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Abstract: To date, a number of mannose-binding lectins have been isolated and characterized
from plants and fungi. These proteins are composed of different structural scaffold structures
which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition
of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central,
carbohydrate-binding pocket responsible for the “broad sugar-binding specificity” toward a single
mannose molecule, surrounded by a more extended binding area responsible for the specific
recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding
specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans
depends largely on the topography of their mannose-binding site(s). This structure–function
relationship introduces a high degree of specificity in the apparently homogeneous group of
mannose-binding lectins, with respect to the specific recognition of high-mannose and complex
N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for
deciphering and characterizing the complex mannose-containing glycans that decorate both normal
and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of
various cancer cells.

Keywords: lectin; plant; fungi; mannose-binding specificity; structure; function; use as tools

1. Introduction

Protein-carbohydrate interactions are part of the most efficient signaling pathways occurring
inside living organisms or between living organisms and their environment. Lectins or
Carbohydrate-Binding Agents (CBAs) are proteins that have specialized in the specific recognition of
carbohydrates during the evolution of all living organisms. The large family of carbohydrate-binding
proteins contains a large variety of carbohydrate-binding domains (CBDs), each with one or more
carbohydrate-binding sites (CBSs) which specifically recognize simple or more complex sugars.
Depending on the lectin, the carbohydrate-binding domains belong to distinct structural scaffolds
usually organized in homo- or hetero-dimeric or tetrameric structures [1]. According to the nature and
the organization of their domains, plant and fungal lectins have been classified in two groups of lectins,
(1) lectins exclusively composed of carbohydrate-binding domains and (2) chimerolectins composed
of a carbohydrate-binding domain linked to another domain(s) devoid of any carbohydrate-binding
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properties [1]. With respect to their binding properties, plant and fungal lectins can be subdivided
in different groups, such as for example Man-specific lectins, Gal/GalNAc-specific lectins, and
Fuc-specific lectins [2]. However, the binding of lectins towards simple sugars is probably not really
relevant. It is more realistic to assume that lectins will interact with the more complex N-glycan chains
that decorate the cell surface of all living organisms [3]. In addition, the idea has progressively emerged
that, besides lectins which are abundantly distributed in storage tissues like seeds and bulbs and
play a defensive/protective role, other less abundant lectins participate in more discrete carbohydrate
recognition processes equally necessary for the proper functioning of the living organisms [4]. In this
respect, the discovery of Nictaba, a lectin localized in the nucleus of tobacco (Nicotiana tabacum) cells,
represents a milestone in our vision of the function devoted to plant and fungal lectins in vivo [5].

Owing to the huge amount of structural and functional data that have been accumulated for
several decades these carbohydrate-binding proteins from plants and fungi have become a tool
to decipher the structure–function relationships inherently associated to protein macromolecules.
In this respect, lectins involved in the specific recognition of mannosyl residues, the so-called
mannose-binding lectins, represent an important group of functional proteins taking into account
the widespread distribution of mannose-containing N-glycans of the N-acetyllactosamine type and
high-mannose type. The present review aims to present an exhaustive overview that summarizes
all published informations related to the structure–function relationships of mannose-specific lectins
from plants and fungi, and their possible applications as analytical and therapeutic tools for
biomedical research.

2. Diversity of Mannose-Binding Lectins in Higher Plants

To date, lectins with a mannosyl-binding specificity have been identified in many different plant
families, including monocotyledonous as well as dicotyledonous species (Table 1). Among the monocot
families, research has focused on the Liliaceae and Amaryllidaceae [6], whereas the Fabaceae family
occupies a predominant position in the dicot group [6]. Following to the pioneering work of Agrawal
& Goldstein [7], who reported that concanavalin A (Con A), the lectin from Jack bean (Canavalia
ensiformis) seeds, was easily retained by simple filtration through a column containing cross-linked
dextran gel (Sephadex, Pharmacia) and subsequent desorbtion by the addition of glucose or mannose
to the eluting buffer, both Con A and many other mannose-specific lectins (Table 1) were easily purified
using a single affinity chromatography step. Mannose-specific lectins were also successfully isolated
from different algae, mushrooms and lower plant species [8]. Moreover, some mannose-specific lectins
from red algae specifically recognize the core (α1-6)-fucosylated N-glycans of cancer cells and can be
used as biomarkers for the detection of cancer glycoforms [9]. In this respect, they resemble LcA from
Lens culinaris, PsA from Pisum sativum and LoL-I from Lathyrus ochrus, which show strong binding to
core-fucosylated mono- and bi-antennary N-glycans [10,11].
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Table 1. Overview of plant, algae and fungi lectins with a mannosyl-binding specificity (β-sandwich: βs, β-prism: βp, n.d.: not determined).

Plant, Alga, Mushroom Family Plant, Alga, Mushroom Species Lectin Structural Scaffold Oligomer Ref.

Pteridophyta Phlebodium aureum PAL β barrel 2 [12]

Gymnosperms
Araucaria brasiliensis

Lectin I n.d. 10
[13]Lectin 2 n.d. 6

Gingko biloba Gnk2 α β 1 [14]
Cycas revoluta CRLL β-prism 2 [15,16]

Fabaceae

Bowringia mildbraedii BMA β-sandwich 2/4 [17]
Cajanus cajan CcL βs 2 [18]

Camptosema pedicellatum CPL βs 4 [19]
Canavalia boliviana ConBo βs 4 [20]

Canavalia bonariensis CaBo βs 4 [21]
Canavalia brasiliensis ConBr βs 4 [22]
Canavalia ensiformis ConA βs 4 [23]
Canavalia gladiata CGL βs 4 [24]

Canavalia grandiflora ConGF βs 4 [25]
Canavalia maritima ConM βs 4 [26]

Canavalia virosa ConV βs 4 [27]
Centrolobium microchaete CML βs 4 [28]
Centrolobium tomentosum CTL βs 4 [29]

Cladrastis lutea CLAI,II βs 4 [30]
Cratylia floribunda CFL βs 2/4 [31]

Cratylia mollis CRAMOLL βs 2/4 [32]
Cymbosema roseum CRLI βs 4 [33]
Dioclea grandiflora DGL βs 4 [34,35]
Dioclea guianensis Dguia βs 4 [36]
Dioclea lasiocarpa DLL βs 4 [37]
Dioclea lasiophylla DlyL βs 4 [38]

Dioclea reflexa DrfL βs 4 [39]
Dioclea rostrata DRL βs 4 [40]

Dioclea sclerocarpa DSL βs 4 [41]
Dioclea violacea DVL βs 4 [42]
Dioclea virgata DvirL βs 4 [43]
Dioclea wilsonii DwL βs 4 [44]
Lathyrus aphaca LaphL βs 2 [45]

Lathyrus articulatus LarL βs 2 [45]
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Table 1. Cont.

Plant, Alga, Mushroom Family Plant, Alga, Mushroom Species Lectin Structural Scaffold Oligomer Ref.

Lathyrus cicera LcL βs 2 [45]
Lathyrus hirsutus LhL βs 2 [46]
Lathyrus nissolia LnL βs 1 [47]
Lathyrus ochrus LoL βs 2 [48]

Lathyrus odoratus LodL βs 2 [49]
Lathyrus sativus LsL βs 2 [50]

Lathyrus sphaericus LsphL βs 1 [51]
Lathyus sylvestris LsiL βs 2 [52]

Lathyrus tingitanus LtL βs 2 [46]
Lens culinaris LcA βs 2 [53]

Millettia dielsiana MDL βs 2 [54]
Onobrychis viciifolia βs n.d. [55]

Pisum arvense PAL βs 2 [56]
Pisum sativum PsA βs 2 [57]

Pterocarpus angolensis PAL βs 2 [58]
Sophora flavescens SFL βs 2 [59]

Trigonella foenumgraecum βs n.d. [60]
Vicia cracca βs 2 [61]
Vicia ervilia βs 4 [62]
Vicia faba VfA βs 2 [63]

Vicia sativa βs 2 [64]

Mimosaceae
Parkia biglobosa PBL βs 2 [65]

Parkia platycephala PPL βs 2 [66]

Dalbergieae Platypodium elegans nPELa βs 2 [67]
Platymiscium floribundum PFL βs 2 [68]

Fagaceae Castanea crenata CCA βs 6/8 [69]

Moraceae

Artocarpus heterophyllus ArtinM β-prism 4 [70,71]
Artocarpus incisa Frutapin βp 4 [72]
Artocarpus integer CMB βp 4 [73,74]

Artocarpus integrifolia artocarpin βp 4 [75,76]
jacalin βp 4 [77,78]

Artocarpus lakoocha artocarpin βp 4 [79]
Morus nigra Moniga-M βp 4 [80]
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Table 1. Cont.

Plant, Alga, Mushroom Family Plant, Alga, Mushroom Species Lectin Structural Scaffold Oligomer Ref.

Asteraceae Helianthus tuberosus Heltuba βp 8 [81]

Brassicaceae Arabidopsis thaliana PP2-A1 βp n.d. [82]

Ranonculaceae Clematis montana CML βp 2 [83]

Aloeae Aloe arborescens ALOE βp 4 [84]

Araceae

Arisaema lobatum ALA n.d. 2+2 [85]
Arisaema heterophyllum AHA βp n.d [86]

Arum maculatum AMA βp 2+2 [87]
Colocasia esculenta CEA, tarin βp 2+2 [88]

Dieffenbachia sequina βp 2+2 [87]
Lysichiton camtschatcensis βp 2+2 [89]

Pinellia ternata PTA βp 2+2 [90]
Remusatia vivipara RVL βp 2+2 [91]

Typhonium divaricatum TDL βp 2+2 [92]
Xanthosoma sagittifolium XSL βp 2+2 [93]
Zantedeschia aethiopica ZAA βp n.d. [94]

Asparagaceae
Ophiopogon japonicus OJL βp n.d. [95]

Polygonatum cyrtonema PCL βp 4 [96]
Polygonatum multiflorum PMA βp 4 [97]

Convolvulaceae
Polygonatum odoratum POL βp 4 [98]

Calystegia sepium Calsepa βp 2 [99]
Ipomoea batatas ipomoelin βp 4 [100]

Alliaceae

Allium altaicum AALTA βp 2 [101]
Allium ascalonicum AAA βp 2 [102]

Allium cepa ACA βp 2 [103]
Allium porrum APA βp 2 [103]
Allium sativum ASA-I/II βp 2 [104]

Allium tuberosum ATA βp 2 [105]
Allium ursinum AUA-I/II βp 2 [106]
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Table 1. Cont.

Plant, Alga, Mushroom Family Plant, Alga, Mushroom Species Lectin Structural Scaffold Oligomer Ref.

Amaryllidaceae

Amaryllis vittata AVA βp n.d. [107]
Clivia miniata CMA βs 2 [108]

Crinum asiaticum CAA βp n.d. [109]
Galanthus nivalis GNA βp 4 [110]

Hippeastrum hybrid HHA βp 2 [111]
Leucojum vernum LVL βp n.d. [112]

Zephyranthes candida ZCA βp 4 [113]
Zephyranthes grandiflora ZGA βp 4 [114]

Lycoris aurea LAA βp 2 [115]
Lycoris radiata LRA βp 2 [116]

Dioscoreaceae
Dioscorea batatas DB1 βp 1 [117]

Dioscorea bulbifera DBL βp 1 [118]

Iridaceae
Crocus sativus CSL βp n.d. [119,120]
Crocus vernus CVA βp 4 [121]

Liliaceae

Aspidistra elatior AEL n.d. 2 [122]
Narcissus pseudonarcissus NPA βp 2,4 [111]

Narcissus tazetta NTL βp 2 [123]
Narcissus tortifolius NTA βp n.d. [124]

Tulipa hybrid TxLCI βp 4
[125]TL-MII βp 2

Smilacaceae Smilax glabra SGM2 βp 3 [126]

Hyacintheae Scilla campanulata SCAman βp 2 [127]

Musaceae
Musa acuminata BanLec βp 2 [128]
Musa paradisiaca βp 2 [129]

Pandanaceae Pandanus amaryllifolius pandanin βp n.d. [130]

Orchidaceae

Cymbidium hybridum CHA βp 2 [131]
Dendrobium officinale DOA2 βp n.d. [132]
Epipactis helleborine EHMBP βp 2 [131]

Gastrodia elata gastrodianine βp 2 [133]
Liparis noversa LNL βp 2 [95]

Listera ovata LNL βp 2 [131]
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Table 1. Cont.

Plant, Alga, Mushroom Family Plant, Alga, Mushroom Species Lectin Structural Scaffold Oligomer Ref.

Poaceae Oryza sativa Orysata βp 2 [134]

Red algae

Bryothamnion seaforthii BSL n.d. 1 [135]
Bryothamnion triquetrum BTL n.d. 1,2 [136]

Euchema denticulatum EDA n.d. 1 [137]
Eucheuma serra ESA n.d. 1 [138]
Griffithsia sp. griffithsin n.d. 2 [139,140]

Hypnea cervicornis HCA n.d. 1 [141]
Hypnea japonica HJA n.d. 1 [9]

Hypnea musciformis HMA n.d. 1 [142]
Kappaphycus alvarezii KAA-2 n.d. 1 [143]
Kappaphycus striatum KSA n.d. 1 [144]

Green algae Boodlea coacta BCA β-prism 1 [145]
Halimeda renschii HRL40-1/2 n.d. 4 [146]

Hydnangiaceae Laccaria bicolor tectonin 2 β-propeller n.d. [147,148]

Trichocomaceae Penicillium chrysogenum PeCL n.d. n.d. [149]

Saccharomycetaceae Saccharomyces cerevisiae Flo5A β-sandwich 2 [150]
Saccharomyces pasteurianus Flo1p βs 4 [151]

Schizosaccharo-mycetaceae Schizosaccharomyces pombe glucosidase βs 2 [152]

Hygrophoraceae Hygrophorus russula HRL n.d. 4 [153]

Marasmiaceae Marasmus oreades MOA β-prism 2 [154]

Pteridaceae Ceratopteris richardii cyanovirin CVN-fold 1 [155]

Sordariaceae Neurospora crassa cyanovirin CVN-fold 1 [155]

Tuberaceae Tuber borchii cyanovirin CVN-fold 1 [155]
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3. Structural Organization of the Plant, Algal and Fungal Mannose-Binding Lectins

3.1. Structure of Mannose-Specific Plant Lectins

Mannose-specific lectins from plants essentially belong to three distinct structural scaffolds that
assemble in different ways to generate more complex oligomeric structures:

3.1.1. The β-Sandwich Fold

The jelly roll scaffold occurring in legume lectins (Fabaceae) consists of either a single or two
polypeptide chains. In two-chain lectins, the light (α) and heavy (β) chains made of six and seven
strands of antiparallel β-sheet, respectively, non-covalently associate in a β-sandwich protomer
(Figure 1A). Protomers associate by non covalent bonds to give the homodimeric lectins of the
Vicieae tribe, e.g., pea lectin (Pisum sativum agglutinin PsA) [57], lentil lectin (Lens culinaris agglutinin
LcA) [156], yellow vetch lectin (Lathyrus ochrus lectin Lol) [48] (Figure 1B), and the faba bean lectin
(Vicia faba agglutinin VfA or favin) [63] (Figure 1B). In contrast, the Man-specific lectin from Lathyrus
sphaericus consists of an uncleaved single chain protomer [51]. The single-chain protomers associate
into homotetramers. Examples are the mannose-binding lectins characterized in the tribes Baphieae
(Bowringia mildbraedii agglutinin BMA) [17], Dalbergieae (Centrolobium tomentosum lectin CTL [29],
Pterocarpus angolensis lectin PAL [58]), Diocleae (Con A [23,157] (Figure 1C), Cymbosema roseum CRL [33],
Dioclea grandiflora lectin Con GF [25], and other Dioclea sp. lectins). Dimeric lectins such as PsA,
possess two identical mannose-binding sites whereas tetrameric lectins like Con A, exhibit four
mannose-binding sites. Gal/GalNAc-specific lectins from other legume tribes such as the soybean
agglutinin SBA (Glycine max) from the Glycinae tribe (PDB code 1SBF) [158], the peanut agglutinin
PNA (Arachis hypogaea) from the Aeschynomeneae (PDB code 2PEL) [159], the coral tree lectin EcorL
(Erythrina corallodendron) from the Erythrinae tribe (PDB code 1AXY) [160], and the kidney bean
leucoagglutinin PHA-L (PDB code 1FAT) [161] and erythroagglutinin PHA-E (PDB code 3WCR) [162],
(Phaseolus vulgaris) belonging to the Phaseolae tribe, all strikingly resemble Con A and other Diocleae
lectins but differ in the topological organization for the single-chain protomers that constitute the lectin.

3.1.2. The β-Prism I Fold

The β-prism I scaffold serves as a building block for the mannose-binding lectins in seeds of the
Moraceae such as artocarpin, the lectin from the Jackfruit (Artocarpus integrifolia) seeds which serves
as a prototype for this group [163]. The β-prism I scaffold consists of three bundles of four antiparallel
β-strands forming three Greek keys 1, 2 and 3, arranged into a β-prism structure along a longitudinal
axis (Figure 1D). Depending on the lectins, a posttranslational proteolytic cleavage between the
β-strands β1 and β2 of Greek key 1 occurs during seed ripening, to liberate the light α-chain with a
terminal Gly1 residue exhibiting a free H2N- group, and the heavy β-chain comprising the rest of the
β-prism structure. This proteolytic cleavage occurs in the Gal/GalNAc-specific homotetrameric lectins
of Moraceae, such as jacalin (Figure 1E) (PDB code 1JAC) [164], the MPA lectin from Osage orange
(Maclura pomifera) seeds (PDB code 1JOT) [165], and the Gal/GalNAc-specific lectin Morniga-G from
the bark of blackberry (Morus nigra) [80]. However, the Man-specific lectins from the Moraceae family,
e.g., artocarpin from Jackfruit [163] and Morniga-M from blackberry [166], consist of an uncleaved
single-chain β-prism polypeptide chain. Similarly, Heltuba, the lectin from the Jerusalem artichocke
(Helianthus tuberosus), also consists of a single-chain β-prism polypeptide chain made of 8 β-prisms
non-covalentlty associated around a central axis to form a flattened star-shaped architecture comprising
8 identical carbohydrate-binding sites (Figure 1F) [81].
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Figure 1. Structural diversity of the mannose-binding lectins. (A). Two-chain lectin protomer of Lathyrus
ochrus (PDB code 1LOE [48]). Light chain and heavy chains are colored green and red, respectively.
(B). Homodimeric organization of the L. ochrus isolectin-I (1LOE). The light and heavy chains of
the dimer are colored differently. (C). Homotetrameric organization of Con A (PDB code 3CNA).
The four single-chain protomers are shown in different colors. (D). The β-prism organization of the
artocarpin protomer from Artocarpus integrifolia (PDB code 1J4S). The three bundles of β-strands forming
the β-prism are colored green, red and orange, respectively. (E). Homotetrameric organization of
artocarpin from A. integrifolia (1J4U). The β-prism protomers are colored differently. (F). Homooctameric
organization of Heltuba from Helianthus tuberosus (1C3M) [81]. The β-prism protomers are colored
differently. (G). The β-prism II organization of the protomer of GNA from Galanthus nivalis (PDB code
1MSA). (H). Organization of the β-prism II protomers in the GNA tetramer (PDB code 1MSA). (I).
Hexameric structure of the tarin lectin from Colocasia esculenta (PDB code 5T20). The six β-prism-folded
protomers are colored differently.

3.1.3. The β-Prism II Fold

The β-prism II scaffold was first identified in GNA, the mannose-specific lectin isolated
from the bulbs of snowdrop (Galanthus nivalis), a plant species belonging to the monocot family
Amaryllidaceae [110]. The scaffold consists of three bundles of four β-strands arranged into a flattened



Int. J. Mol. Sci. 2019, 20, 254 10 of 49

β-prism structure around a central pseudoaxis (Figure 1G). A carbohydrate-binding site occurs in a
groove located at the center of the bundle of β-strands forming each β-sheet. The monocot-specific
lectins result from the non-covalent association of four β-prism II scaffolds. Depending on the lectin,
four identical β-prism II of 12 kDa form a homotetramer, e.g., in GNA (Figure 1H) [167], whereas
other lectins consist of heterotretramers built up from the symmetrical association of two 12 kDa and
two 14 kDa β-prism subunits, e.g., the Araceae lectins [6]. Usually, all three carbohydrate-binding
sites occurring in each β-prism scaffold are readily functional but in a few lectins, one or two
carbohydrate-binding sites are apparently inactive due to point mutation(s) in key residues involved
in the H-bonding of mannose. Tarin from Colocasia esculenta assembles into homohexameric structures
made of 6 β-prism scaffolds [168] (Figure 1I).

The β-trefoil scaffold, another β-prism II scaffold, has been primarily identified in type II
Ribosome-Inactivating Proteins (RIP-II), in amaranthin, a T antigen-specific lectin from amaranth
(Amaranthus caudatus) [169], and it also occurs in the stress inducible lectins composed of EUL (Euonymus
lectin) domains, such as the lectins from rice (Oryza sativa) and Arabidopsis [170]. The β-trefoil scaffold
consists of six β-hairpins arranged around an approximate three-fold symmetry axis, linked to extended
loops that simulate the three lobes of a trefoil leaf (Figure 2). The Man-binding sites are located in the
shallow depressions of the β-strands but, usually not all binding sites are functional.

12 
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Figure 2. Three-dimensional models for the EUL domain of EUL-domains of rice lectin Orysata,
showing the β-trefoill organization made of three bundles of antiparallel β-sheets (I, II, III).

An unexpected four-bladed β-propeller structure was found to occur in a PA2 albumin from
chickpea (Cicer arietinum), which displays a well documented hemagglutinating activity most probably
related to a lectin with an unusual hemopexin fold [171].

3.2. Structure of Mannose-Specific Algal Lectins

The mannose-specific lectin griffthsin from the red alga Griffthsia sp., consists of a domain-
swapped dimer made of two protomer exhibiting the β-prism I fold, that closely resembles to the
jacalin-related lectin organization (PDB code 2GTY) [140]. Swapping results from the participation of
two β-strands of one molecule in the completion of the three four-stranded sheets forming the β-prism
of the other molecule, and vice versa. As a result of this swapping, both molecules in the dimer consist
of a complete β-prism organization (Figure 3).

In spite of a high number of cloned and sequenced lectins from different species of red and green
algae, their three-dimensional organization(s) were poorly investigated and still remain unknown.
Their amino acid sequences readily differ from that of griffithsin and, most probably, they also differ
from griffithsin by their three-dimensional structure and monomer organization.
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Figure 3. Three-dimensional model of griffithsin (PDB code 2GTY), showing the β-prism organization
made of three four-stranded β-sheets in each monomer. The four stranded β-sheets are colored red,
pink and magenta in monomer (A), and blue, light blue and purple in monomer (B), respectively. The
stars indicate the localization of the carbohydrate-binding sites in each monomer.

3.3. Structure of Mannose-Specific Fungal Lectins

Mannose-specific lectins isolated from fungi result from the non-covalent association of different
structural scaffolds resulting in more complex oligomeric structures:

An unusual six-bladed β-propeller organization built up from 4-stranded anti-parallel β-sheets
was identified in tectonin 2, a lectin from the mushroom Laccaria bicolor AAL (PDB code 5FSC), that
specifically recognizes O-methylated glycans [148] (Figure 4).
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Figure 4. (A). Beta-propeller organization of tectonin 2 from the mushroom Laccaria bicolor in complex
with allyl-α4-methyl-mannoside. The lectin consists of 6 antiparallel strands of β-sheet (colored
differently) organized in 6 blades around the axis of the β-propeller. The allyl-mannoside residues
(M) anchored to the carbohydrate-binding sites of the lectin are colored purple (PDB code 5FSC) (B).
Sixth mannose-binding site of tectonin 2 in complex with allyl-α4-methyl-mannoside. Hydrogen bonds
connecting the monosaccharides to the amino acid residues Ser200, Asn216 and Tyr222, forming the
monosaccharide-binding site are represented by black dashed lines. Aromatic residues Trp3 and Tyr222,
paticipating in stacking interactions with the sugar ring are colored orange. The molecular surface of
the lectins is colored dark grey and their extended oligosaccharide-binding areas are delineated by
white dashed lines. (C). The shallow depression corresponding to the monosaccharide-binding site
that accommodates the allyl-mannoside residue (colored purple) at the molecular surface (colored
according to the oulombic charges) of tectonin 2, is delineated by a green dashed line.

A similar 6-bladed β-propeller structure was observed in the fucose-binding lectins from the
bacteria Ralstonia solanacearum [172], Photorhabdus luminescens [173], Photorhabdus asymbiotica [174], as
well as in the tachylectin from the Japanese horseshoe crab Tachypleus tridentatus [175]. However, the
β-propeller scaffold is not specific for the fucose-binding property since a β-propeller structure was
shown to occur in other lectins with quite different sugar-binding specificities, e.g., the Neu5Ac- and
GlcNAc-specific lectins from the mushrooms Psathyrella velutina [176] and Psathyrella asperospora [177],
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and the lectin Bambl from the bacterium Burkholderia ambifaria, which specifically interacts with the
lewis x antigen, the blood H type 1 and H type 2 tetrasaccharides and the blood group B epitope [178].

The β-sandwich scaffold is another structural scaffold found in the mannose-binding
N-terminal domain of flocculins Flo1 and Flo5 from Saccharomyces cerevisiae, and Flo1 from
S. pasteurianus [150,151]. These surface-adhesins possess a N-terminal domain that readily accomodates
Man and α1,2-mannobiose via a network of hydrogen bonds and stacking interactions with aromatic
residues, very similar to those occurring in Man-specific lectins of higher plants (Figure 5). Most of the
aminoacid residues involved in the binding of mannose also serve as ligands for a Ca2+ ion located at
the bottom of the mannose-binding site. The mannose-binding activity of Flo1 and Flo5 proteins plays
a key role in the self-recognition processes occurring during the growth of the yeasts.
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Gln117 

Figure 5. (A,C). Beta-sandwich organization of Flo5 from the yeast Saccharomyces cerevisiae in complex
with mannose (A) (PDB code 2XJP) and α1,2-mannobiose (C) (PDB code 2XJS). The mannose-binding
N-terminal domain of Flo5 consists of two strands of β-sheet forming a β-sandwich structure. (B).
Network of hydrogen bonds anchoring mannose (colored purple) to the amino acid residues forming
the carbohydrate-binding site located at the top of the β-sandwich. Two stacking interactions of
the pyranose ring of mannose with aromatic residues Tyr54 and Trp228 (colored orange), complete
the interaction. (D). Network of hydrogen bonds anchoring α1,2-mannobiose (colored purple) Flo5,
showing additional hydrogen bonds anchoring α1,2-mannobiose to Gln117 and Ser 227 residues.
Residues Asp160, Asp161, Val226 and Trp228, also serve as ligands for a Ca2+ ion (colored red in A and
C) located at the bottom of the mannose-binding pocket.

The cyanovirin-fold (CVN-fold) also occurs as a structural scaffold identified in the cyanovirin-N
family of mannose-binding fungal lectins, including the ascomycetous fungi Ceratopteris richardii
(CrCVNH), Neurospora crassa (NcCVNH) and Tuber borchii (TbCVNH) [155]. The NcCVNH lectin
consists of a two swapped domains polypeptide chain of 111 amino acids, built up from a domain
A of 56 residues (residues 1–42 and residues 100–111), and a domain B of 57 residues (residues
43–99). According to the swapping occurring between both domains, domain A comprises the
triple-stranded β-sheet (β1, β2, β3) associated to the β-hairpin (β9, β10), whereas domain B consists
of the triple-stranded sheet (β6, β7, β8) associated to the β-hairpin (β4, β5) (Figure 6A). Other CrVNH
and TbCVNH exhibit a very similar organization.

It is notheworthy that most of the Man-specific lectins identified in bacteria consist of the so-called
CVN family fold (Table 2), which comprises cyanovirin, actinohivin, and microvirin occurring in
cyanobacteria (ex blue-green algae) as a two swapped domains polypeptide chain, each domain built
up from a β-sheet of three anti-parallel β-strands linked to a β-hairpin by a short α-helical turn [179]
(Figure 6B).
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Actinomycetaceae Actinomycete sp. actinohivin CVN-fold [180] 

Bukholderiaceae Burkholderia cenocepacia BcLA id. [181] 

Cyanothecaceae Cyanothece sp. Cyt-CVNH id. [182] 

Nectriaceae Gibberella zeae Gz-CVNH id. [183] 

Oscillatoriaceae Oscillatoria agardhii OAA id. [184] 

Microcystaceae 
Microcystis aeruginosa microvirin id. [179] 

Microcystis viridis MVL id. [185] 

Myxococcaceae Myxococcus xanthus cyanovirin-N id. [186] 

Nostocaceae Nostoc ellipsosporum  id. [187] 
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Scytonemataceae Scytonema varium  id. [189] 
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The mannose-binding properties of these lectins exhibiting the CVN-fold account for their anti-

HIV-1 activity. 

Figure 6. (A). Beta-sandwich organization of NcCVNH from Neurospora crassa (PDB code 2JZL),
showing the two-swapped domains A (colored purple) and B (colored pink). Strands of β-sheet are
numbered 1–10. N and C indicate the N-terminal and C-terminal extremities of the polypeptide chain,
respectively. The mannose-binding site has been identified at the top of domain B (red star F). (B).
Ribbon diagram showing the structural organization of the two-domain (A and B) cyanobacterial
microvirin from Microcystis aeruginosa (PDB code 2YHH) The β-strands, β-hairpins and turns, are
colored purple, red and green, respectively.

Table 2. Overview of bacterial lectins of the CVN-fold with a mannose-binding specificity.

Bacteria Family Species Lec Lectin Dstructural Scscaffold Ref.

Actinomycetaceae Actinomycete sp. actinohivin CVN-fold [180]

Bukholderiaceae Burkholderia cenocepacia BcLA id. [181]

Cyanothecaceae Cyanothece sp. Cyt-CVNH id. [182]

Nectriaceae Gibberella zeae Gz-CVNH id. [183]

Oscillatoriaceae Oscillatoria agardhii OAA id. [184]

Microcystaceae Microcystis aeruginosa microvirin id. [179]

Microcystis viridis MVL id. [185]

Myxococcaceae Myxococcus xanthus cyanovirin-N id. [186]

Nostocaceae Nostoc ellipsosporum id. [187]

Pseudomonadaceae
Pseudomonas fluorescens PFL id. [186]

Pseudomonas putida LLP id. [188]

Scytonemataceae Scytonema varium id. [189]

Thermotogaceae Thermotoga maritim Tmcbm27 β-sandwich [190]

The mannose-binding properties of these lectins exhibiting the CVN-fold account for their
anti-HIV-1 activity.

4. The Mannosyl-Binding Specificities of Mannose-Binding Lectins

The high-resolution X-ray structures for a series of complexes between the isolectins LoLI
and LoLII from the Cyprus vetch (Lathyrus ochrus) and various N-oligosaccharides of increasing
complexity including tri-, octa- and dodecasaccharides, accomplished a breakthrough by providing
a new framework for understanding how plant lectins specifically accommodate sugar units of
complex N-glycans [191–193]. Additional crystal structures of other Man-specific lectins in complex
with N-oligosaccharides allowed to decipher the complexity of the carbohydrate-binding of complex
glycans to plant and fungal lectins at the molecular level (Table 3).
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Table 3. PDB codes of lectins from plants and fungi, complexed with simple sugars (m),
oligomannosides (o), and complex (c) mannose-containing glycans.

Plant Species: Lectin: PDB Code: Ref.

Bowringia mildbraedii BMA 2FMD(o) [194]

Canavalia ensiformis ConA 1BXH(o), 1CVN(o), 1I3H(o), 1ONA(o), 1QDC(o),
1QDO(o), 1TEI(o), 1VAM(m), 5CNA(m), 5WEY(o) [195–203]

Canavalia gladiata CGL 2D7F(m), 2EF6(o), 2OVU(o) [204,205]

Canavalia maritima ConM 2OW4(o), 2P37(o) [205]

Canavalia virosa ConV 5F5Q(m) [27]

Centrolobium tomentosum CTL 5EYX(o), 5EYY(o) [29]

Cymbosema roseum CRLI 4MYE(m)

Dioclea grandiflora DGL 1DGL(o) [35]

Dioclea lasiocarpa DLL 5UUY(m) [37]

Dioclea lasiophylla DlyL 6CJ9(m) [38]

Dioclea reflexa DrfL 5TG3(m) [39]

Dioclea rostrata DRL 2ZBJ [40]

Dioclea sclerocarpa DSL 4NOT(m) [41]

Dioclea virgata DvirL 3RS6(m) [43]

Lathyrus ochrus LoLI 1LOA(m), 1LOB(m), 1LOF(o), 1LOG(o) [191,192,206]

LoLII 1LGB(c), 1LGC(c) [193]

Pisum arvense PAL 5T7P(m) [207]

Pisum sativum PsA 1BQP(m), 1RIN(o) [208,209]

Pterocarpus angolensis PAL

1Q8O(o), 1Q8P(o), 1Q8Q(o), 1Q8S(o), 1Q8V(o),
1UKG(m), 2AR6(o), 2ARB(o), 2ARE(m), 2ARX(o),

2AUY(o), 2GN3(m), 2GN7(o), 2GMM(o), 2GMP(o),
2PHF(o), 2PHR(o), 2PHT(o), 2PHU(o), 2PHW(o),

2PHX(o)

[210–213]

Parkia biglobosa PBL 4MQ0(m)

Artocarpus incisa frutapin 5M6O(m) [72]

Artocarpus integrifolia artocarpin 1J4U(m), 1VBO(o), 1VBP(o) [163,214]

jacalin 1KUJ(m), 1WS4(m), 1WS5(m) [77,78]

Morus nigra Morniga-M 1XXR(m) [168]

Helianthus tuberosus Heltuba 1C3M(o), 1C3N(o) [81]

Colocasia esculenta tarin 5D9Z(m), 5T20(o) [165]

Ipomoea batatas ipomoelin 3R51(m), [99]
Calystegia sepium Calsepa 1OUW(m), 5AV7(o), 5XF1(o) [98]

Allium sativum ASA 1BWU(m), 1KJ1(m) [215,216]

Galanthus nivalis GNA 1JPC(o), 1MSA(m), 1NIV(o) [217,218]

Narcissus pseudonarcissus NPA 1NPL(o), 3DZW(o) [219]

Musa acuminata 3MIT(m), 3MIU(o), 4PIK(o), 4PIT(o) [128,220]

Musa paradisiaca 1X1V(m) [127]

Oryza sativa Orysata 5XFH(c), 5XFI(c) [221]

Fungal/Algal Species: Lectin: PDB Code: Ref.

Griffthsia sp. griffthsin 2GUC(m), 2GUD(m), 2HYQ(o), 3LL2(c) [140,222,223]

Saccharomyces cerevisiae adhesin Flo1 4LHK(o), 4LHN(m) [151]

Saccharomyces pastorianus flocculin Flo5 2XJP(m), 2XJR(o), 2XJS(o), 2XJT(o), 2XJU(o) [150]

Schizosaccharomyces pombe glucosidase II 4XQM(m) [152]

Marasmus oreades cyanovirin-N 4TKC(m)

Actinomyces sp. actinohivin 4P6A(o) [224]
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Depending on the molecular complexity of the recognized carbohydrates, two types of closely
interlinked carbohydrate-binding specificities can occur at the carbohydrate-binding site of plant and
fungal lectins:

1. A monosaccharide-binding specificity, allowing the lectin to specifically recognize a simple
sugar, e.g., mannose Man, and its derivatives, e.g., α-methylmannoside. This type of monosaccharide
recognition by lectins corresponds to the so-called “broad sugar-binding specificity” of lectins, which
relies on the occurrence of a monosaccharide-binding pocket within the carbohydrate-binding site.

2. An oligosaccharide-binding specificity, which consists of the simultaneous accommodation
of several sugar units of a complex N-glycan, e.g., high-mannose glycans, also known as the “fine
sugar-binding specificity” of the lectins. This type of oligosaccharide recognition involves most of the
surface of the carbohydrate-binding site, including the monosaccharide-binding site.

The monosaccharide-binding site is part of a more extended oligosaccharide-binding site.
In physiological conditions, however, plant and fungal lectins are almost always involved in the
recognition of complex glycans, rather than simple sugars, simply because the amount of free
monosaccharides in cells and tissues is very low. The binding of plant and fungal lectins to mannose
was first observed in hapten inhibition experiments, by introducing free mannose or mannose
derivatives to prevent or reverse the in vitro interaction between lectins and red blood cells or complex
glycans. Obviously, the affinity of mannose-specific lectins for simple sugars, e.g., for Man or Man
derivatives, is far weaker compared to the affinity measured for more complex glycans, e.g., for
complex N-glycans or high-mannose type glycans (Table 4) [10,225].

Table 4. Minimum concentrations (mM) of various oligosaccharidic structures and glycopeptides
necessary to completely inhibit red blood cells agglutination by Con A, LcA from lentil and favin (from
ref. [225]).

Oligosaccharidic Structures Con A LcA Favin

Man 1.25 2.5 0.625

αMan(1,3)βMαν(1,4)GlcNAc 0.104 0.83 0.104

αMαν(1,2)αMαν(1,3)βMan(1,4)GlcNAc 0.026 0.21 0.105

αMαν(1,2)αMan(1,2)αMαν(1,3)βMαν(1,4)GlcNAc 0.026 0.206 0.105
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4.1. The Mannose-Binding Specificity

The recognition and binding of simple sugars by lectins occurs through non covalent interactions
occurring between some hydroxyls of the sugar ring and a few, essentially polar, amino acid residues
forming a shallow depression at the lectin surface, the so-called monosaccharide-binding site. Usually,
most of these interactions consist of hydrogen bonds (H-bond) often associated to a hydrophobic
stacking of the pyranose ring of the sugar to the phenolic ring of an aromatic residue such as Phe (F),
Tyr (Y), or Trp (W), located in the close vicinity of the monosaccharide-binding cavity. Acidic residues
like Asp (D) and Glu (E), often participate in the interaction with simple sugars, thus attributing a
more or less pronounced electronegative character to the monosaccharide-binding site. Both acidic
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residues Asp and Glu, play a key role in the binding of simple sugars due to their capacity to create
multiple H-bonds with the hydroxyls emerging from the sugar ring.

Detailed structural information is available for the binding of α-D-mannose (Man) to the
monosaccharide-binding site of Man-specific legume lectins including Con A [202], LoLI isolectin
from Lathyrus ochrus [206], favin from the broad bean Vicia faba [63], pea lectin PsA [209] and PAL
from Pterocarpus angolensis [210]. A very similar binding scheme occurs for both the two-chain (LolLI,
favin, PsA) and single-chain (Con A) lectins: a few amino acid residues located on three distinct
loops exposed at the top of the dome-shaped lectin protomer, form a shallow depression which
accommodates the Man ligand via a network of hydrogen bonds connected to the O3, O4, O5 and
O6 atoms of the sugar. An acidic residue (Asp208 of Con A, Asp81 of LoLI and PsA), which also
participates in the binding of a Ca2+ ion located in the close vicinity of the binding site, plays a key
role in ligand binding. An additional stacking interaction between the pyranose ring of Man and one
(Phe123 of LoLI) or two (Tyr12 and Tyr100 of Con A) aromatic residues located in the vicinity of the
monosaccharide-binding site, reinforces anchorage of the sugar to the binding site (Figure 7A–D). A few
water molecules also participate in the binding of Man to the monosaccharide-binding site of the lectins.
Very similar binding observations were reported for the binding of Man or α-methyl-D-mannoside
(MeMan) to other Canavalia [20,21,25,27] and Dioclea lectins [34–44], Parkia biglobosa (PDB code 4MQ0)
and Cymosema roseum (PDB code 4MYE) Man-specific lectins from the Brasilian flora.

The accommodation of Man by artocarpin, a Man-specific jacalin-related lectin, shows a
very similar network of 9 H-bonds between four amino acid residues (Gly15, Asp138, Leu139,
Asp141) located at the top of the β-prism protomer, and the O1, O3, O4, O5, and O6 atoms
of the sugar (Figure 7E,F). No stacking interactions occur between the aromatic residues of the
monosaccharide-binding site and the sugar. In addition, jacalin, another member of the jacalin-related
lectins, offers an interesting example of sugar-binding promiscuity because this Gal-specific lectins
also interacts, albeit with lower affinity, with other simple sugars like Man, Glc and GalNAc via a very
similar H-bond network [77]. Another Man-specific lectin with a β-prism architecture, Heltuba of
Helianthus tuberosus, also accommodates Man through a very similar network of H-bonds between
four amino acid residues (Gly18, Asp136, Val137, Asp139), which form the monosaccharide-binding
site also located at the top of the β-prism protomer, and the O3, O4, O5 and O6 atoms of the sugar
(Figure 7G,H).

The recognition of Man by GNA, the Man-specific snowdrop (Galanthus nivalis) lectin, and other
monocot Man-binding lectins harboring a similar β-prism architecture (a β-prism in which the strands
composing the β-sheet are arranged perpendicularly to the axis of the prism), exhibits a different
mode of binding due to the fact that three out of eight H-bonds connecting the Gln89, Asp91, Asn93
and Tyr97 residues from the 3rd mannose-binding site to the O2, O3, O4, and O6 atoms of Man,
are connected to the axial O2 atom (Figure 5I,J). Residue Tyr97 also provides a stacking interaction
with one face of the Man pyranose ring. An additional hydrophobic interaction with Val95, another
residue of the consensus sequence stretch QXDXNXVXY of the monosaccharide-binding binding site,
reinforces the anchorage of Man to the binding site.

Molecular modeling and in silico docking suggest that other nucleocytoplasmic EUL domain-
containing lectins from rice (Oryza sativa) and Arabidopsis with a β-prism architecture, also interact
with mannose via a very similar network of H-bonds and stacking interactions with aromatic amino
acid residues located in the close vicinity of the monosaccharide-binding site (Figure 8) [170]. However,
some promiscuity was shown to occur at the monosaccharide-binding site of the EUL-lectins, which in
addition to high mannose N-glycans also recognize blood group B related structures and galactosylated
epitopes [226].
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Hydrogen bonds connecting the monosaccharides to the amino acid residues forming the 

monosaccharide-binding site are represented by black dashed lines. Aromatic residues participating 

in stacking interactions with the sugar rings are colored orange. The molecular surface of the lectins 

is colored dark grey and their extended oligosaccharide-binding areas are delineated by white dashed 

lines. The shallow depression corresponding to the monosaccharide-binding site that accommodates 

simple sugars is delineated by a green dashed line. The green and violet spheres correspond to the 

Ca2+ and Mn2+ ions, that have a stabilizing effect on the carbohydrate-binding site. 

Molecular modeling and in silico docking suggest that other nucleocytoplasmic EUL domain-

containing lectins from rice (Oryza sativa) and Arabidopsis with a β-prism architecture, also interact 

with mannose via a very similar network of H-bonds and stacking interactions with aromatic amino 

acid residues located in the close vicinity of the monosaccharide-binding site (Figure 8) [170]. 

However, some promiscuity was shown to occur at the monosaccharide-binding site of the EUL-

lectins, which in addition to high mannose N-glycans also recognize blood group B related structures 

and galactosylated epitopes [226]. 

Figure 7. (A,B). ConA from Canavalia ensiformis in complex with α-methylmannoside (PDB code 5CNA).
(C,D). Isolectin LoLI from Lathyrus ochrus in complex with Man (PDB code 1LOB). (E,F). Artocarpin
from Artocarpus integrifolia in complex with α-mthylmannoside (PDB code 1J4U). (G,H). Heltuba from
Helianthus tuberosus in complex with Manα1,3Man (PDB code 1C3M). (I,J). Third Man-binding site of
GNA from Galanthus nivalis in complex with α-methylmannoside (PDB code 1MSA). Hydrogen bonds
connecting the monosaccharides to the amino acid residues forming the monosaccharide-binding site
are represented by black dashed lines. Aromatic residues participating in stacking interactions with
the sugar rings are colored orange. The molecular surface of the lectins is colored dark grey and their
extended oligosaccharide-binding areas are delineated by white dashed lines. The shallow depression
corresponding to the monosaccharide-binding site that accommodates simple sugars is delineated by a
green dashed line. The green and violet spheres correspond to the Ca2+ and Mn2+ ions, that have a
stabilizing effect on the carbohydrate-binding site.



Int. J. Mol. Sci. 2019, 20, 254 18 of 49
21 

Int. J. Mol. Sci. 2019, 20 

 

Figure 8. Docking of αMeMan to the monosaccharide-binding site of the active sub-domain III of 

OsEULS3. Hydrogen bonds connecting Man to the amino acid residues forming the monosaccharide-

binding site are shown by black dashed lines and distances are indicated in Å. The aromatic Trp136 

residue participating in stacking interactions with the sugar ring is colored orange. 

4.2. The Oligosaccharide-Binding Specificity 

Although the monosaccharide-binding capacity of Man-specific lectins has been widely 

investigated, it is obvious that simple sugar residues like Man probably cannot be considered as the 

natural ligands for plant and fungal lectins, due to the extreme scarcity of simple sugars as free 

ligands occurring in living organisms, compared to other complex carbohydrates. Along this line, the 

affinity of Man-specific lectins for complex high-mannose N-glycans is much higher than that 

measured for free Man [10,225]. In fact, once the first crystallographic structures of complexes of Man-

specific lectins with oligomannosides were solved at atomic resolution [191–193], it became evident 

that the so-called monosaccharide-binding site is in fact part of a more surface-extended 

oligosaccharide-binding site, comprising other amino acid residues susceptible to chemical 

interaction with other sugar units distinct from that recognized by the monosaccharide-binding site. 

Such a multiplicity of interactions readily accounts for the higher affinity of Man-specific lectins for 

high-mannose N-glycans (inhibitory activity in the mM range), compared to free Man (inhibitory 

activity in the µM range) [225]. In addition, depending on the degree of freedom of the different O-

glycosidic linkage types, e.g., α1-2, α1-3, α1-4 or α1-6, occurring along the glycan chain, complex 

glycans can more or less fit the shape of the lectin oligosaccharide-binding site. 

Structural analysis of different lectin-oligosaccharide complexes (Table 5), including Con A in 

complex with a pentasaccharide (Figure 9A,B), isolectin LoLII from Lathyrus ochrus in complex with 

a biantennary octasaccharide of the N-acetyllactosamine type from lactotransferrin (Figure 9C,D), 

GNA in complex with a mannopentaose (Figure 9E,F), and PAL from Pterocarpus angolensis in 

complex with a mannotetraose (Figure 9G,H), show that a complex network of H-bonds, stacking 

and hydrophobic interactions, links several sugar units of the glycan chain to the oligosaccharide-

binding site of the lectin. However, depending on the lectin, important discrepancies occur in the 

accommodation of sugar units. In this respect, isolectins of Lathyrus ochrus and other two-chain 

Vicieae lectins such as pea PsA and lentil LcA lectins, which differ from Con A by a higher affinity 

for fucosylated glycans of the N-acetyllactosaminic type [10,225], strongly interact with the α1,6-Fuc 

residue linked to the Asn-bound GlcNAc of the glycan whereas Con A does not interfere at all with 

the Fuc residue. Similarly, the accommodation of structurally closely-related oligomannosides by 

GNA (Figure 9F) and PAL (Figure 7H), illustrates how discrepancies observed in the topographical 

features (shape and size) of the oligosaccharide-binding site can affect the binding of complex glycans 

to different Man-specific lectins belonging to distinct scaffold architectures.  

Figure 8. Docking of αMeMan to the monosaccharide-binding site of the active sub-domain III of
OsEULS3. Hydrogen bonds connecting Man to the amino acid residues forming the monosaccharide-
binding site are shown by black dashed lines and distances are indicated in Å. The aromatic Trp136
residue participating in stacking interactions with the sugar ring is colored orange.

4.2. The Oligosaccharide-Binding Specificity

Although the monosaccharide-binding capacity of Man-specific lectins has been widely
investigated, it is obvious that simple sugar residues like Man probably cannot be considered as the
natural ligands for plant and fungal lectins, due to the extreme scarcity of simple sugars as free ligands
occurring in living organisms, compared to other complex carbohydrates. Along this line, the affinity
of Man-specific lectins for complex high-mannose N-glycans is much higher than that measured for
free Man [10,225]. In fact, once the first crystallographic structures of complexes of Man-specific lectins
with oligomannosides were solved at atomic resolution [191–193], it became evident that the so-called
monosaccharide-binding site is in fact part of a more surface-extended oligosaccharide-binding site,
comprising other amino acid residues susceptible to chemical interaction with other sugar units distinct
from that recognized by the monosaccharide-binding site. Such a multiplicity of interactions readily
accounts for the higher affinity of Man-specific lectins for high-mannose N-glycans (inhibitory activity
in the mM range), compared to free Man (inhibitory activity in the µM range) [225]. In addition,
depending on the degree of freedom of the different O-glycosidic linkage types, e.g., α1-2, α1-3, α1-4
or α1-6, occurring along the glycan chain, complex glycans can more or less fit the shape of the lectin
oligosaccharide-binding site.

Structural analysis of different lectin-oligosaccharide complexes (Table 5), including Con A in
complex with a pentasaccharide (Figure 9A,B), isolectin LoLII from Lathyrus ochrus in complex with a
biantennary octasaccharide of the N-acetyllactosamine type from lactotransferrin (Figure 9C,D), GNA
in complex with a mannopentaose (Figure 9E,F), and PAL from Pterocarpus angolensis in complex with
a mannotetraose (Figure 9G,H), show that a complex network of H-bonds, stacking and hydrophobic
interactions, links several sugar units of the glycan chain to the oligosaccharide-binding site of the
lectin. However, depending on the lectin, important discrepancies occur in the accommodation of
sugar units. In this respect, isolectins of Lathyrus ochrus and other two-chain Vicieae lectins such as
pea PsA and lentil LcA lectins, which differ from Con A by a higher affinity for fucosylated glycans
of the N-acetyllactosaminic type [10,225], strongly interact with the α1,6-Fuc residue linked to the
Asn-bound GlcNAc of the glycan whereas Con A does not interfere at all with the Fuc residue. Similarly,
the accommodation of structurally closely-related oligomannosides by GNA (Figure 9F) and PAL
(Figure 7H), illustrates how discrepancies observed in the topographical features (shape and size) of
the oligosaccharide-binding site can affect the binding of complex glycans to different Man-specific
lectins belonging to distinct scaffold architectures.
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residues from a mannopentaose (PDB code 1JPC). (G,H). PAL from Pterocarpus angolensis in complex 

with a mannotetraose (PDB code 2PHF). Hydrogen bonds connecting the oligosaccharides to the 

amino acid residues forming the extended carbohydrate-binding site are represented by black dashed 

lines. Aromatic residues participating in stacking interactions with the sugar rings are colored orange. 

The electrostatic potentials were calculated and mapped on the molecular surface of the lectins, using 

YASARA. The extended oligosaccharide-binding areas are delineated by white dashed lines. The 

shallow depression corresponding to the monosaccharide-binding site that accommodates simple 
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Table 5. Structure of the branched oligosaccharides complexed to Con A (PDB code 1TEI), LoLII (PDB 

code 1LOF), GNA (PDB code 1JPC) and PAL (PDB code 2PHF). 

Oligosaccharides/Glycopeptide Complexed to: 

Figure 9. (A,B). ConA from Canavalia ensiformis in complex with β-D-GlcNAc-(1,2)-α-D-Man-(1,6)-[β-D-
GlcNAc-(1,2)-α-D-Man-(1,6]-αD-Man (PDB code 1TEI) [196]. (C,D). Isolectin LoLII from Lathyrus ochrus
in complex with a biantennary octasaccharide of the N-acetyllactosamine type from lactotransferrin
(PDB code 1LOF). (E,F). GNA from Galanthus nivalis in complex with three mannosyl residues
from a mannopentaose (PDB code 1JPC). (G,H). PAL from Pterocarpus angolensis in complex with
a mannotetraose (PDB code 2PHF). Hydrogen bonds connecting the oligosaccharides to the amino
acid residues forming the extended carbohydrate-binding site are represented by black dashed lines.
Aromatic residues participating in stacking interactions with the sugar rings are colored orange.
The electrostatic potentials were calculated and mapped on the molecular surface of the lectins,
using YASARA. The extended oligosaccharide-binding areas are delineated by white dashed lines.
The shallow depression corresponding to the monosaccharide-binding site that accommodates simple
sugars, is delineated by a green dashed line.
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Table 5. Structure of the branched oligosaccharides complexed to Con A (PDB code 1TEI), LoLII (PDB
code 1LOF), GNA (PDB code 1JPC) and PAL (PDB code 2PHF).

Oligosaccharides/Glycopeptide Complexed to:
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Investigations on the oligosaccharide-binding specificity of Man-specific bacterial lectins, showed
a highly similar binding scheme associated to the recognition of oligomannosides and complex
high-mannose N-glycans. However, depending both on the extent of the glycan chain and the
shape and size of the oligosaccharide-binding site in the lectin monomer, which possesses a β-prism-
(griffthsin) or a β-barrel-architecture (actinohivin), rather distinct accommodation schemes were
observed for these lectins (Figure 10) [227]. The oligosaccharide-binding sites of griffthsin and
actinohivin readily differ by the shape, the size and the discrete distribution of charged residues
that account for the differences observed in the accommodation of oligomannosides and high-mannose
branched glycans by the lectins. Similar to plant lectins, the monosaccharide-binding pocket occupies
a pivotal position at the centre of the binding site and fully participates in the binding of the
complex glycans.

Obviously, the binding of complex glycan chains to lectins is a highly complex interaction process
due to the extreme variability observed in the topographical features of the oligosaccharide-binding
site of lectins, associated to the extreme diversity of the recognized glycan structures. Hopefully,
the recent developments in glycan array technology [228], and the improvement of frontal affinity
chromatography [229], offer new important tools for deciphering the biomolecular interactions between
plant lectins and the large panel of complex glycans.
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5. Functions of Mannose-Specific Lectins 

Figure 10. Structural diversity of the mannose-binding lectins. (A–C). Ribbon diagrams (A lateral view,
B upper view) and surface electrostatic potentials (C) of griffthsin in complex with a high-mannose
branched glycan (colored cyan) (PDB code 3LL2), showing the β-prism organization of the lectin.
Note the electronegatively charged character (colored red) of the Man-binding pockets at the upper
face of the β-prism. (D–F). Ribbon diagrams (D lateral view, E upper view) and surface electrostatic
potentials (F) of actinohivin in complex with a high-mannose branched glycan (colored cyan) (PDB
code 3S5X), showing the β-trefoil (β-prism II) organization of the lectin. Note the electronegatively
(colored red) and electropositively (colored blue) charged character of the Man-binding pockets at the
edges of the β-trefoil. (G–I). Ribbon diagrams (G lateral view, H upper view) and surface electrostatic
potentials (I) of actinohivin in complex with α-1,2-mannotriose (colored cyan) (PDB code 4P6A),
showing the organization of the lectin. Note the electronegatively charged character (colored red) of
the Man-binding pockets.
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5. Functions of Mannose-Specific Lectins

The Man-specific lectins present in seeds or storage organs (bulbs, rhizomes) of plants, are
abundant proteins with a dual role as storage proteins and defense proteins [230,231]. In contrast,
Man-specific lectins occurring in the nucleus or in the cytoplasmic compartment are usually
synthesized at low levels. Since lectin concentrations are higher after exposure of the plant to e.g., salt
or drought stress, or pathogen infections these stress inducible lectins are involved in plant immunity
and can help the plant to cope with environmental stresses [1,231].

5.1. Insecticidal Activity

A large group of GNA-related lectins have been investigated with respect to their insecticidal
properties. The interest in the monocot Man-specific lectins was triggered because these lectins showed
toxicity towards aphid pests responsible for serious crop damage (Table 6). The expression of GNA
and other monocot lectins in various transgenic plants conferred enhanced resistance to sap-sucking
aphid predators. In addition, these lectins often caused a higher larval mortality and retardation in
larval development. Similarly legume lectins such as Con A were investigated for their deleterious
effects on aphid growth and development. At present, the mechanism of entomotoxicity still remain
poorly understood and most probably depends on diverse, complementary mechanisms [232].

The detrimental effects of Man-specific lectins on aphids relies on their ability to recognize
and bind high-mannose glycan receptors present in the peritrophic membrane and the underlying
midgut epithelium. Receptors proteins for the monocot Man-specific lectins (ACA of Allium cepa,
Diefenbachia sequina lectin, CEA of Colocacia esculenta, AMA of Arum maculatum) have been identified
in brush border membrane vesicles of the midgut [233], and two major receptors for AMA of
40 kDa and 35 kDa, respectively, were detected in the brush border membrane vesicles of the aphids
Lipaphis erysimi and Aphis craccivora [234]. A major binding protein for Con A was identified as a
membrane-bound aminopeptidase of 130 kDa, in the pea aphid Acyrthosiphon pisum [235]. Two other
abundant membrane-associated proteins, an alanyl aminopeptidase N and a sucrase, have also been
postulated as possible receptors in Acyrthosiphon pisum, for both garlic lectins ASAI and ASAII [236].
Interestingly, a putative glycosylated receptor of 37 kDa identified in the mushroom Rhizoctonia solani
cross-reacted with the homodimeric Allium sativum leaf lectin and the interaction, which depends
on the oligomeric assembly of the lectin, was specifically inhibited by addition of mannose [237].
Binding partners of CEA, the Colocasia esculenta Man-specific lectin, were identified as ATPase and ATP
synthase in Bemisia tabaci, and ATP synthase, HSP70 and clathrin heavy chain in Lipaphis erysimi [238].
The dietary ingestion of Con A resulted in a marked decrease of the α-glucosidase and alkaline
phosphatase activity in the bird cherry-oat aphid Rhopalosiphum padi [232]. Taken together, these results
argue for multiple so-called lectin “receptors” occurring in aphid pests.

Table 6. List of Man-specific lectins investigated for their toxicity towards aphids (aphid predator
species are indicated with an asterisk *).

Lectin class Lectin Aphid Ref.

Monocot lectins

GNA (Galanthus nivalis) Aulacorthum solani [239]
Myzus persicae [240,241]

Caratovacuna lanigera [242]
Myzus persicae [243]

Rhopalosiphum maidis [244]
Chrysoperla carnea* Adalia punctata*, Coccinella

septempunctata* [245]

Sitobium avenae, Schizaphis graminum, Rhopalosiphum padi [246]

PTA (Pinellia ternata) Myzus persicae [247,248]

PPA (Pinellia pedatisecta) Sitobium avenae [249]

AAA (Allium altaicum) Aphis gossypii [100]

ACA (Allium cepa)) Myzus persicae [250]
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Table 6. Cont.

Lectin class Lectin Aphid Ref.

ASA (Allium sativum)

Myzus persicae [251]
Aphis craccivora [252]
Myzus nicotianae [253]

Acyrthosiphon pisum [236]

AHA (Arisaema heterophyllum) Myzus persicae [254]

MDA (Monstera deliciosa) Myzus persicae [255]

Orysata (Oryza sativa) Acyrthosiphon pisum, Myzus persicae [256]

Dieffenbachia sequina Aphis craccivora, Lipaphis erysimi [233]

CEA (Colocacia esculenta) Lipaphis erysimi, Aphis craccivora [233]

AMA (Arum maculatum) Aphis craccivora, Lipaphis erysimi [234]

ZGA (Zephyranthes grandiflora) Myzus nicotianae [257]

Legume lectins Con A (Canavalia ensiformis) Acyrthosiphon pisum [235]
Rhopalosiphum padi [232]

β-prism lectins HTA (Helianthus tuberosus) Myzus persicae [258]

Fungal lectins PeCl (Penicillium chrysogenum) Myzus persicae [149]

Beyond the alterations resulting from the binding of Con A to the midgut epithelial cells in
the pea aphid Acyrthosiphon pisum, e.g., the cellular swelling of epithelial cells associated with
hypersecretion [259], other systemic effects of Con A like DNA damage accompanied with an
increase in caspase 3 activity in the gut tissues, were observed in the aphid Rhopalosiphum padi
fed with a Con A-containing diet [232]. A similar entomotoxic effect accompagnied by DNA
fragmentation and caspase-3-dependent apoptosis, was observed in Acyrthosiphon pisum fed with
a diet containing the lectin SNA-I from Sambucus nigra, a chimerolectin corresponding to a type II
RIP with a carbohydrate-binding B chain displaying sialic acid-binding specificity [260]. Finally, in
addition to the direct effect of aphicidal lectins on death of gut epithelial cells, an effect on the feeding
behavior has been invoked to account for the entomotoxicity of plant lectins towards aphid pests [232].

5.2. Resistance to Abiotic (and Biotic) Stresses

Although most lectins studied at present are constitutively expressed in plant tissues, some lectins
are considered as stress inducible proteins. The discovery of Nictaba, a tobacco (Nicotiana tabacum)
lectin which is synthesized in response to a jasmonic acid (JA) treatment, and insect herbivory, and
accumulates in the cytosol and the nucleus of leaf cells [5], shed a new light on plant lectins and
allowed the development of very new concepts on the role(s) of plant lectins [4,231,261,262].

Besides Nictaba, which appears as the prototype of a group of closely related lectins [263,264],
other groups of stress inducible lectins in the nucleocytoplasmic compartment have been identified,
such as the Euonymus europaeus EUL-related lectins [170,265] and the group of mannose-binding
jacalin-related lectins [221,266]. Among the stress inducible cytoplasmic/nuclear lectins identified
so far, Nictaba belonging to the Nictaba-related lectins [267], Orysata belonging to the jacalin-related
lectins [268], and OrysaEULD1A belonging to the EUL-related lectins [269], all readily interact with
high-mannose glycan structures (Table 7). Accordingly, they participate as signaling molecules in the
plant response to stress conditions [270]. In this respect, a member of the EUL-related lectin family,
AthEULS3 is involved in abscissic acid (ABA)-induced stomatal closure [271]. Overexpression of the
Nictaba-like lectin genes GmLLL1 and GmNLL2 from soybean in Arabidopsis thaliana, was reported to
confer tolerance to Pseudomonas syringae infection, aphid (Aphis glycines) infestation and salt stress [272].
Similarly, the involvement of Nictaba homologs from Arabidopsis thaliana in the plant stress response
was recently demonstrated [273].
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Table 7. List of the stress inducible, nucleocytoplasmic lectin families identified in plants.

Lectin Families Carbohydrate-Binding Specificity

Jacalin-related lectin family High-mannose N-glycans

EUL-related lectin family Galactosides, high-mannose N-glycans

Nictaba-related lectin family Chitooligosaccharides, recognition of the (GlcNAc)2-Man3 core of
high-mannose N-glycans and complex glycans

Recent studies for lectin sequences in several complete plant genomes reported the occurrence
of chimeric proteins composed of a lectin domain with known Man-binding specificity, such as e.g.,
the GNA-like domain or legume lectin domain, linked to an intracellular kinase domain through a
transmembrane linker domain. These lectin-receptor-like kinases (LecRLK), play a role in the signaling
cascades triggered in response to biotic and abiotic stress [270].

6. Medical Applications for the Mannose-Specific Lectins

So far, medical applications of Man-specific lectins, have been developed in two domains: (1)
as inhibitors of the entry of HIV-1 into CD4+ T-lymphocytes and, (2) as anticancer drugs for the
chemotherapeutic treatment of cancers.

6.1. Mannose-Specific Lectins as Immunomodulators

Soon after the identification of high-mannose N-glycans decorating the gp120 protein of HIV-1
(Figures 11 and 12) [274], many studies focused on the use of mannose-specific lectins from bacteria,
mushrooms and plants as tools to decipher the importance of the high-mannose moiety of gp120 for the
recognition by the CD4+ T-lymphocytes as well as for preventing the virion infectivity of HIV toward
the host cells in vitro [275–280]. Two classes of mannose-specific lectins from the Vicieae tribe and the
GNA-related lectins, were particularly investigated with respect to their blocking capacity (Table 8).

Mannose-binding lectins of bacterial origin were identified as potent HIV-1-inactivating proteins
through their specific binding to the envelope glycoprotein gp120. Studies have been performed for
actinohivin [180], cyanovirin-N [281,282], MVL from Microcystis viridis [283], OAA from Oscillatoria
agardhii [284] and the lectin from Scytonema varium [285].
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N-glycoproteins decorating gp120 are colored green. O-glycans of gp41 are colored blue.
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Table 8. List of the mannose-specific lectins inhibiting HIV infection by binding to the viral gp120 envelope protein.

Lectin Class Lectin Ref.

Vicieae lectins

Con A (Canavalia ensiformis) [276,286–294]

LcA (Lens culinaris) [280]

LoLI (Lathyrus ochrus) [280]

PsA (Pisum sativum) [280,295]

Monocot lectins

CHA (Cymbidium hybrid) [280,296]

EHA (Epipactis helleborine) [280,296]

GNA (Galanthus nivalis) [280,297–302]

HHA (Hippeastrum hybrid) [280,297,302]

LOA (Listera ovata) [280,297]

NPA (Narcissus pseudonarcissus) [280,297,303]

NTA (Narcissus tazetta) [304]

Narcissus confusus, N. leonensis and N. tortifolius [124]

PCL (Polygonatum cytonema) [96,305]

Convolvulaceae Calsepa (Calystegia sepium) [280]

Urticaceae UDA (Urtica dioica) [296]

Araceae RVL (Remusatia vivipara) [91]

Musaceae BanLec (Musa acuminata) [306]

Poaceae GNAmaize (Zea mays) [307]

Asteraceae Heltuba (Helianthus tuberosus) [280]

Red algae Griffithsin (Griffithsia sp.) [139,308]

Green algae KAA (Kappaphycus alvarezii) [309]

BCA (Boodlea coacta) [143] 29 
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Figure 12. Three-dimensional structure of the gp120-gp41 tandem complexed to a CD4 molecule
(PDB code 47VP). Gp120, gp41 and CD4 are colored pink, purple, and orange/yellow, respectively.
The high-mannose N-glycan chains decorating gp120 are represented in cyan colored sticks.
The carbohydrate binding agents (red arrow) specifically recognize some of the high-mannose
N-glycans exposed at the surface of gp120, thus preventing the recognition of gp120 by the CD4
molecule of the CD4+ T lymphocytes. In fact, the association of three gp120-gp41 tandems forms the
HIV-1-envelope spike, which facilitates the HIV-1 entry. The Env spike consists of a transmembrane
trimer of gp41 associated to an extracellular trimer of gp120 offering exposed high-mannose glycans to
the CD4 recognition process.
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Investigating the surface carbohydrates of gp120 showed that resistance of cyanovirin N- and
Con A-resistant HIV-1 strains highly depends on mutations that have eliminated N-linked glycans
on gp120 [310]. In general, the number of N-glycan deletions in gp120 correlated with the level of
phenotypic resistance to cyanovirin of the mutated VIH-1A strains [311]. A similar observation was
previously reported in a series of mutant HIV-1 isolates resistant to GNA (Galanthus nivalis) and HHA
(Hippeastrum sp. hybrid) lectins, showing that the major amino acid mutations occur at several putative
N-glycosylation sites NXT and NXS, and especially, at the ultimate T or S residues [312]. Removal of
two high-mannose N-glycans in gp120 resulted in an enhanced resistance of HIV-1 to griffithsin [308].
In fact, the association of three gp120-gp41 forming the HIV1-envelope spike, will be necessary for the
recognition by CD4+ T-lymphocytes [313].

Long term exposure of HIV to cyanovirin or monocot mannose-binding lectins like GNA, HHA
and NPA, was shown to progressively result in the deletions of some N-glycan chains decorating
the envelope gp120, in an attempt of the retrovirus to diminish the drug pressure and acquire
resistance against the carbohydrate-binding agents [314–316]. In addition, the associated treatment of
mutant virus strains by 1-deoxymannojirimycin, a potent inhibitor of the α(1,2)-mannosidase, strongly
enhanced the suppressive effect of carbohydrate-binding agents on VIH-1 replication [317]. A similar
synergistic effect was also observed when combining two carbohydrate-binding agents that recognize
distinct N-glycan structures decorating the gp120 [318].

Additionaly, a 13 kDa monomeric mannose-binding lectin from edible chive (Allium tuberosum),
exhibited pronounced inhibitory activity against the HIV-1 reverse transcriptase, a key enzyme in the
replication of the HIV-1 genome [319]. However, other lectins with different carbohydrate-binding
specificities like PHA from Phaseolus vulgaris, RCA from Ricinus communis and ABA from the
mushroom Agaricus bisporus, also exhibited a similar inhibitory activity against the HIV-1 reverse
transcriptase [320].

Moreover, the bacterial carbohydrate-binding agents cyanovirin-N, griffithsin and scytovirin, also
inhibit the syncytium formation in different HIV-1 infected and uninfected cell lines by preventing the
DC-SIGN receptor-directed HIV-1 capture by monocyte-derived dendritic cells (DCs), and subsequent
transmission to CD4+ T-lymphocytes [321–324].

Other lectins with very different carbohydrate-binding specificities like the Gal/GalNAc-specific
jacalin from Artocarpus integrifolia and the GlcNAc-specific Nictaba from Nicotiana tabacum, are also
potent inhibitors for the HIV-1 infection of CD4+ T lymphocytes [325,326]. In fact, both lectins
exhibit some mannose-binding promiscuity as shown from X-ray crystallographic experiments for
jacalin [77,78], and glycan array experiments for Nictaba [267], respectively.

6.2. Mannose-Specific Lectins as Cancer Biomarkers and Anti-Cancer Drugs

The ability of mannose-specific lectins to distinguish between normal and diseased cancer
cells through the selective recognition of the altered hypermannosylation N-glycans associated to
various tumor cell transformations, has led to the application of mannose-binding lectins as potential
biomarkers for the detection and the follow up of different tumor cells. In this respect, a variety of
legume Man-specific legume lectins and GNA-like lectins were deeply investigated (Table 9).

The recognition of altered N-glycans covering the cancer cells by lectins resulted in programmed
cell death through targeting of different apoptotic and autophagic pathways. However, the effects of
plant lectins on programmed cell death of cancer cells is not limited to Man-specific lectins since, other
plant lectins with distinct carbohydrate-binding specificities, e.g., T/Tn-specific lectins, also interfere
with other altered O-glycans covering tumor cells to exert their cytotoxic effects [327].

Plant and fungal lectins affect both apoptosis and autophagy in cancer cells by modulating
diverse signaling pathways associated to various pro-apoptotic gene families including, but not
exclusively, the Bcl-2 family, caspase family, ROS-p38-p53, P73-Foxo1a-Bim apoptosis, PI3K/Akt,
ERK, BNIP3-mediated mitochondrial autophagy, Ras-Raf family and ATG family [328–330] (Table 9).
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However, depending on both the lectins and the type of targeted cancer cells, some discrepancies occur
with respect to the apoptotic and autophagic pathways leading to the programmed cell death.

Table 9. Cytotoxic effects of Man-specific lectins on cancer cells (reported during the last decade).

Lectin Cancer Cell Apoptosis Autophagy Ref.

Cabo (Canavalia bonariensis) glioma + [21]

PsA (Pisum sativum)
colorectal cancer + [331]

Erlich acites carcinoma + [332]

MOSL (Moringa oleifera)
Erlich acites carcinoma, + [333]

murine malanoma + [334]

DLasiL (Dioclea lasiocarpa)
glioma + [37]

ovarian, lung, brestbreast,
prostate carcinoma + [335]

POL (Polygonatum odoratum)

melanoma + + [336]

lung adenocarcinoma + + [337]

breast cancer + + [338]

lung cancer (non-small cells) + [339]

melanoma + [98]

murine fibrosarcoma + [340]

Hyacinthus sp. Caco-2, Hela + [341]

RVL (Remusatia vivipara) breast cancer + + [342]

ArtinM (Artocarpus heterophyllus) Jurkat T cells + + [70]

PCL (Polygonatum cyrtonema)

lung adenocarcinoma + [343]

murine fibrosarcoma + + [344]

melanoma + + [345]

melanoma + + [346]

AHA (Arisema heterophyllum) lung cancer + [347]

LcA (Lens culinaris) nasopharyngeal carcinoma + [348]

ASA (Allium sativum) oral carcinoma + [349]

Con A (Canavalia ensiformis)

breast carcinoma + [350]

leukemia + + [351]

glioblastoma + + [352]

ovarian cancer + + [353]

melanoma + + [354]

SFL (Sophora flavescens) HeLa cells + [59]

breast carcinoma + [350]

CML (Clematis montana)
HeLa, breast cancer, + [83]

hepatocellular carcinoma

ConBr (Canavalia brasiliensis)
murine melanoma + [355]

leukemia [351]

PTA (Pinellia ternata) hepatoma + [356]
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Table 9. Cont.

Lectin Cancer Cell Apoptosis Autophagy Ref.

ESA (Eucheuma serra)

osteosarcoma + [357]

mice colon adenocarcinoma + [358]

colon cancer, HeLa + [138]

OJL (Ophiopogon japonicus) murine fibrosarcoma + [96]

LNL (Liparis noversa) murine fribrosarcoma + [96]

Following to these cytotoxic effects on cancer cells, some therapeutic applications have been
considered, essentially for the Man-specific legume lectins (Con A) and the GNA-related lectins
(Polygonatum cyrtonema) [359–361]. To date, however, the use of plant lectins as targeting tools for
therapeutic applications has rarely been used [362].

7. Biomedical Perspectives for Mannose-Specific Lectins

Obviously, Man-specific lectins from plants, algae and fungi are interesting probes to target the
altered hypermannosylated N-glycan expressed at the surface of malignant cells. Our knowledge on
the fine carbohydrate-binding specificity of plant and fungal lectins revealed the extreme versatility of
the Man-specific lectins to specifically recognize discrete/subtle differences in the expression of altered
glycans by tumor cells. Depending on the discrepancies observed in both the shape and size of their
extended carbohydrate-binding site, the affinity towards high-mannose N-glycans and their chemical
substitutions such as sialylation or sulfation varies widely from one lectin to another. The ability of
Man-specific lectins to accommodate large mannosylated chains to the extended carbohydrate-binding
site via a complex network of hydrogen bonds and hydrophobic interactions, readily accounts for
such versatility. Compared to monoclonal antibodies used as standard probes for the detection of
the glycan aberrations occurring at the cancer cell surface, plant and fungal Man-specific lectins are
a complementary and equally powerful tool for the recognition of high-mannose N-glycans [362].
Besides the high-mannose N-glycan recognition, Man-specific lectins can exert cytotoxic effects on the
targeted cancer cells. They induce apoptotic and autophagic death through modulation of different
signaling pathways in cancer cells. These encouraging results suggest the potential use of carefully
selected Man-specific lectins for the treatment of cancers [361–363].

Besides their cytotoxic effects detrimental for cancer cells, Man-specific lectins have been proven
to act as valuable anti-HIV drugs in vitro and in vivo. The Man-specific lectins from plant, fungal
and bacterial origin constitute an important class of HIV entry inhibitors by virtue of their capacity to
specifically recognize and bind the oligomannoside chains decorating the evelope gp120 of HIV [363].
Moreover, a long-term exposure of HIV to plant and fungal lectins results in deletions in some of the
N-glycan chains of gp120, as an attempt of the virus to escape drug pressure, that improves the antiviral
activity of these carbohydrate-binding agents [318]. However, the therapeutic use of Man-specific
lectins still suffers from several limitations dealing with their high manufacturing costs, formulation
and potential mitogenicity, as stated in [364]. In spite of these limitations, encouraging results have
been reported using lectins via topical mucosa administration [324].

Author Contributions: A.B. and Y.B. provided the bibliographic informations and analyses. P.R. provided the
molecular docking pictures. E.J.M.V.D. and P.R. participated in the writing of the review. All authors approved
the final manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2019, 20, 254 29 of 49

Abbreviations

ABA Agaricus bisporus agglutinin
ACA Allium cepa agglutinin
AMA Arum maculatum agglutinin
ASA Allium sativum agglutinin
Asp, D Aspartic acid
Ath Arabidopsis thaliana
ATP Adenosine triphosphate
BMA Bowringia mildbraedii agglutinin
CBA Carbohydrate-binding agent
CBM Carbohydrate-binding module
CBS Carbohydrate-binding site
CEA Colocasia esculenta agglutinin
Con A Concanavalin A
CTL Centrolobium tomentosum lectin
CVN Cyanovirin N
EUL Euonymus europaeus lectin
Glu, E Glutamic acid
Gly, G Glycine
GNA Galanthus nivalis agglutinin
Heltuba Helianthus tuberosus agglutinin
HHA Hippeastrum hybdrid agglutinin
HIV Human Immunodeficiency virus
HSP Heat shock protein
Leu, L Leucine
LcA Lens culinaris agglutinin
LoL Lathyrus ochrus lectin
MPA Maclura pomifera agglutinin
MVL Microcystis viridis lectin
OAA Oscillatoria agardhii agglutinin
PAL Pterocarpus angolensis lectin
PDB Protein data bank
PHA Phytohemagglutinin
Phe, F Phenylalanine
PNA Peanut agglutinin
PsA Pisum sativum agglutinin
ROS Reactive oxygen species
RIP Ribosome inactivating protein
SBA Soybean agglutinin
SNA Sambucus nigra agglutinin
Trp, W Tryptophane
Tyr, Y Tyrosine
Val, V Valine
VfA Vicia faba agglutinin

References

1. Van Damme, E.J.M.; Rougé, P.; Peumans, W.J. Plant lectins. In Carbohydrate-Protein Interactions: Plant Lectins;
Kamerling, J.P., Boons, G.J., Lee, Y.C., Suzuki, A., Taniguchi, N., Voragen, A.G.I., Eds.; Elsevier: New York,
NY, USA, 2007; pp. 564–599.

2. Wu, A.M.; Song, S.C.; Tsai, M.S.; Herp, A. A guide to the carbohydrate specificities of applied lectins-2.
Adv. Exp. Med. Biol. 2001, 491, 551–585.



Int. J. Mol. Sci. 2019, 20, 254 30 of 49

3. De Schutter, K.; Van Damme, E.J.M. Protein-carbohydrate interactions as part of plant defense and animal
immunity. Molecules 2015, 20, 9029–9053. [CrossRef] [PubMed]

4. Van Damme, E.J.M.; Lannoo, N.; Fouquaert, E.; Peumans, W.J. The identification of inducible cytoplasmic/
nuclear carbohydrate-binding proteins urges to develop novel concepts about the role of plant lectins.
Glycoconj. J. 2004, 20, 449–460. [CrossRef] [PubMed]

5. Chen, Y.; Peumans, W.J.; Hause, B.; Bras, J.; Kumar, M.; Proost, P.; Barre, A.; Rougé, P.; Van Damme, E.J.M.
Jasmonic acid methyl ester induces the synthesis of a cytoplasmic/nuclear chito-oligosaccharide binding
lectin in tobacco leaves. FASEB J. 2002, 16, 905–907. [CrossRef] [PubMed]

6. Van Damme, E.J.M.; Peumans, W.J.; Barre, A.; Rougé, P. Plant lectins: A composite of several distinct families
of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci. 1998, 17,
575–692. [CrossRef]

7. Agrawal, B.B.; Goldstein, I.J. Specific binding of concanavalin A to cross-linked dextran gels. Biochem. J.
1965, 96, 23C–25C. [CrossRef]

8. Singh, R.S.; Bhari, R.; Kaur, H.P. Mushroom lectins: Current status and future perspectives.
Crit. Rev. Biotechnol. 2010, 30, 99–126. [CrossRef]

9. Okuyama, S.; Nakamura-Tsuruta, S.; Tateno, H.; Hirabayashi, J.; Matsubara, K.; Hori, K. Strict binding
specificity of small-sized lectins from the red alga Hypnea japonica for core (α1-6) fucosylated N-glycans.
Biosci. Biotechnol. Biochem. 2009, 73, 912–920. [CrossRef]

10. Debray, H.; Rougé, P. The fine sugar specificity of the Lathyrus ochrus seed lectin and isolectins. FEBS Lett.
1984, 176, 120–124. [CrossRef]

11. Tateno, H.; Nakamura-Tsuruta, S.; Hirabayashi, J. Comparative analysis of core-fucose-binding lectins
from Lens culinaris and Pisum sativum using frontal affinity chromatography. Glycobiology 2009, 19, 527–536.
[CrossRef]

12. Tateno, H.; Winter, H.C.; Petryniak, J.; Goldstein, I.J. Purification, characterization, molecular cloning, and
expression of novel members of jacalin-related lectins from rhizomes of the true fern Phlebodium aureum (L.)
J. Smith (Polypodiaceae). J. Biol. Chem. 2003, 278, 10891–10899. [CrossRef] [PubMed]

13. Datta, P.K.; Figueroa, M.O.R.; Lajolo, F.M. Purification and characterization of two major lectins from
Araucaria brasiliensis syn Araucaria angustifolia seeds (pinhao). Plant Physiol. 1991, 97, 856–862. [CrossRef]

14. Miyakawa, T.; Hatano, K.; Miyauchi, Y.; Suwa, Y.; Sawano, Y.; Tanokura, M. A secreted protein with
plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity.
Plant Physiol. 2014, 166, 766–778. [CrossRef] [PubMed]

15. Yagi, F.; Iwaya, T.; Haraguchi, T.; Goldstein, I.J. The lectin from leaves of Japanese cycad, Cycas revoluta
Thunb. (Gymnosperm) is a member of the jacalin-related family. Eur. J. Biochem. 2002, 269, 4335–4341.
[CrossRef] [PubMed]

16. Shimokawa, M.; Haraguchi, T.; Minami, Y.; Yagi, F.; Hiemori, K.; Tateno, H.; Hirabayashi, J. Two carbohydrate
recognizing domains from Cycas revoluta leaf lectin show the distinct sugar-binding specificity-A unique
mannooligosaccharide recognition by N-terminal domain. J. Biochem. 2016, 160, 27–35. [CrossRef]

17. Animashaun, T.; Hughes, R.C. Bowringia milbraedii agglutinin. Specificity of binding to early processing
intermediates of asparagine-linked oligosaccharide and use as a marker of endoplasmic reticulum
glycoproteins. J. Biol. Chem. 1989, 264, 4657–4663. [PubMed]

18. Siddiqui, S.; Hasan, S.; Salahuddin, A. Isolation and characterization of Cajanus cajan lectin.
Arch. Biochem. Biophys. 1995, 319, 426–431. [CrossRef]

19. Souza Teixeira, C.; da Silva, H.C.; de Moura, T.R.; Pereira-Júnior, F.N.; do Nascimento, K.S.; Nagano, C.S.;
Sampaio, A.H.; Delatorre, P.; Rocha, B.A.; Cavada, B.S. Crystal structure of the lectin of Camptosema
pedicellatum: Implication of a conservative substitution at the hydrophobic subsite. J. Biochem. 2012, 152,
87–98. [CrossRef]

20. Bezerra, G.A.; Viertlmayr, R.; Moura, T.R.; Delatorre, P.; Rocha, B.A.; do Nascimento, K.S.; Figueiredo, J.G.;
Bezerra, I.G.; Teixeira, C.S.; Simões, R.C.; et al. Structural studies of an anti-inflammatory lectin from
Canavalia boliviana seeds in complex with dimannosides. PLoS ONE 2014, 9, e97015. [CrossRef]

21. Cavada, B.S.; Silva, M.T.L.; Osterne, V.J.S.; Pinto-Junior, V.R.; Nascimento, A.P.M.; Wolin, I.A.V.; Heinrich, I.A.;
Nobre, C.A.S.; Moreira, C.G.; Lossio, C.F.; et al. Canavalia bonariensis lectin: Molecular bases of
glycoconjugates interaction and antiglioma potential. Int. J. Biol. Macromol. 2018, 106, 369–378. [CrossRef]

http://dx.doi.org/10.3390/molecules20059029
http://www.ncbi.nlm.nih.gov/pubmed/25996210
http://dx.doi.org/10.1023/B:GLYC.0000038291.67527.a5
http://www.ncbi.nlm.nih.gov/pubmed/15316278
http://dx.doi.org/10.1096/fj.01-0598fje
http://www.ncbi.nlm.nih.gov/pubmed/12039875
http://dx.doi.org/10.1016/S0735-2689(98)00365-7
http://dx.doi.org/10.1042/bj0960023C
http://dx.doi.org/10.3109/07388550903365048
http://dx.doi.org/10.1271/bbb.80881
http://dx.doi.org/10.1016/0014-5793(84)80924-2
http://dx.doi.org/10.1093/glycob/cwp016
http://dx.doi.org/10.1074/jbc.M211840200
http://www.ncbi.nlm.nih.gov/pubmed/12538584
http://dx.doi.org/10.1104/pp.97.3.856
http://dx.doi.org/10.1104/pp.114.242636
http://www.ncbi.nlm.nih.gov/pubmed/25139159
http://dx.doi.org/10.1046/j.1432-1033.2002.03127.x
http://www.ncbi.nlm.nih.gov/pubmed/12199712
http://dx.doi.org/10.1093/jb/mvw011
http://www.ncbi.nlm.nih.gov/pubmed/2925660
http://dx.doi.org/10.1006/abbi.1995.1313
http://dx.doi.org/10.1093/jb/mvs047
http://dx.doi.org/10.1371/journal.pone.0097015
http://dx.doi.org/10.1016/j.ijbiomac.2017.08.023


Int. J. Mol. Sci. 2019, 20, 254 31 of 49

22. Sanz-Aparicio, J.; Hermoso, J.; Grangeiro, T.B.; Calvete, J.J.; Cavada, B.S. The crystal structure of Canavalia
brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological
properties from Concanavalin A. FEBS Lett. 1997, 405, 114–118. [CrossRef]

23. Agrawal, B.B.; Goldstein, I.J. Physical and chemical characterization of concanavalin A, the hemagglutinin
from jack bean (Canavalia ensiformis). Bhiochim. Biophys. Acta 1967, 133, 376–379. [CrossRef]

24. Kojima, K.; Ogawa, H.; Seno, N.; Matsumoto, I. Purification and characterization of Canavalia gladiata
agglutinin. Carbohydr. Res. 1991, 213, 275–282. [CrossRef]

25. Barroso-Neto, I.L.; Simões, R.C.; Rocha, B.A.; Bezerra, M.J.; Pereira-Junior, F.N.; Silva Osterne, V.J.;
Nacscimento, K.S.; Nagano, C.S.; Delatorre, P.; Pereira, M.G.; et al. Vasorelaxant activity of Canavalia
grandiflora seed lectin: A structural analysis. Arch. Biochem. Biophys. 2014, 543, 31–39. [CrossRef]

26. Perez, G.; Perez, C.; Sousa-Cavada, B.; Moreira, R.; Richardson, M. Comparison of the amino acid sequence
of the lectins from seeds of Dioclea lehmanni and Canavalia maritima. Phytochemistry 1991, 30, 2619–2621.
[CrossRef]

27. Osterne, V.J.S.; Silva-Filho, J.C.; Santiago, M.Q.; Pinto-Junior, V.R.; Almeida, A.C.; Barreto, A.A.G.C.;
Wolin, I.A.V.; Nascimento, A.P.M.; Amorim, R.M.F.; Rocha, B.A.M.; et al. Structural characterization of a
lectin from Canavalia virosa seeds with inflammatory and cytotoxic activities. Int. J. Biol. Macromol. 2017, 94,
271–282. [CrossRef]

28. Vasconcelos, M.A.; Alves, A.C.; Carneiro, R.F.; Dias, A.H.; Martins, F.W.; Cajazeiras, J.B.; Nagano, C.S.;
Teixeira, E.H.; Nascimento, K.S.; Cavada, B.S. Purification and primary structure of a novel mannose-specific
lectin from Centrolobium microchaete Mart seeds. Int. J. Biol. Macromol. 2015, 81, 600–607. [CrossRef]

29. Almeida, A.C.; Osterne, V.J.; Santiago, M.Q.; Pinto-Junior, V.R.; Silva-Filho, J.C.; Lossio, C.F.; Nascimento, F.L.;
Almeida, R.P.; Teixeira, C.S.; Leal, R.B.; et al. Structural analysis of Centrolobium tomentosum seed lectin with
inflammatory activity. Arch. Biochem. Biophys. 2016, 596, 73–83. [CrossRef]

30. Van Damme, E.J.M.; Barre, A.; Bemer, V.; Rougé, P.; Van Leuven, F.; Peumans, W.J. A lectin and a lectin-relared
protein are the two most prominent proteins in the bark of yellow wood (Cladrastis lutea). Plant Mol. Biol.
1995, 29, 579–598. [CrossRef]

31. Del Sol, F.G.; Cavada, B.S.; Calvete, J.J. Crystal structures of floribunda seed lectin at acidic and basic pHs.
Insights into the structural basis of the pH-dependent dimer-tetramer transition. J. Struct. Biol. 2007, 158,
1–9. [CrossRef]

32. Varejão, N.; Correia, M.T.; Foguel, D. Chqaracterization of the unfolding process of the tetrameric and
dimeric forms of Cratylia mollis seed lectin (CRAMOLL1): Effects of natural fragmentation on protein
stability. Biochemistry 2011, 50, 7330–7340. [CrossRef] [PubMed]

33. Rocha, B.A.; Delatorre, P.; Oliveira, T.M.; Benevides, R.G.; Pires, A.F.; Sousa, A.A.; Souza, L.A.; Assreuy, A.M.;
Debray, H.; de Azevedo, X.W.F.; et al. Structural basis for noth pro- and anti-inflammatory response induced
by mannose-specific legume lectin from Cymbosema roseum. Biochimie 2011, 93, 806–816. [CrossRef] [PubMed]

34. Moreira, R.A.; Barros, A.C.; Stewart, J.C.; Pusztai, A. Isolation and characterization of a lectin from the seeds
of Dioclea grandiflora (Mart.). Planta 1983, 158, 63–69. [CrossRef]

35. Rozwarski, D.A.; Swami, B.M.; Brewer, C.F.; Sacchetini, J.C. Crystal structure of the lectin from Dioclea
grandiflora complexed with core trimannoside of asparagine-linked carbohydrates. J. Biol. Chem. 1998, 273,
32818–32825. [CrossRef] [PubMed]

36. Wah, D.A.; Romero, A.; Gallego del Sol, F.; Cavada, B.S.; Ramos, M.V.; Grangeiro, T.B.; Sampaio, A.H.;
Calvete, J.J. Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel
manganese-binding site and structural basis of dimer-tetramer association. J. Mol. Biol. 2001, 310, 885–894.
[CrossRef] [PubMed]

37. Nascimento, K.S.; Santiago, M.Q.; Pinto-Junior, V.R.; Osterne, V.J.S.; Martins, F.W.V.; Nascimento, A.P.M.;
Wolin, I.A.V.; Heinrich, I.A.; Martins, M.G.Q.; Silva, M.T.L.; et al. Structural analysis of Dioclea lasiocarpa
lectin: A C6 cells apoptosis-inducing protein. Int. J. Biochem. Cell Biol. 2017, 92, 79–89. [CrossRef] [PubMed]

38. Leal, R.B.; Pinto-Junior, V.R.; Osterne, V.J.S.; Wolin, I.A.V.; Nascimento, A.P.M.; Neco, A.H.B.; Araripe, D.A.;
Welter, P.G.; Neto, C.C.; Correia, J.L.A.; et al. Crystal structure of DlyL, a mannose-specific lectin from Dioclea
lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int. J. Biol. Macromol.
2018, 114, 64–76. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0014-5793(97)00137-3
http://dx.doi.org/10.1016/0005-2795(67)90081-5
http://dx.doi.org/10.1016/S0008-6215(00)90614-1
http://dx.doi.org/10.1016/j.abb.2013.12.006
http://dx.doi.org/10.1016/0031-9422(91)85111-C
http://dx.doi.org/10.1016/j.ijbiomac.2016.10.020
http://dx.doi.org/10.1016/j.ijbiomac.2015.08.059
http://dx.doi.org/10.1016/j.abb.2016.03.001
http://dx.doi.org/10.1007/BF00020986
http://dx.doi.org/10.1016/j.jsb.2006.08.014
http://dx.doi.org/10.1021/bi200320x
http://www.ncbi.nlm.nih.gov/pubmed/21790141
http://dx.doi.org/10.1016/j.biochi.2011.01.006
http://www.ncbi.nlm.nih.gov/pubmed/21277932
http://dx.doi.org/10.1007/BF00395404
http://dx.doi.org/10.1074/jbc.273.49.32818
http://www.ncbi.nlm.nih.gov/pubmed/9830028
http://dx.doi.org/10.1006/jmbi.2001.4814
http://www.ncbi.nlm.nih.gov/pubmed/11453695
http://dx.doi.org/10.1016/j.biocel.2017.09.014
http://www.ncbi.nlm.nih.gov/pubmed/28939357
http://dx.doi.org/10.1016/j.ijbiomac.2018.03.080
http://www.ncbi.nlm.nih.gov/pubmed/29559315


Int. J. Mol. Sci. 2019, 20, 254 32 of 49

39. Pinto-Junior, V.R.; Osterne, V.J.; Santiago, M.Q.; Correia, J.L.; Pereira-Junior, F.N.; Leal, R.B.; Pereira, M.G.;
Chicas, L.S.; Nagano, C.S.; Rocha, B.A.; et al. Structural studies of a vasorelaxant lectin from Dioclea reflexa
Hook seeds: Crystal structure, molecular docking and dynamics. Int. J. Biol. Macromol. 2017, 98, 12–23.
[CrossRef] [PubMed]

40. De Oliveira, T.M.; Delatorre, P.; da Rocha, B.A.; de Souza, E.P.; Nascimento, K.S.; Bezerra, G.A.; Moura, T.R.;
Benevides, R.G.; Bezerra, E.H.; Moreno, F.B.; et al. Crystal structure of Dioclea rostrata lectin: Insights into
understanding the pH-dependent dimer-tetramer equilibrium and the structural basis for carbohydrate
recognition in Diocleinae lectins. J. Struct. Biol. 2008, 164, 177–182. [CrossRef]

41. Barroso-Neto, I.L.; Delatorre, P.; Teixeira, C.S.; Correia, J.L.; Cajazeiras, J.B.; Pereira, R.I.; Nascimento, K.S.;
Laranjeira, E.P.; Pires, A.F.; Assreuy, A.M.; et al. Structural analysis of a Dioclea sclerocarpa lectin: Study on
the vasorelaxant properties of Dioclea lectins. Int. J. Biol. Macromol. 2016, 82, 464–470. [CrossRef]

42. Bezerra, M.J.; Rodrigues, N.V.; Pires Ade, F.; Bezerra, G.A.; Nobre, C.B.; Alencar, K.L.; Soares, P.M.;
do Nascimento, K.S.; Nagano, C.S.; Martins, J.L.; et al. Crystal structure of Dioclea violacea lectin and a
comparative study of vasorelaxant properties with Dioclea rostrata lectin. Int. J. Biochem. Cell Biol. 2013, 45,
807–815. [CrossRef] [PubMed]

43. Batista da Nóbrega, R.; Rocha, B.A.; Gadelha, C.A.; Santi-Gadelha, T.; Pires, A.F.; Assreuy, A.M.;
Nascimento, K.S.; Nagano, C.S.; Sampaio, A.H.; Cavada, B.S.; et al. Structure of Dioclea virgata lectin:
Relations between carbohydrate binding site and nitric oxide production. Biochimie 2012, 94, 900–906.
[CrossRef] [PubMed]

44. Rangel, T.B.; Rocha, B.A.; Bezerra, G.A.; Assreuy, A.M.; Pires Ade, F.; do Nascimento, A.S.; Bezerra, M.J.; do
Nascimento, K.S.; Nagano, C.S.; Sampaio, A.H.; et al. Crystal structure of a pro-inflammatory lectin from the
seeds of Dioclea wilsonii Standl. Biochimie 2012, 94, 525–532. [CrossRef] [PubMed]

45. Cavada, B.S.; Richardson, M.; Yarwood, A.; Père, D.; Rougé, P. The amino acid sequences of the α subunits
of the lectins from Lathyrus cicera, L. aphaca and L. articulatus. Phytochemistry 1986, 25, 115–118. [CrossRef]

46. Yarwood, A.; Richardson, M.; Cavada, B.S.; Père, D.; Rougé, P. The amino acid sequences of the α subunits
of the lectins from the seeds of Lathyrus hirsutus and Lathyrus tingitanus. Phytochemistry 1986, 25, 2109–2112.
[CrossRef]

47. Yarwood, A.; Richardson, M.; Morphet, B.; Westby, M.; Père, D.; Rougé, P. The amino acid sequences of two
atypical single-chain Vicieae isolectins from seeds of Lathyrus nissolia L. Phytochemistry 1988, 27, 1719–1721.
[CrossRef]

48. Bourne, Y.; Abergel, C.; Cambillau, C.; Frey, M.; Rougé, P.; Fontecilla-Camps, J.C. X-ray crystal structure
determination and refinement at 1.9 Å resolution of isolectin I from the seeds of Lathyrus ochrus. J. Mol. Biol.
1990, 214, 571–584. [CrossRef]

49. Kolberg, J. Isolation and partial characterization of a mitogenic lectin from Lathyrus odoratus seeds. Acta
Pathol. Microbiol. Scand. C 1978, 86C, 99–104. [CrossRef]

50. Sletten, K.; Kolberg, J. The primary structure of the α chain of a mitogenic lectin from the seeds of Lathyrus
sativus. Hoppe Seylers Z. Physiol. Chem. 1983, 364, 1047–1051. [CrossRef]

51. Richardson, M.; Yarwood, A.; Rougé, P. The amino acid sequence of an atypical single-chain lectin from
seeds of Lathyrus sphaericus. FEBS Lett. 1987, 216, 145–150. [CrossRef]

52. Tichá, M.; Zeineddine, I.; Kocourek, J. Studies on lectins. XLVIII. Isolation and characterization of lectins from
the seeds of Lathyrus odoratus L. and Lathyrus silvestris L. Acta Biol. Med. Ger. 1980, 39, 649–655. [PubMed]

53. Foriers, A.; Van Driessche, E.; De Neve, R.; Kanarek, L.; Strosberg, A.D. The subunit structure and N-terminal
sequences of the α- and β-subunits of the lentil lectin (Lens culinaris). FEBS Lett. 1977, 75, 237–240. [CrossRef]

54. Gao, S.; An, J.; Wu, C.F.; Gu, Y.; Chen, F.; Yu, Y.; Wu, Q.Q.; Bao, J.K. Effect of amino acid residue and
oligosaccharide chain chemical modifications on spectral and hemagglutinating activity of Millettia dielsiana
Harms. ex Diels. lectin. Acta Biochim. Biophys. Sin. (Shangai) 2005, 37, 47–54. [CrossRef]

55. Young, N.M.; Williams, R.E.; Roy, C.; Yaguchi, M. Structural comparison of the lectin from sainfoin
(Onobrychis viciifolia) with concanavalin A and other D-mannose specific lectins. Can. J. Biochem. 1982,
60, 933–941. [CrossRef]

56. Cavada, B.S.; da Silva, L.I.; Ramos, M.V.; Galvani, F.R.; Grangeiro, T.B.; Leite, K.B.; Assreuy, A.M.;
Cajazeiras, J.B.; Calvete, J.J. Seed lectin from Pisum arvense: Isolation, biochemical characterization and amino
acid sequence. Protein Pept. Lett. 2003, 10, 607–617. [CrossRef]

http://dx.doi.org/10.1016/j.ijbiomac.2017.01.092
http://www.ncbi.nlm.nih.gov/pubmed/28130130
http://dx.doi.org/10.1016/j.jsb.2008.05.012
http://dx.doi.org/10.1016/j.ijbiomac.2015.10.052
http://dx.doi.org/10.1016/j.biocel.2013.01.012
http://www.ncbi.nlm.nih.gov/pubmed/23353644
http://dx.doi.org/10.1016/j.biochi.2011.12.009
http://www.ncbi.nlm.nih.gov/pubmed/22198239
http://dx.doi.org/10.1016/j.biochi.2011.09.001
http://www.ncbi.nlm.nih.gov/pubmed/21924319
http://dx.doi.org/10.1016/S0031-9422(00)94513-8
http://dx.doi.org/10.1016/0031-9422(86)80074-7
http://dx.doi.org/10.1016/0031-9422(88)80431-X
http://dx.doi.org/10.1016/0022-2836(90)90199-V
http://dx.doi.org/10.1111/j.1699-0463.1978.tb02565.x
http://dx.doi.org/10.1515/bchm2.1983.364.2.1047
http://dx.doi.org/10.1016/0014-5793(87)80773-1
http://www.ncbi.nlm.nih.gov/pubmed/7456927
http://dx.doi.org/10.1016/0014-5793(77)80094-X
http://dx.doi.org/10.1093/abbs/37.1.47
http://dx.doi.org/10.1139/o82-120
http://dx.doi.org/10.2174/0929866033478591


Int. J. Mol. Sci. 2019, 20, 254 33 of 49

57. Einspahr, H.; Pareks, E.H.; Suguna, K.; Subramanian, E.; Suddath, F.L. The crystal structure of pea lectin at
3.0-Å resolution. J. Biol. Chem. 1986, 261, 16518–16527.

58. Loris, R.; Imberty, A.; Beeckmans, S.; Van Driessche, E.; Read, J.S.; Bouckaert, J.; De Greve, H.; Buts, L.;
Wyns, L. Crystal structure of Pterocarpus angolensis lectin in complex with glucose, sucrose, and turanose.
J. Biol. Chem. 2003, 278, 16297–16303. [CrossRef]

59. Liu, Z.; Liu, B.; Zhang, Z.T.; Zhou, T.T.; Bian, H.J.; Min, M.W.; Liu, Y.H.; Chen, J.; Bao, J.K. A mannose-binding
lectin from Sophora flavescens induces apoptosis in HeLa cells. Phytomedicine 2008, 15, 867–875. [CrossRef]

60. Naeem, A.; Ahmad, E.; Ashraf, M.T.; Khan, R.H. Purification and characterization of mannose/glucose-
specific lectin from seeds of Trigonella foenumgraecum. Biochemistry (Mosc) 2007, 72, 44–48. [CrossRef]

61. Baumann, C.M.; Strosberg, A.D.; Rüdiger, H. Purification and characterization of a mannose/glucose-specific
lectin from Vicia cracca. Eur. J. Biochem. 1982, 122, 105–110. [CrossRef]

62. Fornstedt, N.; Porath, J. Characterization studies on a new lectin found in seeds of Vicia ervilia. FEBS Lett.
1975, 57, 187–191. [CrossRef]

63. Reeke, G.N., Jr.; Becker, J.W. Three-dimensional structure of favin: Saccharide binding-cyclic permutation in
leguminous lectins. Science 1986, 234, 1108–1111. [CrossRef] [PubMed]

64. Gebauer, G.; Schiltz, E.; Rüdiger, H. The amino-acid sequence of the alpha subunit of the mitogenic lectin
from Vicia sativa. Eur. J. Biochem. 1981, 113, 319–325. [CrossRef] [PubMed]

65. Silva, H.C.; Bari, A.U.; Rocha, B.A.; Nascimento, K.S.; Ponte, E.L.; Pires, A.F.; Delatorre, P.; Teixeira, E.H.;
Debray, H.; Assreuy, A.M.; et al. Purification and primary structure of a mannose/glucose-binding lectin
from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties. J. Mol. Recognit.
2013, 26, 470–478. [CrossRef] [PubMed]

66. Mann, K.; Farias, C.M.; Del Sol, F.G.; Santos, C.F.; Grangeiro, T.B.; Nagano, C.S.; Cavada, B.S.; Calvete, J.J. The
amino acid sequence of the glucose/mannose-specific lectin isolated from Parkia platycephala seeds reveals
three tandemly arranged jacalin-related domains. Eur. J. Biochem. 2001, 268, 4414–4422. [CrossRef] [PubMed]

67. Cavada, B.S.; Araripe, D.A.; Silva, I.B.; Pinto-Junior, V.R.; Osterne, V.J.S.; Neco, A.H.B.; Laranjeira, E.P.P.;
Lossio, C.F.; Correia, J.L.A.; Pires, A.F.; et al. Structural studies and nociceptive activity of a native lectin
from Platypodium elegans seeds (nPELa). Int. J. Biol. Macromol. 2018, 107, 236–246. [CrossRef] [PubMed]

68. Pereira-Junior, F.N.; Silva, H.C.; Freitas, B.T.; Rocha, B.A.; Nascimento, K.S.; Nagano, C.S.; Leal, R.B.;
Sampaio, A.H.; Cavada, B.S. Purification and characterization of a mannose/N-acetyl-D-glucosamine-specific
lectin from the seeds of Platymiscium floribundum Vogel. J. Mol. Recognit. 2012, 25, 443–449. [CrossRef]
[PubMed]

69. Nomura, K.; Ashida, H.; Uemura, N.; Kushibe, S.; Ozaki, T.; Yoshida, M. Purification and characterization of
a mannose/glucose-specific lectin from Castanea crenata. Phytochemistry 1998, 49, 667–673. [CrossRef]

70. Da Silva, T.A.; Oliveira-Brito, P.K.M.; Gonçalves, T.E.; Vendruscolo, P.E.; Roque-Barreira, M.C. ArtinM
mediates murine T cell activation and induces cell death in Jurkat human leukemic T cells. Int. J. Mol. Sci.
2017, 18, 1400. [CrossRef]

71. Pereira-da-Silva, G.; Roque-Barreira, M.C.; Van Damme, E.J. ArtiM: A rational substitution for the names
artocarpin and KM+. Immunol. Lett. 2008, 119, 114–115. [CrossRef]

72. de Sousa, F.D.; da Silva, B.B.; Furtado, G.P.; Carneiro, I.S.; Lobo, M.D.P.; Guan, Y.; Guo, J.; Coker, A.R.;
Lourenzoni, M.R.; Guedes, M.I.F.; et al. Frutapin, a lectin from Artocarpus incisa (breadfruit): Cloning,
expression and molecular insights. Biosci. Rep. 2017, 37. [CrossRef] [PubMed]

73. Gabrielsen, M.; Abdul-Rahman, P.S.; Isaacs, N.W.; Hashim, O.H.; Copgdell, R.J. Crystallization and initial
X-ray diffraction analysis of a mannose-binding lectin from champedak. Acta Crystallogr. Sect. F Struct. Biol.
Cryst. Commun. 2010, 66, 592–594. [CrossRef] [PubMed]

74. Gabrielsen, M.; Abdul-Rahman, P.S.; Othman, S.; Hashim, O.H.; Cogdell, R.J. Structures and binding
specificity of galactose- and mannose-binding lectins from champedak: Differences from jacfruit lectins. Acta
Crystallogr. F Struct. Biol. Commun. 2014, 70, 709–716. [CrossRef]

75. Rosa, J.C.; De Oliveira, P.S.; Garratt, R.; Beltramini, L.; Resing, K.; Roque-Barreira, M.C.; Greene, L.J. KM+,
a mannose-binding lectin from Artocarpus integrifolia: Amino acid sequence, predicted tertiary structure,
carbohydrate recognition, and analysis of the β-prism fold. Protein Sci. 1999, 8, 13–24. [CrossRef] [PubMed]

76. Misquith, S.; Rani, P.G.; Surolia, A. Carbohydrate binding specificity of the B-cell maturation mitogen from
Artocarpus integrifolia seeds. J. Biol. Chem. 1994, 269, 30393–30401. [PubMed]

http://dx.doi.org/10.1074/jbc.M211148200
http://dx.doi.org/10.1016/j.phymed.2008.02.025
http://dx.doi.org/10.1134/S0006297907010051
http://dx.doi.org/10.1111/j.1432-1033.1982.tb05854.x
http://dx.doi.org/10.1016/0014-5793(75)80713-7
http://dx.doi.org/10.1126/science.3775378
http://www.ncbi.nlm.nih.gov/pubmed/3775378
http://dx.doi.org/10.1111/j.1432-1033.1981.tb05069.x
http://www.ncbi.nlm.nih.gov/pubmed/7202414
http://dx.doi.org/10.1002/jmr.2289
http://www.ncbi.nlm.nih.gov/pubmed/23996489
http://dx.doi.org/10.1046/j.1432-1327.2001.02368.x
http://www.ncbi.nlm.nih.gov/pubmed/11502201
http://dx.doi.org/10.1016/j.ijbiomac.2017.08.174
http://www.ncbi.nlm.nih.gov/pubmed/28867234
http://dx.doi.org/10.1002/jmr.2207
http://www.ncbi.nlm.nih.gov/pubmed/22811069
http://dx.doi.org/10.1016/S0031-9422(97)00924-2
http://dx.doi.org/10.3390/ijms18071400
http://dx.doi.org/10.1016/j.imlet.2008.06.002
http://dx.doi.org/10.1042/BSR20170969
http://www.ncbi.nlm.nih.gov/pubmed/28684550
http://dx.doi.org/10.1107/S1744309110011760
http://www.ncbi.nlm.nih.gov/pubmed/20445267
http://dx.doi.org/10.1107/S2053230X14008966
http://dx.doi.org/10.1110/ps.8.1.13
http://www.ncbi.nlm.nih.gov/pubmed/10210179
http://www.ncbi.nlm.nih.gov/pubmed/7982953


Int. J. Mol. Sci. 2019, 20, 254 34 of 49

77. Bourne, Y.; Houlès-Astoul, C.; Zamboni, V.; Peumans, W.J.; Menu-Bouaouiche, L.; Van Damme, E.J.M.;
Barre, A.; Rougé, P. Structural basios for the unusual carbohydrate-binding specificity of jacalin towards
galactose and mannose. Biochem. J. 2002, 364, 173–180. [CrossRef] [PubMed]

78. Jeyaprakash, A.A.; Jayashree, G.; Mahanta, S.K.; Swaminathan, C.P.; Sekar, K.; Surolia, A.; Vijayan, M.
Structural basis for the energetics of jacalin-sugar interactions: Promiscuity versus specificity. J. Mol. Biol.
2005, 347, 181–188. [CrossRef] [PubMed]

79. Chjowdhury, S.; Ahmed, H.; Chatterjee, B.P. Chemical modificatrion studies of Artocarpus lakoocha lectin
artocarpin. Biochimie 1991, 73, 563–571. [CrossRef]

80. Van Damme, E.J.; Hause, B.; Hu, J.; Barre, A.; Rougé, P.; Proost, P.; Peumans, W.J. Two distinct jacalin-related
lectins with a different specificity and subcellular location are major vegetative storage proteins in the bark
of the black mulberry tree. Plant Physiol. 2002, 130, 757–769. [CrossRef]

81. Bourne, Y.; Zamboni, V.; Barre, A.; Peumans, W.J.; Van Damme, E.J.; Rougé, P. Helianthus tuberosus lectin
reveals a widespread scaffold for mannose-binding lectins. Structure 1999, 7, 1473–1482. [CrossRef]

82. Beneteau, J.; Renard, D.; Marché, L.; Douville, E.; Lavenant, L.; Rahbé, Y.; Dupont, D.; Vilaine, F.; Dinant, S.
Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in
Arabidopsis. Plant Physiol. 2010, 153, 1345–1361. [CrossRef]

83. Peng, H.; Lv, H.; Wang, Y.; Liu, Y.H.; Li, C.Y.; Meng, L.; Chen, F.; Bao, J.K. Clematis montana lectin, a novel
mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities.
Peptides 2009, 30, 1805–1815. [CrossRef] [PubMed]

84. Koike, T.; Titani, K.; Suzuki, M.; Beppu, H.; Kuzuya, H.; Maruta, K.; Shimpo, K.; Fujita, K. The complete
amino acid sequence of a mannose-binding lectin from "Kidachi Aloe" (Aloe arborescens Miller var. natalensis
Berger). Biochem. Biophys. Res. Commun. 1995, 214, 163–170. [CrossRef] [PubMed]

85. Lin, J.; Zhou, X.; Pang, Y.; Gao, H.; Fei, J.; Shen, G.A.; Wang, J.; Li, X.; Sun, X.; Tang, K. Cloning and
characterization of an agglutinin gene from Arisaema lobatum. Biosci. Rep. 2005, 25, 345–362. [CrossRef]
[PubMed]

86. Zhao, X.; Yao, J.; Liao, Z.; Zhang, H.; Chen, F.; Wang, L.; Lu, Y.; Sun, X.; Yu, S.; Tang, K. Molecular cloning of
a novel mannose-binding lectin gene from Arisaema heterophyllum. Plant Sci. 2003, 165, 55–60. [CrossRef]

87. Van Damme, E.J.; Goossens, K.; Smeets, K.; Van Leuven, F.; Verhaert, P.; Peumans, W.J. The major tuber
storage protein of araceae species is a lectin. Characterization and molecular cloning of the lectin from Arum
maculatum L. Plant Physiol. 1995, 107, 1147–1158. [CrossRef]

88. Pereira, P.R.; Winter, H.C.; Vericimo, M.A.; Meagher, J.L.; Stckey, J.A.; Goldstein, I.J.; Paschoalin, V.M.;
Silva, J.T. Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from
Colocasia esculenta. Biochim. Biophys. Acta 2015, 1854, 20–30. [CrossRef]

89. Nakagawa, Y.; Sakamoto, H.; Tateno, H.; Hirabayashi, J.; Oguri, S. Purification, characterization, and
molecular cloning of lectin from winter buds of Lysichiton camtschatcensis (L.) Schott. Biosci. Biotechnol.
Biochem. 2012, 76, 25–33. [CrossRef]

90. Yao, J.H.; Zhao, X.Y.; Liao, Z.H.; Lin, J.; Chen, Z.H.; Chen, F.; Song, J.; Sun, X.F.; Tang, K.X. Cloning and
molecular characterization of a novel lectin gene from Pinellia ternata. Cell Res. 2003, 13, 301–308. [CrossRef]

91. Shetty, K.N.; Bhat, G.G.; Inamdar, S.R.; Swamy, B.M.; Suguna, K. Crystal structure of a β-prism II lectin from
Remusatia vivipara. Glycobiology 2012, 22, 56–69. [CrossRef]

92. Luo, Y.; Xu, X.; Liu, J.; Li, J.; Sun, Y.; Liu, Z.; Liu, J.; Van Damme, E.; Balzarini, J.; Bao, J. A novel
mannose-binding tuber lectin from Typhonium divaricatum (L.) Decne (family Araceae) with antiviral activity
against HSV-II and anti-proliferative effect on human cancer cell lines. J. Biochem. Mol. Biol. 2007, 40, 358–367.
[CrossRef] [PubMed]

93. Mo, H.; Rice, K.G.; Evers, D.L.; Winter, H.C.; Peumans, W.J.; Van Damme, E.J.; Goldstein, I.J. Xanthosoma
sagittifolium tubers contain a lectin with two different types of carbohydrate-binding sites. J. Biol. Chem. 1999,
274, 33300–33305. [CrossRef]

94. Chen, Z.; Pang, Y.; Liu, X.; Wang, X.; Deng, Z.; Sun, X.; Tang, K. Molecular cloning and characterization of a
novel mannose-binding lectin cDNA from Zantedeschia aethiopica. Biocell 2005, 29, 187–193.

95. Liu, B.; Peng, H.; Yao, Q.; Li, J.; Van Damme, E.; Balzarini, J.; Bao, J.K. Bioinformatics analyses of
the mannose-binding lectins from Polygonatum cyrtonema, Ophiopogon japonicus and Liparis noversa with
antiproliferative and apoptosis-inducing activities. Phytomedicine 2009, 16, 601–608. [CrossRef] [PubMed]

http://dx.doi.org/10.1042/bj3640173
http://www.ncbi.nlm.nih.gov/pubmed/11988090
http://dx.doi.org/10.1016/j.jmb.2005.01.015
http://www.ncbi.nlm.nih.gov/pubmed/15733927
http://dx.doi.org/10.1016/0300-9084(91)90024-U
http://dx.doi.org/10.1104/pp.005892
http://dx.doi.org/10.1016/S0969-2126(00)88338-0
http://dx.doi.org/10.1104/pp.110.153882
http://dx.doi.org/10.1016/j.peptides.2009.06.027
http://www.ncbi.nlm.nih.gov/pubmed/19577602
http://dx.doi.org/10.1006/bbrc.1995.2270
http://www.ncbi.nlm.nih.gov/pubmed/7669035
http://dx.doi.org/10.1007/s10540-005-2895-4
http://www.ncbi.nlm.nih.gov/pubmed/16307381
http://dx.doi.org/10.1016/S0168-9452(03)00126-2
http://dx.doi.org/10.1104/pp.107.4.1147
http://dx.doi.org/10.1016/j.bbapap.2014.10.013
http://dx.doi.org/10.1271/bbb.110346
http://dx.doi.org/10.1038/sj.cr.7290175
http://dx.doi.org/10.1093/glycob/cwr100
http://dx.doi.org/10.5483/BMBRep.2007.40.3.358
http://www.ncbi.nlm.nih.gov/pubmed/17562287
http://dx.doi.org/10.1074/jbc.274.47.33300
http://dx.doi.org/10.1016/j.phymed.2008.12.010
http://www.ncbi.nlm.nih.gov/pubmed/19200699


Int. J. Mol. Sci. 2019, 20, 254 35 of 49

96. Ding, J.; Bao, J.; Zhu, D.; Zhang, Y.; Wang, D.C. Crystal structure of a novel anti-HIV mannose-binding lectin
from Polygonatum cyrtonema Hua with unique ligand-binding property and super-structure. J. Struct. Biol.
2010, 171, 309–317. [CrossRef] [PubMed]

97. Van Damme, E.J.; Barre, A.; Rougé, P.; Van Leuven, F.; Balzarini, J.; Peumans, W.J. Molecular cloning of the
lectin and a lectin-related protein from common Solomon’s seal (Polygonatum multiflorum). Plant Mol. Biol.
1996, 31, 657–672. [CrossRef] [PubMed]

98. Yang, Y.; Xu, H.L.; Zhang, Z.T.; Liu, J.J.; Li, W.W.; Ming, H.; Bao, J.K. Characterization, molecular cloning,
and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II
and apoptosis-inducing activities. Phytomedicine 2011, 18, 748–755. [CrossRef] [PubMed]

99. Bourne, Y.; Roig-Zamboni, V.; Barre, A.; Peumans, W.J.; Astoul, C.H.; Van Damme, E.J.; Rougé, P. The crystal
structure of the Calystegia sepium agglutinin reveals a novel quaternary arrangement of lectin subunits with a
β-prism fold. J. Biol. Chem. 2004, 279, 527–533. [CrossRef]

100. Chang, W.C.; Liu, K.L.; Hsu, F.C.; Jeng, S.T.; Cheng, Y.S. Ipomoelin, a jacalin-related lectin with a compact
tetrameric association and versatile carbohydrate binding properties regulated by its N terminus. PLoS ONE
2012, 7, e40618. [CrossRef]

101. Upadhyay, S.K.; Saurabh, S.; Singh, R.; Rai, P.; Dubey, N.K.; Chandrashekar, K.; Negi, K.S.; Tuli, R.; Singh, P.K.
Purification and characterization of a lectin with high hemagglutination property isolated from Allium
altaicum. Protein J. 2011, 30, 374–383. [CrossRef]

102. Mo, H.; Van Damme, E.J.; Peumans, W.J.; Goldstein, I.J. Purificartion and characterization of a
mannose-specific lectin from shallot (Allium ascalonicum) bulbs. Arch. Biochem. Biophys. 1993, 306, 431–438.
[CrossRef] [PubMed]

103. Van Damme, E.J.; Smeets, K.; Engelborghs, I.; Aelbers, H.; Balzarini, J.; Pusztai, A.; van Leuven, F.;
Goldstein, I.J.; Peumans, W.J. Cloning and characterization of the lectin cDNA clones from onion, shallot
and leek. Plant. Mol. Biol. 1993, 23, 365–376. [CrossRef] [PubMed]

104. Van Damme, E.J.; Smmets, K.; Torrekens, S.; van Leuven, F.; Goldstain, I.J.; Peumans, W.J. The closely
relataed homomeric and heterodimeric mannose-binding lectins from garlic are encoded by one-domain
and two-domain lectin genes, respectively. Eur. J. Biochem. 1992, 206, 413–420. [CrossRef] [PubMed]

105. Ooi, L.S.; Yu, H.; Chen, C.M.; Sun, S.S.; Ooi, V.E. Isolation and characterization of a bioactive mannose-binding
protein from the Chinese chive Allium tuberosum. J. Agric. Food Chem. 2002, 50, 696–700. [CrossRef] [PubMed]

106. Van Damme, E.J.; Smeets, K.; Torrekens, S.; Van Leuven, F.; Peumans, W.J. The mannose-specific lectins
from ramsons (Allium ursinum L.) are encoded by three sets of genes. Eur. J. Biochem. 1993, 217, 123–129.
[CrossRef] [PubMed]

107. Wu, C.-F.; An, J.; He, X.-J.; Deng, J.; Hong, Z.-X.; Liu, C.; Hong-Zhou, L.; Li, Y.-J.; Wang, C.-J.; Chen, F.; Bao, J.
Molecular cloning of a novel mannose-binding lectin gene from bulbs of Amaryllis vittata (Amaryllidaceae).
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2004, 46, 1301–1306. (In Chinese)

108. Van Damme, E.J.M.; Smeets, K.; Van Leuven, F.; Peumans, W.J. Molecular cloning of mannose-binding lrctins
from Clivia miniata. Plant Mol. Biol. 1994, 24, 825–830. [CrossRef]

109. Chai, Y.; Pang, Y.; Liao, Z.; Zhang, L.; Sun, X.; Lu, Y.; Wang, S.; Tang, K. Molecular cloning and characterization
of a mannose-binding lectin gene from Crinum asiaticum. J. Plant Physiol. 2003, 160, 913–920. [CrossRef]

110. Van Damme, E.J.; Kaku, H.; Perini, F.; Goldstein, I.J.; Peeters, B.; Yagi, F.; Decock, B.; Peumans, W.J.
Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin. Eur. J.
Biochem. 1991, 202, 23–30. [CrossRef] [PubMed]

111. Kaku, H.; Van Damme, E.J.; Peumans, W.J.; Goldstein, I.J. Carbohydrate-binding specificity of the daffodil
(Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch. Biochem. Biophys. 1990, 279,
298–304. [CrossRef]

112. Antoniuk, L.L.A.; Antoniuk, V.O. Interaction of immobilized lectin from Leucojum vernum L. with
polysaccharides and glycoproteins. Ukrainskii Biokhimicheskii Zhurnal 1978, 65, 69–77. (In Ukrainian)

113. Wu, C.-F.; Li, J.; An, J.; Chang, L.-Q.; Che, F.; Bao, J.-K. Purification, biological activities, and molecular
cloning of a novel mannose-binding lectin from bulbs of Zephyranthes candida herb (Amaryllidaceae). J. Integr.
Plant Biol. 2006, 48, 223–231. [CrossRef]

114. Bao, J.; Wu, C.; An, J.; Gao, S.; Zhao, X.; Chang, L.; Rong, Y.; Wang, C.; Chen, F. Molecular cloning and
analysis of a monocot mannose-binding agglutinin from Zephyranthes grandiflora (family Amaryllidaceae).
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2004, 21, 812–818. (In Chinese) [PubMed]

http://dx.doi.org/10.1016/j.jsb.2010.05.009
http://www.ncbi.nlm.nih.gov/pubmed/20546901
http://dx.doi.org/10.1007/BF00042237
http://www.ncbi.nlm.nih.gov/pubmed/8790297
http://dx.doi.org/10.1016/j.phymed.2010.11.001
http://www.ncbi.nlm.nih.gov/pubmed/21146383
http://dx.doi.org/10.1074/jbc.M308218200
http://dx.doi.org/10.1371/annotation/5b9b681e-0744-4064-8b57-ed4390b3ce6f
http://dx.doi.org/10.1007/s10930-011-9342-0
http://dx.doi.org/10.1006/abbi.1993.1534
http://www.ncbi.nlm.nih.gov/pubmed/8215447
http://dx.doi.org/10.1007/BF00029011
http://www.ncbi.nlm.nih.gov/pubmed/8106012
http://dx.doi.org/10.1111/j.1432-1033.1992.tb16941.x
http://www.ncbi.nlm.nih.gov/pubmed/1375915
http://dx.doi.org/10.1021/jf010878p
http://www.ncbi.nlm.nih.gov/pubmed/11829630
http://dx.doi.org/10.1111/j.1432-1033.1993.tb18226.x
http://www.ncbi.nlm.nih.gov/pubmed/8223549
http://dx.doi.org/10.1007/BF00029865
http://dx.doi.org/10.1078/0176-1617-01115
http://dx.doi.org/10.1111/j.1432-1033.1991.tb16339.x
http://www.ncbi.nlm.nih.gov/pubmed/1718752
http://dx.doi.org/10.1016/0003-9861(90)90495-K
http://dx.doi.org/10.1111/j.1744-7909.2006.00219.x-i1
http://www.ncbi.nlm.nih.gov/pubmed/15553865


Int. J. Mol. Sci. 2019, 20, 254 36 of 49

115. Liu, J.; Xu, X.; Liu, J.; Balzarini, J.; Luo, Y.; Kong, Y.; Li, J.; Chen, F.; Van Damme, E.J.; Bao, J. A novel tetrameric
lectin from Lycoris aurea with four mannose binding sites per monomer. Acta Biochim. Pol. 2007, 54, 159–166.
[PubMed]

116. Zhao, X.; Yao, J.; Sun, X.; Tang, K. Molecular cloning and characterization of a novel lectin gene from Lycoris
radiata. DNA Seq. 2003, 14, 223–226. [CrossRef] [PubMed]

117. Ohizumi, Y.; Gaidamashvili, M.; Ohwada, S.; Matsuda, K.; Kominami, J.; Nakamura-Tsuruta, S.;
Hirabayashi, J.; Naganuma, T.; Ogawa, T.; Muramoto, K. Mannose-binding lectin from yam (Dioscorea
batatas) tubers with insecticidal properties against Helicoverpa armigera (Lepidoptera:Noctuidae). J. Agric.
Food Chem. 2009, 57, 2896–2902. [CrossRef]

118. Sharma, M.; Vishwanathreddy, H.; Sindhura, B.R.; Kamalanathan, A.S.; Swamy, B.M.; Inamdar, S.R.
Purification, characterization and biological significance of mannose binding lectin from Dioscorea bulbifera
bulbils. Int. J. Biol. Macromol. 2017, 101, 1146–1155. [CrossRef] [PubMed]

119. Oda, Y.; Nakayama, K.; Abdul-Rahman, B.; Kinoshita, M.; Hashimoto, O.; Kawasaki, N.; Hayakawa, T.;
Kakehi, K.; Tomiya, N.; Lee, Y.C. Crocus sativus lectin recognizes Man3GlncNAc in the N-glycan core structure.
J. Biol. Chem. 2000, 275, 26772–27779. [PubMed]

120. Escribano, J.; Rubio, A.; Alvarez-Ortí, M.; Molina, A.; Fernández, J.A. Purification and characterization of a
mannan-binding lectin specifically expressed in corms of saffrom plant (Crocus sativus L.). J. Agric. Food Chem.
2000, 48, 457–463. [CrossRef]

121. Van Damme, E.J.; Astoul, C.H.; Barre, A.; Rougé, P.; Peumans, W.J. Cloning and characterization of a
monocot mannose-binding lectin from Crocus vernus (family Iridaceae). Eur. J. Biochem. 2000, 267, 5067–5077.
[CrossRef]

122. Xu, X.; Wu, C.; Liu, C.; Luo, C.; Luo, Y.; Li, J.; Zhao, X.; Van Damme, E.; Bao, J. Purification
and characterization of a mannose-binding lectin from the rhizomes of Aspidistra elatior Blume with
antiproliferative activity. Acta Biochimi. Biophys. Sin. (Shanghai) 2007, 39, 507–519. [CrossRef]

123. Ooi, L.S.; Ho, W.S.; Ngai, K.L.; Tian, L.; Chan, P.K.; Sun, S.S.; Ooi, V.E. Narcissus tazetta lectin shows strong
inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses.
J. Biosci. 2010, 35, 95–103. [CrossRef] [PubMed]

124. López, S.; Armand-Ugon, M.; Bastida, J.; Viladomat, F.; Esté, J.A.; Stewart, D.; Codina, C. Anti-human
immunodeficiency virus type 1 (HIV-1) activity of lectins from Narcissus species. Planta Med. 2003, 69,
109–112. [CrossRef] [PubMed]

125. Van Damme, E.J.; Briké, F.; Winter, H.C.; Van Leuven, F.; Goldstein, I.J.; Peumans, W.J. Molecular cloning
of two different mannose-binding lectins from tulip bulbs. Eur. J. Biochem. 1996, 236, 419–427. [CrossRef]
[PubMed]

126. Ooi, L.S.; Sun, S.S.; Wang, H.; Ooi, V.E. New mannose-binding lectin isolated from the rhizome of Sarsaparilla
Smilax glabra Roxb. (Liliaceae). J. Agric. Food Chem. 2004, 52, 6091–6095. [CrossRef] [PubMed]

127. Wright, L.M.; Wood, S.D.; Reynolds, C.D.; Rizkallah, P.J.; Peumans, W.J.; Van Damme, E.J.; Allen, A.K.
Purification, crystalolization and preliminary X-ray analysis of a mannose-binding lectin from bluebell (Scilla
campanulata) bulbs. Acta Crystallogr. D Biol. Crystallogr. 1996, 52, 1021–1023. [CrossRef] [PubMed]

128. Sharma, A.; Vijayan, M. Influence of glycosidic linkage on the nature of carbohydrate binding in β-prism
I fold lectins: An X-ray and molecular dynamics investigation on banana lectin-carbohydrate complexes.
Glycobiology 2011, 21, 23–33. [CrossRef]

129. Singh, D.D.; Saikrishnan, K.; Kumar, P.; Surolia, A.; Sekar, K.; Vijayan, M. Unusual sugar specificity of banana
lectin from Musa paradisiaca and its probable evolutionary origin. Crystallographic and modelling studies.
Glycobiology 2005, 15, 1025–1032. [CrossRef]

130. Ooi, L.S.; Sun, S.S.; Ooi, V.E. Purification and characterization of a new antiviral protein from the leaves of
Pandanus amaryllifolius (Pandanaceae). Int. J. Biochem. Cell Biol. 2004, 36, 1440–1446. [CrossRef]

131. Van Damme, E.J.; Smeets, K.; Torrekens, S.; Van Leuven, F.; Peumans, W.J. Characterization and molecular
cloning of mannose-binding lectins from the Orchidaceae species Listera ovata, Epipactis helleborine and
Cymbidium hybrid. Eur. J. Biochem. 1994, 221, 769–777. [CrossRef]

132. Chen, Z.; Sun, X.; Tang, K. Cloning and expression of a novel cDNA encoding a mannose-binding lectin
from Dendrobium officinale. Toxicon 2005, 45, 535–540. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/17356714
http://dx.doi.org/10.1080/1042517031000101716
http://www.ncbi.nlm.nih.gov/pubmed/14509837
http://dx.doi.org/10.1021/jf8040269
http://dx.doi.org/10.1016/j.ijbiomac.2017.04.085
http://www.ncbi.nlm.nih.gov/pubmed/28472687
http://www.ncbi.nlm.nih.gov/pubmed/10837483
http://dx.doi.org/10.1021/jf990735r
http://dx.doi.org/10.1046/j.1432-1327.2000.01563.x
http://dx.doi.org/10.1111/j.1745-7270.2007.00305.x
http://dx.doi.org/10.1007/s12038-010-0012-8
http://www.ncbi.nlm.nih.gov/pubmed/20413914
http://dx.doi.org/10.1055/s-2003-37715
http://www.ncbi.nlm.nih.gov/pubmed/12624813
http://dx.doi.org/10.1111/j.1432-1033.1996.00419.x
http://www.ncbi.nlm.nih.gov/pubmed/8612611
http://dx.doi.org/10.1021/jf030837o
http://www.ncbi.nlm.nih.gov/pubmed/15453671
http://dx.doi.org/10.1107/S0907444996006889
http://www.ncbi.nlm.nih.gov/pubmed/15299614
http://dx.doi.org/10.1093/glycob/cwq128
http://dx.doi.org/10.1093/glycob/cwi087
http://dx.doi.org/10.1016/j.biocel.2004.01.015
http://dx.doi.org/10.1111/j.1432-1033.1994.tb18790.x
http://dx.doi.org/10.1016/j.toxicon.2004.12.019


Int. J. Mol. Sci. 2019, 20, 254 37 of 49

133. Liu, W.; Yang, N.; Ding, J.; Huang, R.H.; Hu, Z.; Wang, D.C. Structural mechanism governing the quaternary
organization of monocot mannose-binding lectin revealed by the novel monomeric structure of an orchid
lectin. J. Biol. Chem. 2005, 280, 14865–14976. [CrossRef] [PubMed]

134. Zhang, W.; Peumans, W.J.; Barre, A.; Astoul, C.H.; Rovira, P.; Rougé, P.; Proost, P.; Truffa-Bachi, P.; Jalali, A.A.;
Van Damme, E.J. Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed
rice (Oryza sativa) plants. Planta 2000, 210, 970–978. [PubMed]

135. Do Nascimento-Neto, L.G.; Carneiro, R.F.; da Silva, S.R.; Rocha da Silva, B.; Arruda, F.V.S.; Carneiro, V.A.;
do Nascimento, K.S.; Saker-Sampaio, S.; da Silva, V.A., Jr.; Figueiredo Porto, A.L.; et al. Characterization of
isoforms of the lectin isolated from the red algae Bryothamnion seaforthii and its pro-healing effect. Mar. Drugs
2012, 10, 1936–1954. [CrossRef] [PubMed]

136. Calvete, J.J.; Costa, F.H.; Saker-Sampaio, S.; Murciano, M.P.; Nagano, C.S.; Cavada, B.S.; Grangeiro, T.B.;
Ramos, M.V.; Bloch, C., Jr.; Silveira, S.B.; et al. The amino acid sequence of the agglutinin isolated from the
red marine alga Bryothamnion triquetrum defines a novel lectin structure. Cell Mol. Life Sci. 2000, 57, 343–350.
[CrossRef]

137. Hung, L.D.; Hirayama, M.; Ly, B.M.; Hori, K. Purification, primary structure, and biological activity of the
high-mannose N-glycan-specific lectin from cultivated Eucheuma denticulatum. J. Appl. Phycol. 2015, 27,
1657–1669. [CrossRef]

138. Sugahara, T.; Ohama, Y.; Fukuda, A.; Hayashi, M.; Kawakubo, A.; Kato, K. The cytotoxic effect of Eucheuma
serrata agglutinin (ESA) on cancer cells and its application to molecular probe for drug delivery system using
lipid vesicles. Cytotechnology 2001, 36, 93–99. [CrossRef]

139. Mori, T.; O’Keefe, B.R.; Sowder, R.C., 2nd; Bringans, S.; Gardella, R.; Berg, S.; Cochran, P.; Turpin, J.A.;
Buckheit, R.W., Jr.; McMahon, J.B.; et al. Isolation and characterizatiopn of griffithsin, a novel
HIV-inactivating protein, from the red alga Griffithsia sp. J. Biol. Chem. 2005, 280, 9345–9353. [CrossRef]

140. Zlółkowska, N.E.; O’Keefe, B.R.; Mori, T.; Zhu, C.; Giomarelli, B.; Vojdani, F.; Palmer, K.E.; McMahon, J.B.;
Wlodawer, A. Domain-swapped structure of the potent antiviral protein griffithsin and its mode of
carbohydrate binding. Structure 2006, 14, 1127–1138. [CrossRef]

141. Nascimento, K.S.; Nagano, C.S.; Nunes, E.V.; Rodrigues, R.F.; Goersch, G.V.; Cavada, B.S.; Calvete, J.J.;
Saker-Sampaio, S.; Farias, W.R.; Sampaio, A.H. Isolation and characterization of a new agglutinin from the
red marine alga Hypnea cervicornis J. Agardh. Biochem. Cell Biol. 2006, 84, 49–54. [CrossRef]

142. Nagano, C.S.; Moreno, F.B.; Bloch, C., Jr.; Prates, M.V.; Calvete, J.J.; Saker-Sampaio, S.; Farias, W.R.;
Tavares, T.D.; Nascimento, K.S.; Grangeiro, T.B.; et al. Purification and characterization of a new lectin from
the red marine alga Hypnea musciformis. Protein Pept. Lett. 2002, 9, 159–166. [CrossRef]

143. Sato, Y.; Morimoto, K.; Hirayama, M.; Hori, K. High mannose-specific lectin (KAA-2) from the red alga
Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner. Biochem.
Biophys. Res. Commun. 2011, 405, 291–296. [CrossRef] [PubMed]

144. Hung, L.D.; Sato, Y.; Hori, K. High-mannose N-glycan-specific lectin from the red alga Kappaphycus striatum
(Carrageenophyte). Phytochemistry 2011, 72, 855–861. [CrossRef] [PubMed]

145. Sato, Y.; Hirayama, M.; Morimoto, K.; Yamamoto, N.; Okuyama, S.; Hori, K. High-mannose-binding lectin
with preference for the cluster of α1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor
of HIV-1 and influenza viruses. J. Biol. Chem. 2011, 286, 19446–19458. [CrossRef]

146. Mu, J.; Hirayama, M.; Sato, Y.; Morimoto, K.; Hori, K. A novel high-mannose specific lectin from the green
alga Halimeda renschii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral
hemagglutinin. Mar. Drugs 2017, 15, 255. [CrossRef] [PubMed]

147. Wohlschlager, T.; Butschi, A.; Grassi, P.; Sutov, G.; Gauss, R.; Hauck, D.; Schmieder, S.S.; Knobel, M.; Titz, A.;
Dell, A.; et al. Methylated glycans as conserved targets of animal and fungal innate defense. Proc. Natl. Acad.
Sci. USA 2014, 111, E2787–E2796. [CrossRef]

148. Sommer, R.; Makshakova, O.N.; Wohlschlager, T.; Hutin, S.; Marsh, M.; Titz, A.; Künzler, M.; Varrot, A.
Crystal structure of fungal tectonin in complex with O-methylated glycans suggest key role in innate immune
defense. Structure 2018, 26, 391–402. [CrossRef] [PubMed]

149. Francis, F.; Jaber, K.; Colinet, F.; Portetelle, D.; Haubruge, E. Purification of a new fungal mannose-specific
lectin from Penicillium chrysogenum and its aphicidal properties. Fungal Biol. 2011, 115, 1093–1099. [CrossRef]
[PubMed]

http://dx.doi.org/10.1074/jbc.M411634200
http://www.ncbi.nlm.nih.gov/pubmed/15649901
http://www.ncbi.nlm.nih.gov/pubmed/10872230
http://dx.doi.org/10.3390/md10091936
http://www.ncbi.nlm.nih.gov/pubmed/23118713
http://dx.doi.org/10.1007/PL00000696
http://dx.doi.org/10.1007/s10811-014-0441-0
http://dx.doi.org/10.1023/A:1014057407251
http://dx.doi.org/10.1074/jbc.M411122200
http://dx.doi.org/10.1016/j.str.2006.05.017
http://dx.doi.org/10.1139/o05-152
http://dx.doi.org/10.2174/0929866023408931
http://dx.doi.org/10.1016/j.bbrc.2011.01.031
http://www.ncbi.nlm.nih.gov/pubmed/21219864
http://dx.doi.org/10.1016/j.phytochem.2011.03.009
http://www.ncbi.nlm.nih.gov/pubmed/21489583
http://dx.doi.org/10.1074/jbc.M110.216655
http://dx.doi.org/10.3390/md15080255
http://www.ncbi.nlm.nih.gov/pubmed/28813016
http://dx.doi.org/10.1073/pnas.1401176111
http://dx.doi.org/10.1016/j.str.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29398527
http://dx.doi.org/10.1016/j.funbio.2011.06.010
http://www.ncbi.nlm.nih.gov/pubmed/22036288


Int. J. Mol. Sci. 2019, 20, 254 38 of 49

150. Veelders, M.; Brückner, S.; Ott, D.; Unverzagt, C.; Mösch, H.U.; Essen, L.O. Structural basis of
flocculin-mediated social behavior in yeast. Proc. Natl. Acad. Sci. USA 2010, 107, 22511–22516. [CrossRef]

151. Goossens, K.V.; Ielasi, F.S.; Nookaew, I.; Stals, I.; Alonso-Sarduy, L.; Daenen, L.; Van Mulders, S.E.; Stassen, C.;
van Eisjden, R.G.; Siewers, V.; et al. Molecular mechanism of flocculation self-recognition in yeast and its
role in mating and survival. MBio 2015, 6, e00427-15. [CrossRef]

152. Olson, L.J.; Orsi, R.; Peterson, F.C.; Parodi, A.J.; Kim, J.J.; D’Alessio, C.; Dahms, N.M. Crystal structure
and functional analyses of the lectin domain of glucosidase II: Insights into oligomannose recognition.
Biochemistry 2015, 54, 4097–4111. [CrossRef]

153. Suzuki, T.; Sugiyama, K.; Hirai, H.; Ito, H.; Morita, T.; Dohra, H.; Murata, T.; Usui, T.; Tateno, H.;
Hirabayashi, J.; et al. Mannose-specific lectin from the mushroom Hygrophorus russula. Glycobiology 2012, 22,
616–629. [CrossRef]

154. Shimokawa, M.; Fukudome, A.; Yamashita, R.; Minami, Y.; Yagi, F.; Tateno, H.; Hirabayashi, J.
Characterization and cloning of GNA-like lectin from the mushroom Marasmius oreades. Glycoconj. J.
2012, 29, 457–465. [CrossRef] [PubMed]

155. Koharudin, L.M.; Viscomi, A.R.; Jee, J.G.; Ottonello, S.; Gronenborn, A.M. The evolutionary conserved family
of cyanovirin-N homologs: Structures and carbohydrate specificity. Structure 2008, 16, 570–584. [CrossRef]
[PubMed]

156. Loris, R.; Van Overberge, D.; Dao-Thi, M.H.; Poortmans, F.; Maene, N.; Wyns, L. Structural analysis of two
crystal forms of lentil lectin at 1.8 Å resolution. Proteins 1994, 20, 330–346. [CrossRef] [PubMed]

157. Hardman, K.D.; Ainsworth, C.F. Structure of concanavalin A at 2.4-Å resolution. Biochemistry 1972, 11,
4910–4919. [CrossRef] [PubMed]

158. Olsen, L.R.; Dessen, A.; Gupta, D.; Sabesan, S.; Sacchettini, J.C.; Brewer, C.F. X-ray crystallographic studies of
unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin.
Biochemistry 1997, 36, 15073–15080. [CrossRef] [PubMed]

159. Banerjee, R.; Das, K.; Ravishankar, R.; Suguna, K.; Surolia, A.; Vijayan, M. Conformation,
protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut
lectin-lactose complex. J. Mol. Biol. 1996, 259, 281–296. [CrossRef]

160. Elgavish, S.; Shaanan, B. Structures of the Erythrina corallodendron lectin and of its complexes with mono-
and disaccharides. J. Mol. Biol. 1998, 277, 917–932. [CrossRef]

161. Hamelryck, T.W.; Dao-Thi, M.H.; Poortmans, F.; Chrispeels, M.J.; Wyns, L.; Loris, R. The crystallographic
structure of phytohemagglutinin-L. J. Biol. Chem. 1996, 271, 20479–20485. [CrossRef]

162. Nagae, M.; Soga, K.; Morita-Matsumoto, K.; Hanashima, S.; Ikeda, A.; Yamamoto, K.; Yamaguchi, Y.
Phytohemagglutinin from Phaseolus vulgaris (PHA-E) displays a novel glycan recognition mode using a
common legume lectin fold. Glycobiology 2014, 24, 368–378. [CrossRef] [PubMed]

163. Pratap, J.V.; Jeyaprakash, A.A.; Rani, P.G.; Sekar, K.; Surolia, A.; Vijayan, M. Crystal structure of artocarpin, a
Moraceae lectin with mannose specificity, and its complex with methyl-α-D-mannose: Implications to the
generation of carbohydrate specificity. J. Mol. Biol. 2002, 317, 237–247. [CrossRef] [PubMed]

164. Sankaranarayanan, R.; Sekar, K.; Banerjee, R.; Sharma, V.; Surolia, A.; Vijayan, M. A novel mode of
carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold. Nat. Struct. Biol. 1996, 3,
596–603. [CrossRef]

165. Lee, X.; Thompson, A.; Zhang, Z.; Ton-that, H.; Biesterfeldt, J.; Ogata, C.; Xu, L.; Johnston, R.A.; Young, N.M.
Structure of the complex of Maclura pomifera agglutinin and the T-antigen disaccharide, Galβ1,3GalNAc.
J. Biol. Chem. 1998, 273, 6312–6318. [CrossRef]

166. Rabijns, A.; Barre, A.; Van Damme, E.J.M.; Peumans, W.J.; De Ranter, C.J.; Rougé, P. Structural analysis of the
jacalin-related lectin MornigaM from the black mulberry (Morus nigra) in complex with mannose. FEBS J.
2005, 272, 3725–3732. [CrossRef] [PubMed]

167. Hester, G.; Kaku, H.; Goldstein, I.J.; Wright, C.S. Structure of mannose-specific snowdrop (Galmanthus nivalis)
lectin is representative of a new plant lectin family. Nat. Struct. Biol. 1995, 2, 472–479. [CrossRef] [PubMed]

168. Pereira, P.R.; Meagher, J.L.; Winter, H.C.; Goldstein, I.J.; Paschoalin, V.M.; Silva, J.T.; Stuckey, J.A.
High-resolution crystal structures of Colocasia esculenta tarin lectin. Glycobiology 2017, 27, 50–56. [CrossRef]

169. Transue, T.R.; Smith, A.K.; Mo, H.; Goldstein, I.J.; Saper, M.A. Structure of benzyl T-antigen disaccharide
bound to Amaranthus caudatus agglutinin. Nat. Struct. Biol. 1997, 4, 779–783. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.1013210108
http://dx.doi.org/10.1128/mBio.00427-15
http://dx.doi.org/10.1021/acs.biochem.5b00256
http://dx.doi.org/10.1093/glycob/cwr187
http://dx.doi.org/10.1007/s10719-012-9401-6
http://www.ncbi.nlm.nih.gov/pubmed/22684189
http://dx.doi.org/10.1016/j.str.2008.01.015
http://www.ncbi.nlm.nih.gov/pubmed/18400178
http://dx.doi.org/10.1002/prot.340200406
http://www.ncbi.nlm.nih.gov/pubmed/7731952
http://dx.doi.org/10.1021/bi00776a006
http://www.ncbi.nlm.nih.gov/pubmed/4638345
http://dx.doi.org/10.1021/bi971828+
http://www.ncbi.nlm.nih.gov/pubmed/9398234
http://dx.doi.org/10.1006/jmbi.1996.0319
http://dx.doi.org/10.1006/jmbi.1998.1664
http://dx.doi.org/10.1074/jbc.271.34.20479
http://dx.doi.org/10.1093/glycob/cwu004
http://www.ncbi.nlm.nih.gov/pubmed/24436051
http://dx.doi.org/10.1006/jmbi.2001.5432
http://www.ncbi.nlm.nih.gov/pubmed/11902840
http://dx.doi.org/10.1038/nsb0796-596
http://dx.doi.org/10.1074/jbc.273.11.6312
http://dx.doi.org/10.1111/j.1742-4658.2005.04801.x
http://www.ncbi.nlm.nih.gov/pubmed/16008570
http://dx.doi.org/10.1038/nsb0695-472
http://www.ncbi.nlm.nih.gov/pubmed/7664110
http://dx.doi.org/10.1093/glycob/cww083
http://dx.doi.org/10.1038/nsb1097-779
http://www.ncbi.nlm.nih.gov/pubmed/9334739


Int. J. Mol. Sci. 2019, 20, 254 39 of 49

170. De Schutter, K.; Tsaneva, M.; Kulkarni, S.R.; Rougé, P.; Vandepoele, K.; Van Damme, E.J.M. Evolutionary
relationships and expression analysis of EUL domain proteins in rice (Oryza sativa). Rice 2017, 10, 26.
[CrossRef]

171. Sharma, U.; Katre, U.V.; Suresh, C.G. Crystal structure of a plant albumin from Cicer arietinum (chickpea)
possessing hemopexin fold and hemagglutination activity. Planta 2015, 241, 1061–1073. [CrossRef]

172. Kostlánová, N.; Mitchell, E.P.; Lortat-Jacob, H.; Oscarson, S.; Lahmann, M.; Gilboa-Garber, N.; Chambat, G.;
Wimmerová, M.; Imberty, A. The fucose-binding lectin from Ralstonia solanacearum. A new type of β-propeller
architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan.
J. Biol. Chem. 2005, 280, 27839–27849. [CrossRef] [PubMed]

173. Kumar, A.; Sýkorová, P.; Demo, G.; Dobeš, P.; Hyršl, P.; Wimmerová, M. A novel fucose-binding lectin from
Photorhabdus luminescens (PPL) with an unusual heptabladed β-propeller tetrameric structure. J. Biol. Chem.
2016, 291, 25032–25049. [CrossRef] [PubMed]
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