H2 plasma at 1 Pa, 60 W, Vs = -130 V. 

 

Figure 8. Maps showing the spatial distributions of the origin on the sample surface of NI collected by the mass 

spectrometer. The maps are drawn for tilts of the sample α = 0°, 15° and 30°. Uniform distribution in E, θ, φ is 

assumed.  Input parameters of the modelling correspond to an ECR H2 plasma at 1 Pa, 60 W, Vs = -130 V. 
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reason for this independence. In any case, knowing the NIEADF on the sample surface is of 

primary importance for the study of negative-ion surface production in plasmas with the aim of 

finding proper negative-ion enhancer materials. Figure 2 shows that at any tilt angle the fraction 

of ions collected is low compared to the total number of emitted ions. Measuring NIEDF at one 

particular tilt angle is therefore not enough to test the efficiency of one particular material with 

respect to the negative ion surface production. Hydrogenated materials, such as carbon 

considered here, will probably present a high signal at 0° tilt angle due to the preferential 

collection of sputtered ions (Figure 7) despite most of the ions are created on the surface by 

backscattering48. Non-hydrogenated materials might present a small signal at 0° tilt angle 

despite a high efficiency. Comparison of two different materials in terms of negative-ion yield 

must therefore be done at all tilt angles. The best approach is to use these measurements and 

the model to validate NIEADF given by SRIM and to compare directly NIEADF of both 

materials. Let us finally note that the ions formed at low energy and low angle are preferable in 

a negative-ion source in order to obtain well collimated beams of extracted ions. Thus, 

sputtering process is preferable since it gives lower energy and lower average angle emitted 

ions. In that sense, hydrogenated materials are interesting for the NI surface production.  

 

5. Conclusion 

The method developed here to determine the initial energy and angular distribution 

function (NIEADF) of NI emitted from the sample surface in H2 plasma is validated by a good 

agreement of the model with the experiment. Indeed, using SRIM distribution function as initial 

NIEADF, the model can reproduce the Negative-Ion Energy Distribution Functions (NIEDFs) 

measured by the mass spectrometer at different tilt angles of the sample. Moreover, we showed 

by tilting the sample that this validation concerns the whole distribution of emitted ions in terms 

of energy and angle. It confirms that the NIEADF for HOPG is close to the neutral distribution 

function given by SRIM. It implies that the NI formation probability on the graphite surface, 

under the present experimental conditions, is almost independent of the angle and energy of 

emission as stated previously47. The present paper shows that only a small part of the negative-

ions emitted by the sample is collected by the mass spectrometer and one measurement at one 

particular tilt angle is not enough to characterize negative-ion yield. Furthermore, the model 

shows that hydrogenated materials will probably present high negative ion signal at 0° tilt angle 

contrary to non-hydrogenated materials. Therefore, in order to analyze efficiency of different 

negative-ion enhancer materials, it is of primary importance to compare the corresponding NI 

yields at different tilt angles. The best approach is to use SRIM to compute NIEADF on the 

sample surface and to validate it by comparison with experimental NIEDF measured at different 

tilt angles. In that way, the NIEADF of ions emitted by different materials can be directly 

compared.  

The present method for the investigation of surface production of negative-ions in 

plasma is not restricted to hydrogen ions and to the application to Neutral Beam Injectors for 

fusion. For instance, it can also be used for analysis of oxygen negative-ions formed during thin 

layer deposition by reactive sputtering 25,26,27.  
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