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Emerging Alternative Proteinases in
APP Metabolism and Alzheimer’s
Disease Pathogenesis: A Focus on
MT1-MMP and MT5-MMP
Laura García-González, Dominika Pilat, Kévin Baranger* and Santiago Rivera*

Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France

Processing of amyloid beta precursor protein (APP) into amyloid-beta peptide (Aβ) by
β-secretase and γ-secretase complex is at the heart of the pathogenesis of Alzheimer’s
disease (AD). Targeting this proteolytic pathway effectively reduces/prevents pathology
and cognitive decline in preclinical experimental models of the disease, but therapeutic
strategies based on secretase activity modifying drugs have so far failed in clinical trials.
Although this may raise some doubts on the relevance of β- and γ-secretases as targets,
new APP-cleaving enzymes, including meprin-β, legumain (δ-secretase), rhomboid-like
protein-4 (RHBDL4), caspases and membrane-type matrix metalloproteinases (MT-
MMPs/η-secretases) have confirmed that APP processing remains a solid mechanism
in AD pathophysiology. This review will discuss recent findings on the roles of all these
proteinases in the nervous system, and in particular on the roles of MT-MMPs, which
are at the crossroads of pathological events involving not only amyloidogenesis, but
also inflammation and synaptic dysfunctions. Assessing the potential of these emerging
proteinases in the Alzheimer’s field opens up new research prospects to improve our
knowledge of fundamental mechanisms of the disease and help us establish new
therapeutic strategies.

Keywords: amyloid precursor protein, matrix metalloproteinases, eta-secretase, meprin-beta, legumain,
rhomboid-like protein-4, caspase, neurodegenerative disease

Abbreviations: 5xFAD: transgenic mouse model of AD bearing 3 familial mutations on human APP and 2 on PSEN1 genes;
AD: Alzheimer’s disease; ADAM: a disintegrin and metalloproteinase; AICD: APP intracellular domain; AMPA: α-amino-
3-hydroxy-5-methyl-4- isoxazolepropionic acid; APLP1/2: amyloid precursor like protein 1/2; APOE: apolipoprotein E;
APP: amyloid-beta precursor protein; APP-IP: APP-derived inhibitor peptide; Aβ: amyloid-beta peptide; BACE-1: beta-
site APP cleaving enzyme 1; C99/C83: APP-CTF of 99/83 amino acids; CSF: cerebrospinal fluid; CST3: cystatin C
encoding gene; CXCL12: C-X-C motif chemokine ligand 12; DR6: death receptor 6; ECM: extracellular matrix; GABA:
gamma-aminobutyric acid; GluA1/A2: glutamate A1/A2; GPI: glycosylphosphatidyl inositol; HEKswe: Human Embryonic
Kidney cells 293 stably expressing APP with the familial Swedish mutation; IL-1β: interleukin-1 beta; IL-8: interleukin-
8; iPS: induced pluripotent stem cells; LOAD: late onset Alzheimer’s disease; LTP: long-term potentiation; mEPSCs: mini
excitatory postsynaptic currents; mIPSCs: mini inhibitory postsynaptic currents; MMP: matrix metalloproteinase; MT-MMP:
membrane-type matrix metalloproteinase; N/CTF: N-terminal or C-terminal APP fragments generated by APP-cleaving
enzymes; NFT: neurofibrillary tangles; NMDA: N-methyl-D-aspartate; PARL: presenilin associated rhomboid like; PP2A:
protein phosphatase 2; PS1/2: presenilin 1 and 2; PSD95: postsynaptic density protein 95; RHBDL4: rhomboid-like protein-
4; sAPPα/β: soluble APPα/β; SDF1α: stromal cell-derived factor 1; SLPI: secretory leukocyte proteinase inhibitor; TIMP:
tissue inhibitor of MMPs; TMD: transmembrane domain; TNF-α: tumor necrosis factor alpha; VEGF: vascular endothelial
growth factor.
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ALZHEIMER’S DISEASE, A
PROTEOLYTIC PROBLEM

Alzheimer’s disease (AD) is the most common type of
neurodegenerative disorder for which only a few drugs have
shown transient and moderate anti-symptomatic effects, but
there is no treatment that slows down or prevents the progression
of the disease. A minority of AD cases find their cause in
deterministic genetic mutations in three genes: PSEN1, PSEN2
and APP, encoding, respectively, aspartyl proteinase presenilin
1 and 2 (PS1/PS2) and amyloid precursor protein (APP; Van
Cauwenberghe et al., 2016). These mutations account for the
so-called “familial forms” of the disease. The overwhelming
majority of AD cases (∼95%) are sporadic forms of unknown
etiology. Despite controversies over the causes of AD, it is still
recognized that brain accumulation of the amyloid peptide-β
(Aβ) plays a central role in the pathogenic process (Selkoe and
Hardy, 2016). Aβ results from the proteolysis of APP, a type I
transmembrane protein targeted first at the plasma membrane,
then rapidly endocytosed to endosomes to be metabolized
to Aβ or subsequently sent to the lysosomal compartment
for degradation (Wang X. et al., 2017; Van Acker et al.,
2019). Endosomes are thought to be the main locus of Aβ

production, which is ensured by canonical β- and γ-secretases
(Vassar et al., 1999).

β-site APP cleaving enzyme 1 (BACE-1) is the main
β-secretase. This type I transmembrane protein of the aspartyl
proteinase family needs an acidic environment (optimum pH
4.5) to be enzymatically active (Saric et al., 2013). BACE-
1 cleaves numerous substrates, which confers this enzyme a
wide spectrum of physiological and pathological activities (Kuhn
et al., 2012; Zhou et al., 2012; Vassar et al., 2014), but it is
indisputably its ability to process APP that has attracted much
attention, especially in relation to AD. As illustrated in Figure 1,
BACE-1 cleaves APP between Met671 and Asp672 to generate
the soluble APP-β fragment (sAPPβ) and its complementary
C-terminal counterpart of 99 amino acids termed β-CTF or
C99. This cleavage signals the first emblematic proteolytic step
to the production of Aβ, considered to be one of the main
driving forces in AD pathogenesis. BACE-1 can also catalyze
amyloidolytic processing by cleavage between Tyr10 and Glu11
of the Aβ sequence (Huse et al., 2002; Liu et al., 2002; Kimura
et al., 2016), the so-called β’-cleavage site (Figure 1). Interestingly,
β’-cleavage is favored in the neuroprotective Icelandic APP
mutation while the canonic β-cleavage at Asp1 is reduced
(Kimura et al., 2016). However, a causal effect between β’-cleavage
and neuroprotection is not straight forward as Aβ11−40 is found
in insoluble Aβ pools of post-mortem AD brains (Huse et al.,
2002). More recently, it has been shown that BACE-1 can also
cleave Aβ40 or Aβ42 to generate a C-terminal truncated Aβ34
form, which appears to be a new biomarker of Aβ clearance
in AD as it is noticeably increased in mild cognitive impaired
patients along with strong BACE-1 activity (Liebsch et al., 2019).
Together, these data confirm early studies (Fluhrer et al., 2003;
Shi et al., 2003), placing BACE-1 as a prominent Aβ-generating,
but also as an occasional Aβ-“degrading” enzyme under some
circumstances. Physiologically relevant Aβ degradation has

been mainly attributed to 4 metalloproteinases: neprilysin,
insulin degrading enzyme, endothelin converting enzyme and
angiotensin converting enzyme, the regulation and functions of
which have been extensively reviewed elsewhere (De Strooper,
2010; Nalivaeva et al., 2012). Matrix metalloproteinases (MMPs),
including MMP-2, MMP-3, MMP-7 and MMP-9 also cleave
within the Aβ sequence (Rivera et al., 2019) and these cleavages
have been compared to those of membrane-type MMPs (MT-
MMPs) in Figure 1.

The γ-secretase complex is formed by a PS1 or PS2 catalytic
subunit and 3 partner proteins, Aph-1, pen-2 and nicastrin
(Haass et al., 2012; Rajendran and Annaert, 2012; Masters
et al., 2015; Selkoe and Hardy, 2016). Presenilins are acidic
proteinases [optimum pH 6.3, (Campbell et al., 2003)] that belong
to the family of seven transmembrane domain proteins. Like
BACE-1, γ-secretase targets many substrates in addition to APP,
with the consequent impact on a vast array of physiological
and pathological processes (Haapasalo and Kovacs, 2011). The
subcellular location and substrate specificity of γ-secretase may
vary depending on the presence of PS1 or PS2 in the complex.
While the complex containing PS1 is widely distributed in the
cell, a single acidic-dileucine sorting motif present in PS2 directs
the γ-secretase complex to late endosomes/lysosomes (Sannerud
et al., 2016). γ-secretase performs regulated intramembrane
proteolysis to process C99 and release Aβ and the remaining APP
intracellular domain (AICD). The latter can be translocated in
the nucleus and engages in transcriptional activities, which are
to some extent still controversial in the AD field (reviewed in
Pardossi-Piquard and Checler, 2012) (Table 1).

Along the secretory pathway, APP can also undergo
α-secretase cleavage when reaching the plasma membrane. This
is performed by a disintegrin and metalloproteinases (ADAMs)
of the metzincin superfamily of metalloproteinases (Rivera et al.,
2010; Paschkowsky et al., 2019), in a constitutive (ADAM10) or
regulated manner (ADAM17; also known as TACE for TNF-α
converting enzyme) (Lammich et al., 1999; Jorissen et al., 2010;
Kuhn et al., 2010). ADAMs cleave APP in the middle of the Aβ

sequence, thereby preventing its generation and releasing at the
same time a soluble APP fragment (sAPPα) of ∼110 kDa. In
cultured neurons from rodents and humans, sAPPα has shown
anti-excitotoxic properties through a mechanism involving the
reduction of Ca2+ cytotoxic influx (Mattson et al., 1993). These
data linking sAPPα to neuroprotection were later confirmed
by studies showing that moderate neuronal overexpression of
ADAM10 in transgenic AD mice favored an increase in sAPPα

levels and a decrease in Aβ, concomitant with a reduction of
deficits in long-term potentiation (LTP) and learning (Postina
et al., 2004). Likewise, sAPPα could rescue LTP in acute
hippocampal slices from mice lacking both APP and its family
homolog APP-like protein 2 (APLP2) (Hick et al., 2015),
and prevented memory deficits after lentiviral overexpression
in the APPswe/PS1dE9 AD mouse model (Tan et al., 2018).
While sAPPα release is usually considered as the result of
physiological APP processing, Aβ oligomers may be responsible
for sAPPα release by cultured neurons and also in vivo, which
could be considered as a neuroprotective cellular response to
the amyloid challenge (Rose et al., 2018). This idea is all
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FIGURE 1 | Illustrative outline of the different APP cleavage sites. The scheme shows the canonical (β-, α- and γ-secretases) and non-canonical APP-cleavages that
result in the different APP fragments. Meprin-β cleaves APP in five sites, possibly generating soluble APP fragments of different size, sAPPβ or sAPPβ-like (sAPPβ

with one or two additional amino acids) and its complementary C-terminal β-CTF or β-CTF-like (β-CTF with one or two amino acids less), which is further processed
by γ-secretase, thus producing Aβ1−X , Aβ2−X or Aβ3−X . Legumain cleaves in two sites, giving rise to two soluble fragments and one C-terminal transmembrane
fragment than can be further processed by the canonical enzymes. Caspase can cleave in the N-terminal domain, generating truncated APP-species, and within the
intracytoplasmic domain, generating an APP-Ncas fragment and a C-terminal residual peptide of 31 amino acids. RHBDL4 cleavages within the ectodomain at
several sites are not yet identified (represented with a star), generating different N- and C-terminal fragments. Cleavage by η-secretase generates a soluble fragment
(sAPPη/sAPP95) and a paired transmembrane product η-CTF/CTF-30 that can be further processed by β- or α-secretase to release Aη-β and Aη-α, respectively.
MT3-MMP can cleave APP in 4 sites, including the η-secretase site and also within the Aβ sequence. The scheme below represents the Aβ sequence with multiple
cleavage sites for various soluble MMPs and MT1-MMP, for meprin-β and for canonical secretases. All the residues are termed using APP695 numbering.

the more interesting in the context of data indicating that
sAPPα interacts with BACE-1 and inhibits Aβ production
(Obregon et al., 2012), in clear contrast with sAPPβ, which
fails to interact with BACE-1 because the truncation of 16
aminoacids at the carboxy end (sequence between the α- and
β-cleavage sites) is sufficient to impose significant structural
changes compared to sAPPα (Peters-Libeu et al., 2015). Recent
studies have highlighted new mechanisms by which sAPPα

could influence synaptic function through the modulation of
the GABA and glutamate neurotransmitter systems. Thus,
sAPPα has been shown to act as a ligand of GABABR1a -
a metabotropic receptor for GABA neurotransmitter-, which
results in modulation of hippocampal synaptic plasticity and
neurotransmission in vivo by decreasing the release of synaptic
vesicles (Rice et al., 2019). In addition, sAPPα stimulates
trafficking of GluA2-lacking AMPA and NMDA receptors to the
synapse, as well as de novo protein synthesis of GluA1 protein,
thereby providing mechanistic ground for promotion of LTP
and synaptic plasticity (Mockett et al., 2019). Consistent with

the aforementioned anti-amyloidogenic properties of sAPPα,
its complementary C-terminal fragment of 83 amino acids
(C83) can also inhibit Aβ generation by interfering with C99
processing by γ-secretase in HEK cells (Tian et al., 2010). The
idea that there is cross-regulation between amyloidogenic and
non-amyloidogenic pathways is further supported by the fact that
Aβ inhibits ADAM10 in mouse primary neuronal cultures, thus
favoring endogenous APP processing by β-secretase (Spilman
et al., 2016). Since activation and inhibition of ADAMs may be
a determining factor for AD pathology, the regulatory potential
of the tissue inhibitors of metalloproteinases (TIMPs) should be
considered. TIMPs are mainly known as inhibitors of MMPs
(see section below), but they also modulate ADAMs activity
with low Ki values of 0.5 and 0.1 nM for TIMP-1 and TIMP-
3, respectively (Rapti et al., 2008; Baranger et al., 2014). One of
our studies shows that TIMP-1 expression is highly upregulated
in the brain of transgenic 5xFAD mice at early stages of
the pathology and remains durably high, likely matching the
progression of neuroinflammation and gliosis (Py et al., 2014). In
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TABLE 1 | Representative of single or combined cleavages of APP by proteinases and known functions of generated fragments.

Single cleavage

Proteinase APP fragment Functions References

β-secretase sAPPβ Modulator of GABAergic transmission Vassar et al., 2014∗;
Rice et al., 2019β-CTF/C99 Cell toxicity

Impairs synaptic transmission

Behavior impairment

α-secretase sAPPα Neurotrophic, neuroprotective, neurogenic, neuronal
plasticity and memory enhancer

Tian et al., 2010;
Obregon et al., 2012;
Peters-Libeu et al., 2015;
Muller et al., 2017∗;
Mockett et al., 2019;
Rice et al., 2019

BACE-1 inhibitor

Modulator of GABAergic transmission

α-CTF/C83 Modulator of APP cleavage by γ-secretase

Meprin-β sAPP1−124 Unknown functions Jefferson et al., 2011;
Bien et al., 2012;
Becker-Pauly and Pietrzik, 2016∗

sAPP1−305/308 No cytotoxicity

sAPPβ/β-CTF Same functions as those mentioned above

sAPPβ#/β-CTF# Unknown functions

Legumain APP1−373 Axonal fragmentation and neuronal death Basurto-Islas et al., 2013, 2018;
Zhang et al., 2014, 2015APP586−695 Better substrate for BACE-1, thus increasing Aβ production

RHBDL4 N-terminal fragments Unknown functions Paschkowsky et al., 2016, 2018

C-terminal fragments Decrease Aβ production

Caspases APP-NCas (APP131) Unknown functions Gervais et al., 1999;
Bertrand et al., 2001;
Madeira et al., 2005

C31 Neurotoxic

Promotes neuronal apoptosis

η-secretase (MT-MMPs) sAPP95 (sAPPη) Binds GABABR1a Py et al., 2014;
Willem et al., 2015;
Baranger et al., 2016a, 2017a;
Paumier et al., 2019

Boosts endosomal APP trafficking and Aβ production

η-CTF Associated with distrophic neurites close to amyloid
plaques

Combined cleavage

β-secretase +γ-secretase Aβ Stimulates synaptic vesicle release and transmission Puzzo et al., 2008, 2011;
Abramov et al., 2009;
Soscia et al., 2010;
Benilova et al., 2012∗;
Mucke and Selkoe, 2012∗;
Cline et al., 2018∗;
Hong et al., 2018;
Moir et al., 2018∗;
Dominy et al., 2019

Promotes neurogenesis, neurite outgrowth and cell
proliferation

Antimicrobial

Inhibitor of α-secretase

Its accumulation triggers toxicity, mitochondrial dysfunction,
oxidative stress and inhibits LTP

AICD Transcriptional regulator, modulates cell death programs
and intracellular homeostasis of Ca2+, stabilizes
microtubule structure, regulates synaptic plasticity Pardossi-Piquard and Checler, 2012∗

Meprin-β + γ-secretase Aβ Same functions as those mentioned above Jefferson et al., 2011;
Bien et al., 2012;
Scharfenberg et al., 2019∗Aβ2−X , Aβ3−X Prone to aggregate and to deposit in Aβ clusters

η-secretase + β-secretase Aη-β Unknown functions Willem et al., 2015

No neurotoxicity

η-secretase + α-secretase Aη-α Decreases neuronal activity and LTP

caspase + γ-secretase Jcasp Inhibits APP function Gervais et al., 1999;
Bertrand et al., 2001;
Madeira et al., 2005

Induces neuronal apoptosis

Decreases basal synaptic transmission and rises synaptic
frequency

α-secretase + caspases + γ-secretase p3 Unknown functions Gervais et al., 1999;
Bertrand et al., 2001;
Madeira et al., 2005

∗The asterisk indicates review articles. #The hash indicates alternative cleavages for meprin-β close to β-secretase site, thus generating a sAPPβ with one or two
additional amino acids and its complementary C-terminal β-CTF with one or two less amino acids.

the diseased brain, reactive astrocytes are the main cellular source
of TIMP-1 (Rivera et al., 1997, 2002; Pagenstecher et al., 1998),
which in turn promotes astrocyte proliferation (Ogier et al.,

2005; Hernandez-Guillamon et al., 2009), suggesting altogether
that TIMP-1 could contribute to AD neuroinflammation and/or
downregulate ADAM10 activity. As for TIMP-3, one study in
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neuroblastoma cells reported that this inhibitor not only reduces
α-cleavage of APP but also the cell surface levels of ADAM10
and APP, which leads to increased endocytosis and β-secretase
cleavage. The potential relevance of TIMP-3 in promoting
AD pathogenesis is reinforced in this study by the elevated
neuronal immunostaining found in 3xTg transgenic mouse and
by increased levels in AD brain homogenates (Hoe et al., 2007).
However, another study in 5xFAD mice, showed mild variations
of TIMP-3 mRNA levels at different ages, compared to wild type
(Py et al., 2014). Clearly, studies are lacking to confirm or refute
the idea that a regulatory action of TIMPs on ADAMs could
impact on the progression of the disease.

The precise neurotoxicity mechanisms of Aβ are still
poorly understood, probably reflecting a combination of
events triggered by its accumulation, including stimulation
of Tau hyperphosphorylation and subsequent formation of
neurofibrillary tangles (NFTs), promotion of inflammation and
also synaptic dysfunctions (Benilova et al., 2012; Mucke and
Selkoe, 2012; Selkoe and Hardy, 2016; Cline et al., 2018).
Monomeric Aβ can be assembled into oligomers, protofibrils
or fibrils, the latter being the main constituent of amyloid
plaques. Although oligomers are increasingly considered to be
the most toxic Aβ assemblage, recent data suggest that only
a limited fraction of highly diffusible small oligomers have
adverse effects, for instance on the disruption of synaptic activity
(Hong et al., 2018). Missing relevant Aβ structures as possible
therapeutic targets might be one of the reasons why anti-Aβ

strategies developed to fight AD have not yet demonstrated
significant clinical benefits (Panza et al., 2019). In the case of
therapies based on β- and γ-secretase inhibitors, a possible
cause of clinical failure could be the difficulty of inhibiting
these proteinases without causing side effects resulting from
non-targeted proteolytic inhibition on their many physiological
substrates (Karran et al., 2011; Vassar et al., 2014; De Strooper
and Chavez Gutierrez, 2015; Barao et al., 2016; Ohno, 2016; Yan,
2017). Besides Aβ, other potential neurotoxic APP metabolites
generated with the contribution of BACE-1 activity were initially
reported. This was the case of a 35 kDa sAPP NTF fragment
(1-286) and sAPPβ whose binding to death receptor 6 (DR6)
induced axonal pruning and neuronal apoptosis mediated by
caspase activation (Nikolaev et al., 2009). The implication of
this 35 kDa fragment was later refuted; instead sAPPβ was
reported to induce axonal pruning but not neuronal death, and
to interact with DR6 through the more C-terminal E2 domain
placed above the β-cleavage site (Olsen et al., 2014). Furthermore,
the involvement of DR6 in Alzheimer’s neurodegeneration could
not be proved in two transgenic mouse models of AD deficient for
DR6 (Kallop et al., 2014). The roles of C-terminal APP fragments
resulting from the proteolytic activity of canonical secretases
have also been investigated. Thus, many studies using genetic
or pharmacological approaches to increase C99 levels in animal
models consistently demonstrate the pathogenic properties of
C99 linked with AD phenotypes (Neve et al., 1996; Oster-Granite
et al., 1996; Song et al., 1998; Matsumoto et al., 2002; Lauritzen
et al., 2012, 2016; Bourgeois et al., 2018). It is noteworthy that
C99 accumulates in the brains of AD patients (Pera et al.,
2013; Kim et al., 2016) and shows a better correlation than Aβ

with the degree of vulnerability to neurodegeneration (Pulina
et al., 2019). The other C-terminal APP fragment that has
focused a great deal of research activity in recent years is the
AICD. Despite controversial data has been often reported on
its physiological and pathological functions, AICD has gained
consensus as signaling molecule that can translocate to the
nucleus and regulate the expression of manifold genes, some
of them involved in AD pathogenic mechanisms (Kim et al.,
2003; Chang et al., 2006), but also in cytoskeleton dynamics, cell
cycle control or synaptic plasticity. A recent review has identified
nearly 40 genes targeted by the AICD in relation with these and
other processes (Bukhari et al., 2017). These genes will need to
be tested for their possible contribution to signaling pathways
that depend on APP and their consequent impact on brain
pathology and physiology.

Other APP fragments generated by emerging APP processing
enzymes are currently being investigated to determine their
potential physiological or pathological actions and they will be
discussed below.

INSUFFICIENTLY EXPLORED
TERRITORIES

The idea that APP metabolites other than Aβ could actually
impact on AD pathology is gaining momentum. However,
the assessment of their physiological functions should also
be carried out in parallel in order to have a more accurate
picture of the pathophysiological scenario. The same holds
true for Aβ, which remains the main driving force behind
AD pathology, but whose physiological activities are still
poorly understood and certainly insufficiently studied. Thus,
for example, a few studies indicate that Aβ has antimicrobial
activities, leading some authors to propose that it could
act as an innate immunity protein in the brain (Soscia
et al., 2010; Moir et al., 2018; Dominy et al., 2019). In
addition, Aβ has been shown to be a positive modulator
of synaptic vesicle release (Abramov et al., 2009) and
synaptic transmission (Puzzo et al., 2008, 2011). In fact,
picomolar concentrations of Aβ are sufficient to stimulate
nicotinic receptors and subsequently LTP and learning
and memory in healthy rodents (Puzzo et al., 2008, 2012;
Morley et al., 2010). To what extent the failure of current
anti-Aβ therapies could be due to interference with these
(or other unknown) physiological roles of Aβ, remains an
open question.

Despite the importance of APP proteolysis and the resulting
fragments in the context of AD, APP role as a cell adhesion
protein or receptor also deserves consideration insofar as
the alteration of these functions may indeed contribute to
the disease process. Accordingly, it is proposed that APP
contributes to cell adhesion responsible for maintaining the
structure of synapses and neural circuits through its interactions
with extracellular matrix and adhesion molecules, but also
through its own dimerization at the cell surface (see van
der Kant and Goldstein, 2015; Montagna et al., 2017; Muller
et al., 2017; Sosa et al., 2017), which is regulated, inter
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alia, by APP binding with Cu2+ and Zn2+ (Wild et al.,
2017). Disruptions of physiological functions of APP could
cause synaptic dysfunctions that occur in the early phases
of AD, but it could also alter the subcellular location of
APP and thus the degree of pathogenicity of proteolytic
fragments depending on whether they are mainly generated
in endosomes (e.g., C99, Aβ) or in the cell membrane
(e.g., sAPPα). APP has also been described as a functional
cellular receptor for Aβ to the point that Aβ oligomers
isolated from AD brains require APP expression to induce
synaptotoxic effects on mice hippocampi (Wang Z. et al.,
2017). By the same time, it was shown that Aβ oligomers
and also Tau could cause APP-dependent impairment of
LTP and spatial learning in mice (Puzzo et al., 2017).
Another work highlights the potential of full length APP as
functional receptor for the regulation of cholesterol/lipoprotein
metabolism and Aβ clearance (Fong et al., 2018). In this
case, human astrocytes derived from induced pluripotent
stem cells (iPS) deficient for APP exhibited reduced levels
of intracellular cholesterol, as well as a reduced ability to
endocyte apolipoprotein E (APOE) and Aβ, which are major
processes disturbed in AD and possible cause of deficient Aβ

clearance. Similar deficits have been observed in astrocytes
expressing APP harboring the Swedish familial mutation,
characterized by reduced canonical levels of APP due to
exacerbated cleavage of APP by β-secretase. It is interesting
to note that the inhibition of β-secretase reversed these
effects, thereby highlighting the potential benefits of such
inhibition specifically in astrocytes (Fong et al., 2018). These
few examples illustrate the importance of canonical APP as
a regulator of tissue homeostasis and the extent to which
subtle alterations in its biology could trigger or accompany
pathological processes. Further research will be needed to
increase our knowledge of the biology of APP and thus determine
whether maintaining APP levels could be a therapeutic strategy
of interest.

The complexity of interactions between APP and canonical
secretases results in multifunctional derivatives of APP
(Chen et al., 2015; Liu et al., 2019). The emergence of
proteinases with new APP transformation activities and
new fragments does not precisely simplify this scenario,
but may be useful to broaden the spectrum of mechanisms
to be targeted in a therapeutic context. We will focus
our attention in the following section on a subfamily
of MMPs, the MT-MMPs, but will also discuss recent
findings linking meprin-β, legumain, rhomboid-like
protein-4 (RHBDL4) and caspases to APP/Aβ metabolism
(Figure 1 and Table 1).

SOME EMERGING APP PROCESSING
PROTEINASES

Meprin-β
Meprin-β is a type I transmembrane protein of the astacin
group of the metzincin superfamily of metalloproteinases

(Villa et al., 2003). The enzyme is naturally inhibited by fetuin-
A (or alpha2-Heremans-Schmid glycoprotein) and fetuin-B,
but not by cystatin C, a closely related inhibitor (Hedrich
et al., 2010; Karmilin et al., 2019). Meprin-β activity has been
linked to the processing of a variety of substrates, including
inflammatory cytokines, and cell adhesion and extracellular
matrix molecules in different organs. Overall, this proteinase
exerts control on inflammatory/immune and cell migration
processes. In the nervous system, meprin-β has been described
as a new alternative APP processing enzyme, which links its
activity to AD (reviewed in Scharfenberg et al., 2019). In this
context, several studies have reported increased mRNA and
protein levels of meprin-β in AD patients compared to age-
matched healthy individuals (Bien et al., 2012; Schlenzig et al.,
2018). Produced by brain neurons, meprin-β exists in plasma
membrane-bound form or in soluble form after shedding by
ADAM10 or ADAM17. Using a synthetic peptide mimicking
APP/Aβ sequence, it was shown in vitro that meprin-β was
able to cleave APP at the β-cleavage site and after the first
and second amino acids of the Aβ sequence, suggesting that
meprin-β can behave as a β-secretase. This was further supported
by the fact that meprin-β expression in BACE-1/2 knockout
fibroblasts was sufficient to generate Aβ (Bien et al., 2012).
In addition, meprin-β can cleave APP near the N-terminal
end to generate truncated fragments of 11 and 20 kDa (N-
APP), as demonstrated by terminal amine isotopic labeling of
substrates. N-APP were detected in mice brains as well as in
the brains of healthy individuals and patients with AD, but not
in meprin-β knockout mice, validating the role of meprin-β
in the physiological processing of APP (Jefferson et al., 2011).
These APP fragments did not induce toxicity in neuronal cultures
and therefore further work will be needed to elucidate their
physiological functions. Unlike BACE-1, meprin-β cleaves APP
on the plasma membrane before it undergoes endocytosis, and
preferentially generates Aβ1−40 and a N-terminally truncated
Aβ (Aβ2−X), which is more prone to aggregation than Aβ1−40.
This is of interest, as truncated Aβ species may promote
the formation of highly toxic Aβ oligomers. Also important,
Aβ2−X can only be generated by membrane-bound meprin-
β and not by the soluble form after ADAM10/17-mediated
shedding (Bien et al., 2012). An additional regulatory interplay
between meprin-β and α-secretase has been identified; meprin-β
deletion in mice correlates with higher levels of sAPPα, thereby
suggesting in vivo competition with α-secretase for membrane-
bound APP (Schonherr et al., 2016). It has to be noted that
APP mutations proximal to the β-cleavage site, like the Swedish
(K670N-M671L) or the “protective” Icelandic (A673T), prevent
the generation of Aβ2−X by meprin-β as opposed to the lack
of effect of distal mutations (i.e., London (V717I), highlighting
the importance for meprin-β of aminoacid composition around
the β-cleavage site (Schonherr et al., 2016). Overall, meprin-β
bears great interest as alternative APP processing enzyme with
amyloidogenic features. It remains to be determined to which
extent the relatively small amount of Aβ2−X generated in AD
compared to Aβ42 provides meprin-β with a relevant pathogenic
role in AD. Further investigations will also be necessary to
assess the possible impact of meprin-β as a regulatory factor
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of neuroinflammatory processes operating in AD and other
brain disorders.

Legumain
Legumain, also known as asparagine endopeptidase, is a
soluble cysteine proteinase mainly found in endo-lysosomal
compartments that provide the optimal functional pH of 6.
Its proteolytic activity is inhibited by cystatin C and closely
related cystatins E/M and F (Chen et al., 1997; Alvarez-Fernandez
et al., 1999). The enzyme was later renamed δ-secretase (Zhang
et al., 2015) to highlight its role in APP cleavage at Asn586 that
generates the δ-CTF first identified in the nineties (Simons et al.,
1996; Scharfenberg et al., 2019). As lysosomal dysfunction is a
transversal pathogenic mechanism, legumain has been involved
in numerous pathological settings, including atherosclerosis,
osteoporosis, cancer, ischemic stroke, and neurodegenerative
diseases (Lunde et al., 2019). Legumain has been described
in relation with AD as a modulator of Tau phosphorylation
(Basurto-Islas et al., 2013), and as a Tau- or APP-cleaving
enzyme (Zhang et al., 2014, 2015). Under acidic conditions (e.g.,
brain ischemia, hypoxia, or AD), legumain can translocate from
neuronal lysosomes into the cytoplasm, where it cleaves I2

PP2A

(also known as SET). This cleavage generates two fragments,
I2

NTF and I2
CTF that inhibit protein phosphatase 2A (PP2A),

a key phosphatase that limits Tau hyperphosphorylation both
in vitro (Basurto-Islas et al., 2013) and in vivo (Basurto-
Islas et al., 2018). In total, legumain activity promotes the
hyperphosphorylation of Tau protein, which is a major hallmark
of AD pathogenesis.

In addition to controlling Tau phosphorylation, legumain
generates neurotoxic fragments after cleavage of Tau and APP.
The brain of AD patients show increased levels of the Tau1−368
fragment compared to healthy individuals, in correlation with
increased levels of legumain activity (Zhang et al., 2014). This
study showed that Tau1−368 generated by legumain inhibits
microtubule polymerization in vitro and promotes apoptosis in
rat cultured neurons. Consistent with these in vitro findings, the
deletion of legumain in the Tau P301S transgenic mouse model
of AD prevents synaptic dysfunction and improves learning and
memory. Furthermore, mice virally infected with uncleavable Tau
mutant showed reduced pathological and behavioral defects as
compared with mice infected with Tau P301S. Of note, antibodies
specifically raised against the Tau1−368 neoepitope were found
in AD brains and absent in legumain knockout mice, thus
validating in vivo legumain-mediated Tau processing (Zhang
et al., 2014). The same group also demonstrated that legumain
can cleave APP at positions 373 and 585 (APP695 numbering),
generating 2 fragments with distinctive cytotoxicity (Zhang
et al., 2015). While APP1−373 triggers axonal fragmentation and
neuronal death in primary cultured neurons, the APP586−695
fragment appears to be a better pro-amyloidogenic substrate
for BACE-1 than full-length APP and the other legumain-
derived C-terminal fragment (APP374−695). In support of these
in vitro data, legumain deficiency in the 5xFAD transgenic
mouse model of AD (Oakley et al., 2006) causes a drop of
Aβ40, Aβ42 and amyloid plaque burden, while it increases spine
density, and prevents deficits in LTP and learning and memory

(Zhang et al., 2015). The first step for pharmacological validation
of legumain in AD was obtained using a chemical inhibitor,
which reduced the formation of neurotoxic Tau fragments and Aβ

accumulation in P301S and 5xFAD mouse models, respectively.
In addition, legumain inhibition reduced synaptic loss, improved
LTP, prevented microglial activation and reduced the levels of
inflammatory mediators TNF-α and IL-1β (Zhang et al., 2017).

Rhomboid-Like Protein-4
There are five active intramembrane proteinases Rhomboids in
humans, RHBDL1-4 and PARL. RHBDL1-4 are located in the
secretory pathway, while PARL is found in mitochondria. This
family of serine proteinases is involved in many cellular processes,
such as inflammatory signaling, cell migration, proliferation
and mitochondria homeostasis (reviewed in Dusterhoft et al.,
2017; Paschkowsky et al., 2019). Recently, Paschkowsky et al.
(2016) showed in HEK cells expressing APP695 that RHBDL4
but not RHDBL1, 2 and 3, cleaves at multiple sites within
the ectodomain of APP (Figure 1) and APLP1 and APLP2,
generating a N-terminal fragment of ∼70 kDa and different
C-terminal fragments whose functions are still unknown. The
use of specific inhibitors for a wide spectrum of proteinases,
including BACE-1, α- and γ-secretase, aspartyl and cysteine
proteinases, and metalloproteinases did not modify the APP
fragmentation profile generated by RHBDL4, suggesting a
specific action of this proteinase. Moreover, it was shown
that RHBDL4 activity decreases the levels of Aβ38, Aβ40 and
Aβ42. RHBDL4 is mainly located in the endoplasmic reticulum,
which contains low levels of membrane cholesterol. Interestingly,
RHBDL4-mediated cleavage of APP is negatively regulated by
cholesterol when it binds to two transmembrane domains of the
proteinase, but not to APP. Thus, it is possible that lowering
cholesterol could increase RHBDL4 activity on full-length APP,
with the consequent generation of CTFs and the decrease in
Aβ generation (Paschkowsky et al., 2018). Overall, these data
underline the unexpected important role of RHBDL4, which
is not a classical secretase, in the metabolism of APP/Aβ.
Nevertheless, much remains to be done to validate most of the
referred in vitro observations in in vivo models with relevance for
AD pathogenesis.

Caspases
Caspases are pleiotropic cysteine proteinases that specifically
cleave target proteins after an aspartic acid residue (Hyman
and Yuan, 2012). Several studies have demonstrated in a
variety of culture cell systems the ability of caspase-3, -6
and -8 to cleave APP, mainly between amino acids V664-
D665 (APP695 numbering) within the intracytoplasmic domain
(Gervais et al., 1999; LeBlanc et al., 1999; Pellegrini et al., 1999;
Weidemann et al., 1999). Cleavage of APP by caspases generates
a membrane bound N-terminal fragment, named APP-Ncas, and
an intracellular C-terminal peptide of 31 amino acids, named
APP-Ccas or C31. When γ-secretase processes C99 into Aβ, the
remaining AICD is further cleaved by caspase to generate C31
and JCasp fragments, both of which promote neuronal apoptosis
(Bertrand et al., 2001; Madeira et al., 2005). For this reason, it
was suggested that the cytotoxicity of C99 might actually result
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from subsequent formation of C31 by caspases (Lu et al., 2000).
It is also noteworthy that AD brains show elevated levels of
caspases and that APP fragments resulting from caspase cleavage
colocalize with amyloid plaques (Gervais et al., 1999; Lu et al.,
2000). Eventually, caspase-mediated APP cleavage stimulates Aβ

production in B103 and NT2 cells (Gervais et al., 1999). However,
other authors have challenged these data in a study where
caspase removed the internalization signal (YENPTY) located
in the extremity of the AICD, thereby leading to impaired APP
internalization and Aβ production in B103 cells (Soriano et al.,
2001). These results were recently confirmed using CRISPR/Cas9
editing in human iPS to remove the last 36 amino acids of
APP containing the internalization motif. The expression of
this C-terminal truncated APP in human iPS-derived neurons
prevented the production sAPPβ and Aβ, while stimulating
α-secretase cleavage. In addition, it was shown that cultured
hippocampal neurons with truncated APP gene accumulate APP
on the plasma membrane and present reduced colocalization of
BACE-1 and APP in endosomes, confirming a key role of the
YENPTY sequence in APP internalization and Aβ production by
endosomes (Sun et al., 2019).

Caspases have also been proposed as a possible molecular
link between amyloid and Tau pathologies in AD, since Aβ

simulation of neuronal apoptosis is accompanied by an increase
of Tau cleavage by caspases at Asp421. This is consistent with
the observation that C-terminal truncated forms of Tau show
increased polymerization capacity in vitro and are associated with
NFTs formation in the brain of AD patients (Gamblin et al., 2003;
Rissman et al., 2004).

MT-MMPs
MT-MMPs are new players in the field of AD, mainly because
of their ability to regulate APP metabolism and therefore
amyloidogenesis. In the next sections, we will focus on two MT-
MMPs, MT1-MMP and MT5-MMP, which have been associated
with the pathophysiological mechanisms that support AD.
More generally, the involvement of other MMPs in AD and
other neurodegenerative disorders has been discussed elsewhere
(Rivera et al., 2019).

Structure of MT1-MMP and MT5-MMP
MMPs constitute a multigenic family of 24 endopeptidases
that belong to the metzincin superfamily of metalloproteinases.
MMPs show pleiotropic regulatory actions in many processes
in the nervous system, including axonal growth (Pastrana et al.,
2006; Ould-yahoui et al., 2009; Trivedi et al., 2019), neurogenesis
(Wojcik et al., 2009), learning and memory (Beroun et al., 2019),
glial reactivity and inflammation (Chopra et al., 2019; Montaner
et al., 2019; Muri et al., 2019), cell migration (Ould-Yahoui et al.,
2013) or neuronal death (Gu et al., 2002; Jourquin et al., 2003).
The many aspects of MMP functions and action mechanisms
in the nervous system have been extensively discussed earlier
(Rivera et al., 2010, 2019; Baranger et al., 2014).

MMPs are mostly secreted proteinases, but 6 transmembrane
proteins form the so-called subfamily of MT-MMPs: MT1-MMP
(MMP-14), MT2-MMP (MMP-15), MT3-MMP (MMP-16),
MT4-MMP (MMP-17), MT5-MMP (MMP-24) and MT6-MMP
(MMP-25). All MT-MMPs share closely related structural

features, described in detail elsewhere (Itoh, 2015). These
include a signal peptide that targets the MT-MMP to the
endoplasmic reticulum, where it is proteolytically excised, and
then a pro-domain bearing a conserved cysteine that interacts
with the catalytic domain and maintains the enzyme as an
inactive zymogen. The pro-peptide can be separated from the
rest of the molecule by redox-mediated chemical reactions or
after proteolytic cleavage by serine endoproteinase furin. This
mechanism, called “cysteine switch,” implies the dissociation
between the Cys residue of the pro-peptide and the Zn2+

of the catalytic domain, which leads to enzymatic activation.
The catalytic domain is highly conserved domain across MT-
MMPs (de facto, across MMPs) and is linked by a hinge
region to the hemopexin domain, which has a more variable
sequence, thus conferring certain specificity to the binding
of substrates and endogenous TIMPs. MT-MMPs are linked
to the plasma membrane either by a glycosylphosphatidyl
inositol (GPI) bond (MT2-MMP and MT6-MMP) or by a
transmembrane domain (MT1-, MT2-, MT3- and MT5-MMP),
followed in this case by an intracytoplasmic domain that can
control MT-MMP cell traffic and its proteolytic activity (Uekita
et al., 2001; Wang et al., 2004; Sakamoto and Seiki, 2009).
Analysis of the amino acid sequence reveals a variable percentage
of sequence identity between human MT1- and MT5-MMP,
ordered from N- to C-terminus as follows: pro-domain (44%),
catalytic (72%), hinge (41%), hemopexin (66%), stem part (17%),
transmembrane (37%) and intracytoplasmic (20%). Despite the
high degree of sequence identity between MT1- and MT5-MMP,
human and mouse MT5-MMP carry unique dibasic motifs in
their stem regions, which are recognized by proteinases from
the furin proprotein convertase family. Proteolytic cleavage
by furin gives MT5-MMP singular biochemical properties, in
particular an ephemeral presence on the plasma membrane
since it is released into the medium in soluble form (Pei, 1999;
Wang and Pei, 2001).

Physiological Functions of MT1- and MT5-MMP
MT1-MMP
MT1-MMP is ubiquitously distributed in the body. In the
nervous system it is mainly expressed by microglia, astrocytes and
neurons (Liao and Van Nostrand, 2010; Langenfurth et al., 2014;
Py et al., 2014; Itoh, 2015). As most MMPs, MT1-MMP degrade
extracellular matrix (ECM) proteins, in particular type I and
III collagen, fibronectin, laminin, vitronectin and proteoglycans
(Ohuchi et al., 1997). MT1-MMP catalyzes the conversion of
pro-MMP-2 into the active MMP-2 form through a mechanism
involving one of its endogenous inhibitors (see below) (Sato et al.,
1996; Llano et al., 1999; Pei, 1999; Baranger et al., 2014). MT1-
MMP is the most studied of the MT-MMPs and the progressive
identification of new substrates beyond ECM has led to an
expansion of the biological functions of the proteinase. MT1-
MMP has an impact on inflammatory processes by modulating
the action of cytokines, chemokines, proteinase inhibitors or
receptors. For example, MT1-MMP can activate pro-TNF-α
into active TNF-α, and inactivate CXCL12 (SDF1α), as well as
complement protein C3, secretory leukocyte proteinase inhibitor
(SLPI), IL-8 and other chemokines. Cellular receptors and
membrane proteins such as DR6, the VEGF receptor neuropilin,
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the prion protein or a ligand of Notch receptor Delta-like I, are
also processed by MT1-MMP (Overall et al., 2004; Tam et al.,
2004; Jin et al., 2011; Starr et al., 2012; Kojima et al., 2014; Itoh,
2015). MT1-MMP knockout mice are not viable beyond one
month of age, suggesting an important role of this proteinase in
development (Holmbeck et al., 1999). In this context, it is now
well documented that MT1-MMP contributes to cell migration
including monocytes/macrophages, endothelial cells or neural
stem cells (Galvez et al., 2001; Matias-Roman et al., 2005; Ould-
Yahoui et al., 2013). It is noteworthy that in some cases the
stimulation of migration or chemotaxis by MT1-MMP does not
depend on its catalytic activity, but rather on the properties
of its cytoplasmic tail. Thus, proteolytic inhibition of MT1-
MMP does not affect migration of isolated macrophages on
matrigel invasion tests. In addition, the expression of catalytically
active and inactive forms of MT1-MMP in MT1-MMP knockout
macrophages rescue chemotaxis properties, while a mutant
form lacking the cytoplasmic tail does not (Sakamoto and
Seiki, 2009). Recently, Aguirre and collaborators elegantly
demonstrated that MT1-MMP is crucial in the inflammatory
response upon intraperitoneal LPS injection in wild type and
MT1-MMP knockout pups (5–8 days post-natal). Under these
experimental conditions, they observed that the absence of
MT1-MMP reduces life span, which is associated with lung
enlargement and higher neutrophil recruitment (Aguirre et al.,
2017). The effects of MT1-MMP appear to be related to MMP-2
activation, as lower concentrations of active MMP-2 are found
in MT1-MMP knockout pups, associated with higher levels of
MMP-2 substrate S100A9 (Aguirre et al., 2017). The latter is
an inflammatory protein (Vogl et al., 2012) also implicated in
AD pathogenesis (Chang et al., 2012). Taken together, these
results clearly reflect the multifaceted mode of action of MT1-
MMP, with functions that depend on proteolysis, but also
on protein-protein interactions mediated by the C-terminal
intracytoplasmic tail. It remains to be demonstrated whether this
functional diversity is limited to certain cell types or organs,
in particular with regard to the role of MT1-MMP in the
nervous system.

MT5-MMP
To date, fewer substrates have been described for MT5-MMP,
compared to MT1-MMP (reviewed in Itoh, 2015). MT5-MMP
preferentially cleaves proteoglycans and to a lesser extent
fibronectin, but not type I collagen or laminin (Wang et al.,
1999). MT5-MMP expression is mainly confined to the nervous
system, with levels in rodents reaching their maximum before
birth and remaining high into adulthood in areas like the
hippocampus or the cerebellum (Pei, 1999; Jaworski, 2000;
Hayashita-Kinoh et al., 2001; Sekine-Aizawa et al., 2001; Warren
et al., 2012). Such a distribution is consistent with the proposed
role of MT5-MMP in brain development and more broadly
in neural plasticity. Similarly, MT5-MMP has been reported
to promote axonal growth (Hayashita-Kinoh et al., 2001) and
to control the activation of adult neural stem cells under
physiological and regenerative conditions by a mechanism that
requires the cleavage of N-cadherin (Porlan et al., 2014), one of
the non-ECM substrates of MT5-MMP. Despite the presumed

developmental role of MT5-MMP, knockout mice are viable and
have no apparent phenotypes, indicating that there is functional
redundancy with other proteinases in physiological conditions.
However, phenotypes linked to MT5-MMP deficiency become
evident when mice are subjected to stressful conditions. This is
for instance the case after sciatic nerve injury, where MT5-MMP
deletion prevents aberrant sprouting of nociceptive Aβ-fibers and
the resulting mechanical allodynia (Komori et al., 2004). The
implication of MT5-MMP in post-lesion axonal regeneration
has also been suggested in the context of concerted work with
ADAM10 in reactive astrocytes to control post-lesion synaptic
remodeling (Warren et al., 2012). We will see later that the
combined action of MT5-MMP and ADAM10 has also been
proposed in AD, with different functional implications. Deletion
of MT5-MMP also revealed a reduction in hyperalgesia after
intraplantar injections of IL-1β or TNF-α in a model of thermal
pain, indicating that MT5-MMP plays role in the inflammatory
pathways driven by these cytokines. The proposed mechanism
associates the absence of MT5-MMP with deficient cleavage of
its substrate N-cadherin, a cell adhesion molecule involved in
synapse architecture. N-cadherin cleavage is required to ensure
communication between mast cells and sensory neurons for the
transmission of nociceptive stimuli (Folgueras et al., 2009). It is
therefore concluded that MT5-MMP is capable of regulating the
neuroinflammatory process (Baranger et al., 2016a).

The implication of MT5-MMP in synaptic processes has
been suggested by the discovery that the proteinase interacts
with the AMPA binding protein and the glutamate receptor-
interacting protein. Both are postsynaptic density-95/Discs
large/zona occludens-1 (PDZ) protein containing domains. The
interactions between these PDZ proteins and MT5-MMP are
mediated by the last three carboxyl terminus amino acids of
the proteinase, thus facilitating its targeting to synapses and
the cleavage of N-cadherin (Monea et al., 2006). In addition,
it has been reported that MT5-MMP could act in synergy
with γ-secretase to affect synaptic protein levels of GluA2 and
PSD95, eventually resulting in a decrease in synaptic transmission
(Restituito et al., 2011); however, functional evidence of such
interaction is still lacking.

MT5-MMP processing and metabolism are tightly controlled;
before reaching the plasma membrane, MT5-MMP can be
cleaved by a furin-like activity in its stem part, leading to
generation of a catalytically active soluble form of the enzyme
that lacks the C-terminal part (Wang and Pei, 2001). Once
on the membrane, MT5-MMP can be internalized in the
endosomes, where it interacts with the PDZ Mint3 protein,
allowing proteinase to be recycled into the membrane (Wang
et al., 2004). Despite having the structure of a membrane protein,
MT5-MMP can mostly be found in intracellular and extracellular
compartments due to its shedding and cellular routing.

TIMPs
As with the other members of the MMP family, TIMPs control
the catalytic activities of MT1- and MT5-MMP. Of the four
TIMPs, TIMP-2, -3 and -4 inhibit MT1-MMP, while MT5-MMP
is only targeted by TIMP-2. Both MT-MMPs can activate MMP-
2 through a process that requires the formation of a tripartite
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molecular complex formed by two MT-MMPs, a TIMP-2 and a
pro-MMP-2; the N-terminal domain of TIMP-2 interacts with
MT1-MMP on the plasma membrane, while its C-terminal
domain binds to the hemopexin domain of pro-MMP-2, then
the pro-peptide of pro-MMP-2 is readily removed by an adjacent
MT1-MMP eventually resulting in MMP-2 activation (Strongin
et al., 1995). It should be noted that TIMP-1, which targets soluble
MMPs and ADAM10, is a very poor inhibitor of MT-MMPs
(reviewed in Baranger et al., 2014).

MT1-MMP and MT5-MMP Contribute to Alzheimer’s
Pathogenesis
MT1-MMP
Higashi and Miyazaki were the first to show that MT1-
MMP could cleave APP between residues Asn579 and Met580
(VLAN579-M580ISEPR) of APP770 after being activated by
concanavalin A in the HT1080 fibrosarcoma cell line (Higashi
and Miyazaki, 2003b). Three years later, Ahmad and collaborators
showed that MT1-, MT3-, and MT5-MMP, but not MT2-, MT4-
and MT6-MMP were able to cleave APP770 when co-expressed in
HEK293 cells (Ahmad et al., 2006). Mass spectrometry analysis
for MT3-MMP cleavage-sites revealed the same VLAN579-
M580ISEPR site previously identified for MT1-MMP and 3 other
cleavage sites at Ala463-Met464, His622-Ser623 and His685-Gln686
(Higashi and Miyazaki, 2003b), the latter being located in the Aβ

sequence, just upstream of the α-cleavage site (Figure 1). Despite
this, Aβ levels remained stable in HEK293 cells expressing MT3-
MMP, probably indicating that MT3-MMP processes APP in cell
compartments that do not influence amyloidogenesis. Although
the APP cleavage sites for MT1-MMP and MT5-MMP were not
specifically identified in the Ahmad study, the analysis of the
APP degradation profile by western blot suggested that both
MT-MMPs should cleave APP at the same location as MT3-
MMP (Ahmad et al., 2006). Unlike MT3-MMP, the functional
interaction between MT1-MMP and Aβ was shown when MT1-
MMP overexpressed in COS cells degraded exogenous Aβ. In
addition, the recombinant catalytic domain of MT1-MMP could
degrade amyloid plaques when incubated ex vivo on brain slices
of transgenic AD Tg2576 mice (Liao and Van Nostrand, 2010).
In this way, MT1-MMP joins the list of metalloproteinases
with Aβ-degrading, activity, such as MMP-2, MMP-3, MMP-7
and MMP-9 (Roher et al., 1994; Backstrom et al., 1996; Deb
et al., 2003; White et al., 2006; Yan et al., 2006; Yin et al.,
2006; Hernandez-Guillamon et al., 2010, 2015; Liao and Van
Nostrand, 2010; Py et al., 2014; Brkic et al., 2015; Taniguchi
et al., 2017; Rivera et al., 2019) (Figure 1). In complement of
these results, we have recently reported that MT1-MMP can also
prominently increase Aβ levels in the HEK293 cell model of
amyloidogenesis, which stably expresses APP with the familial
Swedish mutation (HEKswe) (Paumier et al., 2019). Transiently
expressed MT1-MMP in HEKswe interacts with APP and induces
the release of a soluble APP fragment of ∼95 kDa (sAPP95),
distinct of sAPPα or sAPPβ generated by α- and β-secretase,
respectively. The complementary transmembrane fragment of
∼30 kDa (CTF-30) and C99 are also dramatically increased and
their levels highly correlated, suggesting that CTF-30 may be the
precursor of C99 (Paumier et al., 2019). It is also noteworthy

that MT1-MMP content is strongly upregulated in the cortex
and hippocampus of 6-month old 5xFAD mice (Py et al.,
2014). This mouse model mimics the symptoms and pathology
of AD, including exacerbated amyloidosis, neuroinflammation
and synaptotoxicity (Oakley et al., 2006), deficits in LTP
(Crouzin et al., 2013) and cognition (Girard et al., 2013, 2014;
Giannoni et al., 2016; Baranger et al., 2017a,b), and eventually
neuronal death (Oakley et al., 2006; Jawhar et al., 2012; Eimer
and Vassar, 2013). MT1-MMP upregulation in 5xFAD mice
timely and spatially correlates with the increase in C99 levels
(Py et al., 2014), thus providing indirect in vivo support for the
pro-amyloidogenic features of this MMP described in HEKswe
cells (Paumier et al., 2019).

Although functional interactions between MT1-MMP and
APP/Aβ are not fully understood, it has been shown that the
release of sAPP95 by MT1-MMP does not involve BACE-1, but
it may involve MMP-2. It is estimated that about 50% of the
sAPP95 released after MT1-MMP expression in HEKswe cells
results from concerted action with MMP-2, MT1-MMP being in
any case the limiting factor in this enzymatic tandem (Paumier
et al., 2019). A plausible scenario would be that activation of
MMP-2 by MT1-MMP (Sato et al., 1996) allows MMP-2 access
to membrane substrates (i.e., APP), which would not otherwise
be accessible for this soluble MMP. MMP-2, mainly considered
as a soluble Aβ-degrading proteinase (Yin et al., 2006), could
thus extend its range of action to the pericellular environment
thanks to membrane docking provided by MT1-MMP. Another
interesting feature linking MT1-MMP, MMP-2 and APP is that
MT1-MMP processing of APP releases a soluble APP fragment
(likely sAPP95) lacking a potent inhibitor of MMP-2 activity
(Miyazaki et al., 1993). In this study, purified soluble forms of
APP could efficiently inhibit MMP-2 degradation of gelatin as
well as Aβ cleavage between K16-L17 (α-cleaving site) (Miyazaki
et al., 1993). Years later, the authors identified a decapeptide
sequence ISYGNDALMP, called APP-derived peptide inhibitor
(APP-IP), located 6 amino acids downstream the cleavage site
(N504-M505ISEPRISYGNDALMP) shared by MT1-MMP and
MT3-MMP (and also MT5-MMP, see below). APP-IP shows low
nanomolar range potency toward MMP-2 (IC50 value of 30 nM)
and is a weaker inhibitor for MT1-MMP, MMP-3, -7 and -9, with
IC50 values between 2 and 10 µM. Although sAPPα contains
the decapeptide, it appears to be a weaker MMP-2 inhibitor than
APP-IP (Higashi and Miyazaki, 2003a,b, 2008).

The mechanism by which MT1-MMP could promote
amyloidogenesis is still elusive. Nevertheless, reminiscent of
legumain, MT1-MMP cleavage upstream of the β-cleavage
site could facilitate β-secretase cleavage of APP and thus the
subsequent production of C99 and Aβ. Not exclusively, MT1-
MMP could favor amyloidogenic β-secretase processing by
promoting APP sorting into BACE-1-enriched early endosomes
(Paumier et al., 2019). Most interestingly, it has been proposed
that MT1-MMP could also function as a surrogate β-secretase
when BACE-1 is inhibited; this is supported by experiments in
HEKswe cells where MT1-MMP is able to restore the basal levels
of Aβ, almost abolished in the presence of BACE-1 inhibitor IV
(or C3) (Paumier et al., 2019). It should be noted that a β-cleavage
site for MT1-MMP has not yet been identified. MT1-MMP
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replacing BACE-1 to maintain physiological levels of Aβ could be
relevant in the event of therapeutic inhibition of BACE-1 if it is
assumed that reducing Aβ levels below a physiological threshold
could have adverse consequences.

Overall, these data highlight potential new mechanisms in
the control of APP processing involving functional interactions
of α- and β-secretases with MT1-MMP and MMP-2. It is now
time to develop in vivo experimental models where genetic
(i.e., conditional MT1-MMP knockout mice in transgenic AD
mouse) and/or pharmacological (i.e., neutralizing antibodies)
manipulation of MT1-MMP activity should further confirm
the pathophysiological relevance of the aforementioned in vitro
data. This includes a functional assessment of the apparent dual
activity of MT1-MMP as an amyloidolytic and amyloidogenic
enzyme, as well as the in vivo validation of APP cleavage and the
resulting NTFs and CTFs.

MT5-MMP
MT5-MMP was detected in neurons and around senile plaques
in the brains of AD patients (Sekine-Aizawa et al., 2001) and
it was later suggested to cleave APP, yielding a fragmentation
profile similar to that of MT1- and MT3-MMP (Ahmad et al.,
2006). More recently, two independent studies highlighted
in the same time the involvement of MT5-MMP on APP
processing and the subsequent functional consequences (Willem
et al., 2015; Baranger et al., 2016b). Willem and collaborators
identified by mass spectrometry the VLAN504-M505ISEPR
(APP695 numbering) as a cleavage site for MT5-MMP on APP,
which was named η-cleavage site (Willem et al., 2015). This site
was previously identified for MT1-MMP (Higashi and Miyazaki,
2003b) and MT3-MMP (Ahmad et al., 2006). Intriguingly,
the Willem’s study did not identify MT1-MMP as cleaving
at this VLAN504-M505ISEPR/η-site and it was concluded that
only MT5-MMP could act as a η-secretase in vivo (Willem
et al., 2015). η-secretase cleavage of APP generates sAPPη

and a residual transmembrane C-terminal APP fragment-η
(η-CTF), which accumulates in dystrophic neurites around
amyloid plaques in APP/PS1 mice. Using specific antibodies
against the neoepitopes of the α-, β- and η-sites, it was observed
that BACE-1 inhibition promoted the release of a peptide Aη-
α (for amyloid eta-alpha) resulting from the combined action
of MT5-MMP and α-secretase. Recombinant Aη-α was able to
impair LTP when incubated on primary rat neuronal cultures.
In addition, the inhibition of ADAM10 promoted the concerted
action of MT5-MMP and BACE-1 to release a shorter peptide,
Aη-β, unexpectedly innocuous (Willem et al., 2015). Counter-
intuitively, ADAM10 is presented in this work as conveying
neurotoxic actions by contributing to the generation of Aη-α
together with MT5-MMP. Moreover, the fact that Aη-α levels
are exacerbated upon BACE-1 inhibition may raise concerns of
possible side effects of therapeutic anti-BACE-1 strategies. Aη-γ
peptides, potentially generated by a combined action of MT5-
MMP and γ-secretase, were not detected, probably revealing a
lack of functional interaction between η- and γ-secretase as it is
the case with BACE-1, ADAM10 and γ-secretase (Chen et al.,
2015; Liu et al., 2019). Indeed, a recent study has shown that
MT5-MMP does not co-purify in the high molecular weight

complex formed by BACE-1 and γ-secretase. Replacing the
transmembrane domain (TMD) of BACE-1 by that of MT5-
MMP did not prevent BACE-1 complex with γ-secretase and Aβ

production, suggesting that motifs other than TMD are involved
in the formation of the BACE-1/γ-secretase interactions (Liu
et al., 2019). Aη-α and Aη-β peptides were both detected in
human cerebrospinal fluid (CSF) of healthy and AD patients,
but no differences in their levels were observed between groups
(Willem et al., 2015). Another study identified a∼25 kDa η-CTF
in CSF, but in this case the peptide content was higher in AD
patients with a PSEN1 familial mutation, in patients with sporadic
AD and in Down Syndrome individuals with Alzheimer’s type
dementia, compared to age-matched non-demented controls,
raising the possibility that η-CTF could be a new disease
biomarker (Garcia-Ayllon et al., 2017).

By the same time, our group demonstrated that MT5-MMP
induced the production of a soluble APP fragment of sAPP95
in HEKswe, concomitant with elevated levels of C99 and Aβ40
(Baranger et al., 2016b). Although the exact nature of sAPP95
produced upon MT1-MMP and MT5-MMP expression needs
to be established, it likely corresponds to what was defined
as sAPPη by others (Willem et al., 2015). The function of
sAPP95/sAPPη is not yet known, but a recent study showed that
it binds GABABR1a, which also acts as a receptor for sAPPα and
sAPPβ, resulting in a reduced probability of presynaptic release
(Rice et al., 2019). These findings link MT5-MMP (as well as
α- and β-secretases) with the regulation of a major inhibitory
neurotransmitter system coupled to Ca2+ and K+ channels,
and expands the range of possible mechanisms by which APP
proteolysis may influence changes in synaptic activity occurring
at early stages of the disease. Gaining insight into the functional
interplay between proteinases and neurotransmission will require
precise assessment of the functional specificities of 3 APP NTFs
generated by 3 different enzymes sharing a common receptor.

Similarly to MT1-MMP, we found that MT5-MMP could
interact with APP and promote its endosomal sorting,
thereby providing mechanistic support for MT5-MMP pro-
amyloidogenic activity (Baranger et al., 2017a). Moreover, to
evaluate the genuine role of MT5-MMP in vivo, we generated
a bigenic mouse model by crossing 5xFAD mice (Oakley et al.,
2006) and MT5-MMP−/− (MT5−/−) mice (Komori et al., 2004).
Compared to 5xFAD, 5xFAD/MT5−/−mice showed significantly
lower levels of sAPP95, validating our in vitro observations and
APP being an in vivo physiological substrate of MT5-MMP
(Baranger et al., 2016b). Most important, 5xFAD/MT5−/−
mice showed strikingly lower levels of Aβ (soluble Aβ40 and
Aβ42, oligomers and plaques) and C99 at prodromal-like stages
of the pathology (Baranger et al., 2016b, 2017a). Moreover,
decreased APP processing and amyloidogenesis upon MT5-
MMP deficiency were concomitant with fewer reactive microglial
cells and astrocytes around amyloid plaques, as well as reduced
levels of IL-1β and TNF-α (Baranger et al., 2016b, 2017a). From
a functional standpoint, the absence of MT5-MMP prevented
deficits in LTP and spatial and working memory observed in
5xFAD mice (Baranger et al., 2016b, 2017a). Most interestingly,
some of these beneficial effects were also observed at advanced
stages of the pathology in 16-month-old 5xFAD/MT5−/− mice,
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which presented a better preservation of neuronal networks and
synaptic integrity compared to age-matched 5xFAD control mice
(Baranger et al., 2016b).

Mechanistically, it is tempting to speculate that MT5-MMP
could share with MT1-MMP and legumain proteolytic actions
by which cleavage of APP upstream of the β-cleavage site would
facilitate the processing of APP by β-secretase, especially in
endosomes. Two sets of findings support such hypothesis: (1)
bigenic 5xFAD/legumain−/− and 5xFAD/MT5−/− mice both
show significant reductions in Aβ burden and glial reactivity,
as well as prevention of LTP and learning and memory
deficits (Zhang et al., 2015; Baranger et al., 2016b, 2017a),
reminiscent of observations made in bigenic 5xFAD/BACE-1−/−
or 5xFAD/BACE-1+/− mice (Ohno et al., 2007; Kimura et al.,
2010) and (2) MT5-MMP can be internalized in endosomes
(Wang et al., 2004; Baranger et al., 2017a) and thus promote
endosomal APP sorting (Baranger et al., 2017a). In such
hypothetical model, the first cleavage by MT5-MMP at the η-site
could have place on the membrane and be followed by joint
internalization with the APP transmembrane breakdown product
(CTF-30/η-CTF). It is noteworthy that MT5-MMP trafficking
involves interactions between the last three residues at carboxyl
terminus and Mint3, a protein that contains two type III PDZ
domains (Wang et al., 2004). Remarkably, Mint3 can also
function as an adaptor protein to promote APP export from
the Golgi complex (Caster and Kahn, 2013). These observations
highlight Mint3 as a potential molecular bridge between MT5-
MMP and APP, which could facilitate their interactions in the
context of traffic-based mechanisms for the control C99/Aβ

production. This is consistent with the increasing importance
granted to traffic regulation in the amyloidogenic process,
but also as means of exchanging relevant biofactors between
cells. In this vein, η-CTF was detected in extracellular vesicles
released by N2a neuroblastoma cells expressing APP Swedish.
The vesicles were uptaken by neurons, suggesting the possibility
that η-CTF could function as a vector for intercellular pathogenic
propagation (Laulagnier et al., 2018).

SECRETASE INHIBITORS/MODULATORS
CAN BE LINKED TO AD

An indirect way to assess the physiological impact of the new APP
processing enzymes is through the study of their endogenous
inhibitors, assuming that the control of proteolytic activities is an
important component of the final proteolytic balance. Such an
evaluation is not an easy task because the inhibitory selectivity
is not always completely elucidated, as is often the case with
metalloproteinases, which have a highly conserved catalytic site.
In general, the available literature on proteinase inhibitors and
AD remains essentially correlative and the link between both is to
date inconclusive or, at best, speculative. In this context, the levels
of fetuin-A, an inhibitor of meprin-β, were found to be reduced
in CSF of AD patients compared to healthy individuals (Puchades
et al., 2003). In addition, a polymorphism in the promotor
sequence of the fetuin-A encoding gene has been associated
with late onset AD (LOAD) (Geroldi et al., 2005), and lower
plasma levels of fetuin-A correlated with severe to mild cognitive

impairment (Smith et al., 2011). Likewise, a polymorphism in
the cystatin C gene (CST3) was significantly associated with
LOAD patients, while lower levels of this legumain inhibitor
were found in their plasma (Chuo et al., 2007). Other studies
have shown that overexpression of cystatin C in brains of
APP-transgenic mice reduces amyloid plaque formation (Kaeser
et al., 2007). A potential protective role of cystatin C in AD
could be related to its ability to bind soluble Aβ and thus
prevent Aβ deposition (Mi et al., 2007). A clear link between
high cholesterol levels and the pathogenesis of AD has not
yet been confirmed, but patients taking statins, a cholesterol-
lowering drug, are still less likely to develop the disease (Eckert
et al., 2005; Fonseca et al., 2010; Wood et al., 2014). In this
context, it has been shown that high cholesterol levels inhibit
RHBDL4 activity, which has been correlated with an increase
in the formation of Aβ (Paschkowsky et al., 2018). For TIMP-
2, the main inhibitor of MT-MMPs, clinical data are rather
inconsistent. For example, one study showed no change in
plasma TIMP-2 concentrations in patients with AD compared to
healthy individuals (Lorenzl et al., 2003b), while in the CSF, two
independent studies showed no difference (Mroczko et al., 2014)
or increased (Lorenzl et al., 2003a) TIMP-2 levels in AD patients.
More recently, Duits and collaborators reported decreases in
TIMP-2 (and also TIMP-1) in the CSF of AD patients with
microbleeds (Duits et al., 2015). Pre-clinical work has reported
TIMP-2 as a possible anti-aging factor as it promotes neuronal
plasticity and hippocampal-dependent cognition in aging mice
(Castellano et al., 2017). In this study, the authors used parabiosis
experiments to demonstrate that plasma from young donor mice
(3 months) enriched with TIMP-2 reversed cognitive deficits in
elderly mice (18 months). The confirmation that TIMP-2 was
responsible for the observed effects was obtained in experiments
where the plasma of young TIMP-2 knockout mice failed to
rescue the aged phenotype. It is noteworthy that the levels of
many immune and trophic factors were upregulated in plasma
from TIMP-2 knockout mice, indicating a possible regulatory role
of TIMP-2 on molecules that influence the functional cross talk
between the CNS and peripheral tissues. It is therefore tempting
to speculate on TIMP-2 as a pleiotropic “rejuvenating” factor
with anti-MMP activities and, as shown earlier, with anti-mitotic
and neural cell-differentiation promoting effects independent of
MMP-inhibitory activity (Perez-Martinez and Jaworski, 2005).
The idea of a “global” anti-aging factor is particularly appealing
because aging is by far the main risk factor for AD and other
degenerative disorders of nervous and non-nervous tissues.

Overall, the available partial data on proteinase inhibitors
highlight the need for more functional studies. These should
confirm their potential in modulating proteolytic balance or
non-proteinase-dependent actions as a means of deciphering
new AD pathophysiological pathways and developing new
therapeutic strategies.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

The importance of APP proteolysis in AD mechanisms is not in
doubt. The emergence of new APP cleaving enzymes significantly
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broadens the scope of study and makes evident the need
for a comprehensive understanding of the complex molecular
processes that encompasses APP proteolysis and the subsequent
range of beneficial/pathological effects. Gaining insight in such
processes will depend on our ability to determine the nature and
functions of new APP fragments generated by these enzymes in a
given cell type, subcellular compartment or stage of the disease, in
particular at early stages where they could affect neurotransmitter
release, synaptic function or incipient neuroinflammation. APP
fragments can also be a new source of inspiration for developing
therapeutic approaches based on blocking or promoting their
formation. This may intrinsically require specific modulation of
a given proteolytic cleavage, which turns out to be extremely
difficult when the targeted proteinase has many substrates. This
is the case for BACE-1 or γ-secretase, with dozens of substrates
identified to date (Haapasalo and Kovacs, 2011; Kuhn et al.,
2012; Zhou et al., 2012; Vassar et al., 2014). The list of substrates
for most of the emerging proteinases discussed here is still
relatively short and could therefore offer a therapeutic advantage
in this respect. Time will tell whether the number of substrates
will increase as new studies are conducted. Alternatively, APP
proteolytic fragments may become full-fledged targets and their
functions inhibited or potentiated, thus making it unnecessary
to specifically inhibit the proteolytic processes that produce
them. This option logically relies on a thorough knowledge
of the biological functions of these fragments but also of the
structural APP features. An additional alternative to modulating
proteinase catalytic activity is to gain insight into the trafficking
of APP and its metabolites. Mounting evidence indicates that
the way these molecules circulate in the cell (or between
cells) affects their functions and their availability for proteolytic
processing. Similarly, understanding the cellular routing of
proteinases may also be crucial to better target them. Beyond
proteolytic activity, proteinases can also exert non-proteolytic
actions through domains of interaction with other proteins; the
question arises of the importance that these phenomena could
have in the pathogenesis of AD and the new avenues they
open to targeting domains other than the catalytic domain. This
idea works as a mirror when it comes to the implications of

proteinase inhibitors (e.g., TIMPs), which are known to control
cell cycle, cell migration or cell fate also independent of anti-
proteinase activities (Baranger et al., 2014). Since inhibitors are
usually circulating proteins, they could favor communication
between the CNS and peripheral systems (e.g., cardiovascular and
immune systems), a process on which brain function and aging
may depend.

In summary, this review highlights APP as a central molecule
in the pathophysiology of AD and as a common substrate for MT-
MMPs and other emerging proteinases. However, in the context
of a more holistic approach to the disease that goes beyond
APP/Aβ, we anticipate that in the coming years proteolytic and
non-proteolytic interaction models will be established between
proteinases, inhibitors and their partner proteins to continue to
reveal the diversity of pathogenic pathways in AD and to learn
how better control them.
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