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Abstract

Motivation: Various bioinformatics analyses provide sets of genomic coordinates of interest. Whether
two such sets possess a functional relation is a frequent question. This is often determined by interpreting
the statistical significance of their overlaps. However, only few existing methods consider the lengths of
the overlap, and they do not provide a resolutive p-value.
Results: Here, we introduce OLOGRAM, which performs overlap statistics between sets of genomic
regions described in BEDs or GTF. It uses Monte Carlo simulation, taking into account both the distributions
of region and inter-region lengths, to fit a negative binomial model of the total overlap length. Exclusion of
user-defined genomic areas during the shuffling is supported.
Availability: This tool is available through the command line interface of the pygtftk toolkit. It has been
tested on Linux and OSX and is available on Bioconda and from https://github.com/dputhier/pygtftk under
the GNU GPL license.
Contact: denis.puthier@univ-amu.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Current genomic analysis methods can localize a variety of sets of genomic
regions, such as epigenomic features, resulting in a BED file giving
their coordinates. To determine whether two such sets have a functional
relationship, a typical approach is to look for significant co-localization
by assessing the statistical significance of the amount of overlap between
them (Haiminen et al., 2008).

A comprehensive review of such methods is available through the
Coloc-stats web interface (Simovski et al., 2018), showing the biggest
difference between them to be their null model. Many, such as GREAT
(McLean et al., 2010) or CEAS (Ji et al., 2006) use a binomial test
considering only the intersections of the peak centers with the query
regions, while BEDTOOLS fisher (Quinlan and Hall, 2010) uses the
number of intersecting "bins" (whose size depends on the input regions)
to compute a hypergeometric test.

Generating an empirical null distribution by random shuffling of the
regions within the sets is another possibility. For example, pybedtools
incorporates a wrapper for this (Dale et al., 2011) which was also used to
tackle the N-fold overlap problem (Aszódi, 2012). For a more realistic null
model, conservation of inter-segment length during the shuffling was first
proposed by the Genomic HyperBrowser (Sandve et al., 2010). However,
the p-value they provide is only empirical and limited in its resolution by
shuffling depth, itself limited by computation time.

Here we propose a new method, implemented in a tool named
OLOGRAM (OverLap Of Genomic Regions Analysis using Monte Carlo),
to conveniently assess the significance of overlaps by fitting a Negative
Binomial model on overlap statistics of interest via a Monte Carlo method.

© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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2 Methods

2.1 Permutation and intersection computation

Let A and B be two sets of genomic regions with no overlaps within
A nor B. For each subset EA,k (resp. EB,k) of A (resp. B) only for
chromosome k, let L(EA,k) and I(EA,k) be respectively the lists of
regions’ sizes and inter-regions distances (from end to start).

A shuffle is generated by performing independent random
permutations of L(EA,k) and I(EA,k) for all chromosomes separately,
and separately for A and B. This method differs from the classical
BEDTOOLS shuffle which sets regions at random positions. The Genome
HyperBrowser showed the relevance of this idea.

Our approach can also exclude regions from the shuffle by shuffling
across a shorter, concatenated "sub-genome" generated by removing the
excluded regions from both sets. This allows to compute enrichment
relative to the genome minus excluded regions. For example, one can
remove low mappability regions, or consider only accessible (i.e. DNAse
I HyperSensitive) regions.

The tool then computes the regions’ intersections between the ith

shuffle of A and the ith of B, for all shuffles. This is done in RAM
with a custom sweep-line (Shamos and Hoey, 1976) algorithm of O(n)

complexity to avoid disk I/O overhead. As intersections are only computed
once per shuffle, the use of other algorithms such as Interval Trees with
O(n log(n)) complexity is not justified.

2.2 Discussion of statistical modeling

The null hypothesis (H0) is that the regions ofA are located independently
of B. As such, we do not expect them to overlap more than expected by
chance, if the regions were independently randomly placed on the genome.

Here, we propose a new statistical framework to model this problem.
Under (H0), for all regions Ai of A and Bj of B, consider the Bernoulli
random variables Ii,j = 1Ai∩Bj 6=∅.

They have very small probabilitiespi,j (region sizes are typically small
relative to chromosome size), that differ (each region has a different length,
hence different intersection probability), and are dependent (the regions
do not overlap).

Let N be the number of intersections and S the total number of
overlapping nucleotides. Then N =

∑
i,j Ii,j is a sum of dependant

Bernoulli r.v. and can be modeled with a beta-binomial (Yu and Zelterman,
2008), itself modeled with a Negative Binomial. Unlike with BEDTOOLS
shuffle, the dependency of the Ii,j makes Poisson modeling unadapted.

Then consider S =
∑

i,j Λi,j where Λi,j is the length of the
intersection betweenAi andBj . This sum hasN nonzero terms, making it
a Compound Negative Binomial. Furthermore, empirically Λi,j will often
follow a logarithmic distribution, so S can be approximated via a negative
binomial (Omair et al., 2018).

The assumptions taken here are confirmed in practice by a fitting test.
Consequently, we reckon our model is plausible with N and S following
negative binomial distributions of under (H0) unknown parameters,
approximated via this Monte Carlo approach. As such, we use them as
test statistics: the p-value associated to their value in the true data is used
to accept or reject the alternative hypothesis (H1) that the regions of the
query tend to overlap the reference.

3 Implementation
Our method is implemented as a plugin to pygtftk (Lopez et al., 2019)
and can be passed a GTF/BED stream or file (examples in documentation
and Supplementary Data). Most of the code is written in Python 3, with
performance-critical operations written in C++ and/or Cython (Behnel

et al., 2011). To preserve RAM, the total number of shuffles to be computed
is divided into batches.

The tool will compute the overlap between the supplied BED region
file and (i) any desired GTF feature, or (ii) features derived from GTF
file attributes (e.g "gene_biotype"), or (iii) additional regions supplied as
BEDs. It will output overlap statistics and the associated p-values.

The computing cost scales with the total number of lines in the
reference and query files. A typical pairwise enrichment analysis of 10k
regions against 10k takes 62 seconds on an 2,5 GHz Intel Core i7 processor.
200k against 200k takes 11 minutes.

3.1 Results

Suppl. Table 1 presents the applicability conditions and functionalities of
various tools and approaches including GREAT, CEAS, Bedtools Fisher,
Genomic HyperBrowser and LOLA (Sheffield and Bock, 2016).

An example of OLOGRAM output is available in Suppl. Fig. 1. We
showcase interactions with pygtftk in Suppl. Fig. 2, and the importance of
considering both S and N in Suppl. Fig. 3.

Using biological and artificial testing data, we found both S and
N indeed follow a negative binomial distribution; this is shown in
particular in Suppl. Fig. 4 with the example of S on artificial data.
A small total number of shuffles results in a noisy distribution, but
whose two first moments (expectation, variance) remain similar than
with a larger number of shuffles, making them sufficient to estimate the
underlying distributions. We believe 200 shuffles (default parameter) to
be an acceptable compromise between computing cost and precision of
evaluation in most cases.

Fitting a distribution (as opposed to an empirical p-value) allows for
better assessment of extreme overlaps presumably not encountered while
shuffling. To confirm the goodness of fit, a fitting quality is given as 1−V

where V is Cramér’s V score (Cramér, 1946) for the contingency table of
observed vs. expected histogram bins. It works best when the individual
probability of intersection is not too small, meaning the query and reference
regions are not too small and/or scarce compared to each other.

We compare our tool to other existing approaches in Suppl. Table
2, showing that OLOGRAM can provide meaningful insights by being
resolutive at low p-values. Discussion of those results can be found in
Suppl. Note 1. The full code to reproduce the analyses presented is
available at : https://github.com/dputhier/ologram_supp_mat, showcasing
Snakemake integration.

4 Conclusion
We have implemented a method which allows to consider the information
found in the number of overlapping base pairs, with a shuffling paradigm
that conserves inter-region length, used to fit a negative binomial model.
New features are being developed, including support for multiple overlaps
between n ≥ 2 sets.
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