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Abstract

In this article, we address the problem of the Canonical Polyadic decomposition (or
Candecomp/Parafac Decomposition) of large N -way tensors under nonnegativity con-
straints. This problem is usually carried out using algebraic or iterative (alternating
or all at once) deterministic optimization algorithms. Here, we focus on stochastic
approaches and more precisely on memetic algorithms. Different variants of these al-
gorithms are suggested and compared. A partial cost function and other optimization
tools are introduced to reduce the complexity of the problem at hand. Different (either
deterministic or stochastic) strategies concerning the local search step are also consid-
ered. This leads to new algorithms which are analysed thanks to computer simulations
and compared with state of the art algorithms. When the tensor rank is unknown, we
also propose a solution to estimate it. Finally, our approach is tested on a real experi-
mental water monitoring application where the tensor rank is unknown.

Key words: Nonnegative Tensor Factorization (NTF); multi-linear algebra;
Candecomp/Parafac (CP) decomposition; stochastic optimization; evolutionary
algorithms; Big data tensors; missing data

1. Introduction

The tensor decompositions problem has emerged from various application fields
where the data sets are often arranged in multi-way arrays or tensors. Multilinear anal-
ysis and tensor decompositions have received an increasing attention from different sci-
entific communities (including statistics, numerical linear algebra, numerical analysis,
(audio) signal processing, telecommunications, data mining, computer vision, linguis-
tics, psychometrics, neuroscience, chemometrics, biomedical engineering, and so on),
see for example [2][26][15][18] for an overview. The Canonical Polyadic Decomposi-
tion (a.k.a. CPD) is one of the most well-known decompositions of tensors. It consists
of representing a tensor as a minimal sum of rank-one tensors hence the term “Canon-
ical”. It dates back to the work of Hitchcock [22] in 1927 and was later regarded as a
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generalization to higher-orders of the Singular Value Decomposition (SVD) of a matrix
(2-way array).

Since the statement of the CPD problem, numerous numerical methods have been
suggested to handle it, including i) direct methods (e.g. the GRAM-DTLD method
[52][55]), ii) deterministic (alternating or all-at-once) optimization methods (notably
the ALS or HALS method [15], the gradient-based methods [21], Newton and Quasi-
Newton methods [62][48][49], among others) and more recently iii) stochastic methods
[66][63]. While a large number of articles fall into the first two categories, this article
is, however, among the few works which cover the latter. The algorithms suggested
herein are based on a pure stochastic method, namely memetic algorithms [38] [39],
which rely on a local search and the evolution of a population (or a family of tentative
solutions). The efficiency of these algorithms to solve the CPD problem as well as their
flexibility will be pointed out.

In one of the leading application fields of tensors, for instance 3D-fluorescence
spectroscopy data analysis [59], the CPD enables to solve an inverse problem. In fact,
the fluorescent chemical compounds (also known as fluorophores) dissolved in water
samples can be separated and their characteristics can be recovered. In this applica-
tion, the latent variables (the desired solutions of the CPD problem) are intrinsically
non-negative since they stand for emission spectra, excitation spectra and concentra-
tions of the unknown number of chemical constituents of the mixtures. The study of
CPD under non-negativity constraints is also motivated by recent theoretical researches
showing that the existence of a low rank approximation for CPD is ensured under such
constraints, which may not be true in the general case [32]. Among existing algorithms
addressing non-negative CPD, two main techniques have been developed. They are
either applying a projection onto the feasible set [15], or using a change of variables
by a squared function [48][49] or an exponential function [17]. The technique used in
this paper is closer to the former but instead of a projection we propose a “selective”
reflection.

Another important aspect is the continually increasing volume of data due to fast
development of technological tools to acquire and to store information. This leads to
both tensors of larger dimensions (sizes) and to higher-order tensors (Time-Resolved
Fluorescence Spectroscopy [31] and the possibility to acquire 4D datasets). Therefore,
it is both challenging and a real necessity to efficiently process and analyse large data
sets in tolerable elapsed time (see [54] for an overview). Few strategies have been sug-
gested to handle large-scale and (or) high-order tensors. To the best of our knowledge,
very few one stage solutions have been suggested. They rely on an adaptative scheme
[41]. Most investigated solutions share a 2-stage scheme in which the first stage aims
at reducing the difficulties raised by Big Data, and the second stage consists of iterat-
ing an optimization algorithm. Regarding the first stage, we classify these methods into
three groups. The first category involves compression-based algorithms using complete
tensors [54][16]. The compression step can be repeated several times [54] or only once
by using Tucker3 decomposition [16]. In the second group, sub-tensors are employed
in the place of the whole tensor. The sub-tensors are extracted for example, in a ran-
dom way while ensuring each unknown is involved at the same (expected) frequency,
or by partitioning the original tensor into non-overlapping blocks [63][65][43]. The
extraction can be done once over all iterations, or it can be repeated randomly at every
iteration. Finally, in the third class of solution, the use of a subset of randomly chosen
entries of the tensors is suggested. The idea is close to that of missing data. One of
the main advantage is that there is no requirement for a “tensor-form” concerning the
extracted data.
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Our work falls in the last category. However rather different from methods in the
first two classes, in which the core algorithms in the second stage are deterministic
and quite classic (e.g. ALS, conjugate gradient, Levenberg-Marquardt, among oth-
ers), memetic algorithms are suggested here. This double-stochastic scheme makes
our method standing out from the rest of the literature. This article is a continuation
of our previous works [66] but also an extension to the general N th-order tensor case.
The ability of the suggested algorithms to handle the nonnegative tensor decomposition
is pointed out. Moreover, we generalize the loss function involved in the optimization
problem to the pth-power of lp-norm (with p ≥ 1), in which the ordinary squared Eu-
clidean function, often used in iterative methods for CPD is a particular case where p
is equal to two. As compared to [66], the algorithm suggested here is fully optimized:
pre-stocking is introduced in addition to the economic computation of the loss function;
some strategies regarding the partial cost function are also studied. Especially, in the
case of the squared Euclidean norm (corresponding to p equal to two), a closed form
for the locally optimal step size can be derived which helps to accelerate the algorithm.
Then, we introduce some hybrid scenarios by coupling these two strategies. Computer
simulations are then performed in the 3D-fluorescence spectroscopy context. The ef-
ficiency and robustness of our algorithms are emphasized. Finally, an experimental
water monitoring application is also considered.

In the balance of this article, the following notations will be used. Scalars are de-
noted in (lowercase or capital) italic letters, vectors in bold lowercase letters, matrices
in bold capital letters. Tensors, cost functions and equations sets are in calligraphic
uppercase letters. The article is organized as follows. After an introduction, the second
section is dedicated to the statement of the non-negative CPD problem. The objective
function is introduced as well as a partial cost function. In the third section, the general
principal of memetic algorithms is recalled. Then, a special case of these genetic algo-
rithms called Collaborative Evolution of Population (CEP) is described. In the fourth
section, this method is adapted to the CPD problem. The principle of all its stages is
presented and discussed. An algorithm is derived and different improvements are also
suggested and studied (partial `p cost function, stochastic or locally optimal step size
but also hybrid strategies combining both optimal and stochastic step size). In Section
V, computer simulations are performed to illustrate the behaviour of our algorithms in
different contexts considering synthetic 3D fluorescence spectroscopy like data. Exper-
imental water monitoring data are then considered in section VI. Finally, a conclusion
is drawn and perspectives are delineated.

2. Problem statement

2.1. CP decomposition of N -way tensors

We consider tensors T ∈ RI1×I2×...×IN of order N . Nevertheless, in most practical
applications, third or fourth-order tensors are often considered. Such N -way tensors
can be represented by a N -mode array in a chosen basis. The order N corresponds to
the number of indices of the associated array (ways or modes [55]). Each entry of T
is then denoted by t̄i1,...,iN . In this article, fluorescence spectroscopy applications are
targeted [30]. It is the reason why we are interested in the problem of the decomposition
of tensors into a sum of R rank-1 terms [60][59]. Such a tensor decomposition is
known as the Polyadic Decomposition (PD) of a tensor. We focus on that particular
tensor decomposition since in fluorescence spectroscopy, at low concentrations, the
non-linear model predicted by the Beer-Lambert law can be linearized [30], involving
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that the fluorescence intensity rather accurately follows a three-way (or trilinear) model
[55][51]. We recall that a rank-one tensor of order N is defined as the outer product,
denoted by ⊗, of N vectors ā(n). The polyadic decomposition of T thus writes

T =

R∑
r=1

ā(1)
r ⊗ ā(2)

r ⊗ . . .⊗ ā(N)
r = JĀ(1), Ā(2), . . . , Ā(N)K, (1)

where the N matrices Ā(n) = (ā
(n)
inr

) = [ā
(n)
1 , ā

(n)
2 , . . . , ā

(n)
R ] ∈ RIn×R, with n ∈

{1, . . . , N}, are the so-called loading (or factor) matrices or low-rank latent factors
or more simply factors, whose R columns ā

(n)
r , with r ∈ {1, . . . , R}, are the load-

ing vectors of the n-th loading matrix Ā(n) . We also introduce the element-wise
form of (1) that will be useful in the next sections, i.e. for all (i1, i2, . . . , iN ) ∈ I =
{1, . . . , I1} × {1, . . . , I2} × . . .× {1, . . . , IN},

t̄i1i2...iN =

R∑
r=1

ā
(1)
i1r
ā

(2)
i2r
. . . ā

(N)
iNr . (2)

The minimum value of R such that (1) is valid is called the tensor rank [28][53] and
the corresponding decomposition (1) the Canonical Polyadic Decomposition (CPD)
or the Tensor Rank Decomposition. It was first introduced by Hitchcock [22]. In
the following, given an observed tensor T , our purpose is to find its best rank-one
approximation (i.e. T ∼ T ) and thus to estimate all the hidden variables i.e. all the
elements a(n)

inr
(for all r = 1, . . . R, in = 1, . . . In, n = 1, . . . N ) of the N loading

matrices A(n). We also emphasize that T can be a noisy version of T (i.e. T ∼ T +B
where B stands for the noise tensor). This low-rank approximation problem, is an
optimization problem and more precisely a minimization one. The estimated solution
will be denoted by T̂ .

2.2. A minimisation problem to estimate the latent variables
The entrywise error, for all (i1, . . . , iN ) ∈ I is denoted by

ei1i2...iN = ti1...iN −
R∑

r=1

a
(1)
i1r
. . . a

(N)
iNr . (3)

A way to address the aforementioned low-rank approximation problem, is to minimize
a cost functionH(x) that measures how the observed tensor fits the CP model:

minimize
x∈RL

H(x), (4)

where x stands for the L = (I1 + . . .+ IN )×R unknowns written in the vector form

x =

 vec{A(1)}
...

vec{A(N)}

 ∈ RL

where the operator vec{·} vertically stacks the columns of a matrix into a vector.
One possible choice forH(x) is the pth-power lp function defined as

Fp(x) =
∑

(i1,...,iN )∈I

|ti1...iN −
R∑

r=1

a
(1)
i1r
. . . a

(N)
iNr |

p =
∑

(i1,...,iN )∈I

|ei1i2...iN |p (5)
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where p is a real number such that p ≥ 1. Most iterative methods designed for CPD
problems rely on optimization schemes where the fidelity term involved in the objective
function H(x) is a particular case of Eq. (5), for instance the squared Euclidean cost
function obtained with p = 2

F2(x) =
∑

(i1,...,iN )∈I

e2
i1i2...iN . (6)

When performing the CP decomposition, the tensor rankR is assumed to be known and
consequently has to be estimated first. Finally, the nonnegativity constraints impose
that a(n)

inr
≥ 0 for all n ∈ {1, . . . , N}, in ∈ {1, . . . , In}, r ∈ {1, . . . , R}.

2.3. Partial cost function built by random sampling

In practice, using the whole tensor T is not always possible or even convenient. Due
to some reasons (among which are the lack, the alteration or the delation of some
measurements), missing data may occur during the data acquisition process or after
their pre-processing. Furthermore, when the dimensions In and especially the order
N of the tensor become significantly large, handling the whole cost function becomes
expensive. For such reasons, we suggest to use partial cost functions instead of the
aforementioned cost function Fp in (5). We define an integer M corresponding to the
M equations among the I1 × I2 × . . .× IN available ones that will be selected in (2).
It enables us to define a partial cost function, denoted by Fp

M , constituted of the M
pth-power residuals in (5)

Fp
M (x) =

∑
(i1,i2,...,iN )∈IM

|ei1i2...iN |p, (7)

where IM ⊂ I denotes the index set (i1, . . . , iN ) associated to the M selected equa-
tions: IM = {(i1, i2, . . . , iN ) ∈ I | equation (i1, i2, . . . , iN ) is chosen}. In practice,
the set IM can be chosen randomly according to some distribution (e.g. uniform law,
weighted random distribution). We also notice that the standard cost function Fp cor-
responds to a special case of Fp

M where M = I1× I2× . . . IN (all available equations
are selected). In practice, we often choose M such that its value is few times greater
than the number of unknowns L and satisfies 0 < M ≤ I1 × I2 × . . . IN . Another
significant advantage of such a technique is that it also enables to treat naturally the
missing data problem without further developments and variants of the algorithms like
those traditionally required by deterministic approaches [61][1][50].

3. Memetic algorithms

3.1. Introduction

Stochastic optimization algorithms enable to handle inherent system noise and highly
nonlinear, high dimensional models or systems. Notable stochastic algorithms include
stochastic approximation algorithms [29], stochastic gradient descent [7], evolutionary
algorithms [5], simulated annealing [25], Genetic Algorithms (GAs) [23] and so on. A
short overview can be found in [57] (for further details see for example [56]).
Among the existing stochastic algorithms, we are interested in a particular class, namely
memetic algorithms, which are an extension of the traditional GAs [39]. The term
“memetic” was first proposed by Moscato in the late 1980s [36]. Memetic algorithms,
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like GAs, are based on the evolution of a population of candidate solutions which con-
verges to a solution of an optimization problem. In memetic algorithms a local search
step is added to avoid the convergence to a local extremum which may happen with
GAs. For such a reason, memetic algorithms are also called hybrid genetic algorithms
or hybrid evolutionary algorithms. They have found a wide number of applications
notably in NP-hard problems [10] [14] [19], machine learning [3] [27] [37], robotics
[20] [42] [47], electronics [4] [6] [24], engineering [46] [58] [67], image and speech
processing and computer vision [11][35], to cite a few (for an overview see e.g. [39]
and the reference therein).

3.2. General description of memetic algorithms
As a metaheuristic technique, memetic algorithms are iterative. Each iteration, also

called a generation, contains three steps: a selection, a search and a replacement. The
principle of memetic algorithms for the minimization problem minx∈Ω f(x) where
Ω ⊂ RL, f : Ω→ R can be summed up as follows

Principle of memetic algorithms:

• Step 1. At iteration k = 1, create a random population of N ≥ 2 candidates
{x1[1], . . . ,xN [1]} ⊂ Ω.
Compute f(x1[1]), . . . , f(xN [1]) to sort the population.

• Step 2. At iteration k > 1,

– Selection stage: generate a new population from the present generation (e.g.
at random, or using a fraction of the best candidates or keeping some of the
best candidates and some of the worst, etc.)

– Search stage: use a random or deterministic local search to improve the popu-
lation.

– Replacement: create the new generation {x1[k], . . . ,xN [k]} of the popula-
tion.

• Step 3. If none of the stopping criteria are met then set k ← k + 1, return to Step 2
else stop.

3.3. Special case of CEP algorithms
We suggest here a new memetic algorithm originally designed to tackle CPD problems [66].

The developed method is inspired by the idea of the Collaborative Evolution of Population (CEP)
algorithm [40] which relies on a duel between two random candidates of the population and a
cloning step. The selection step of this algorithm consists first of choosing uniformly at random
a pair of two different candidates among the population. By comparing their corresponding cost
function values, the candidate with smaller cost function value will be selected whereas the other
one will be discarded. The local search stage consists in searching in a neighbourhood of the
selected candidate to make a proposition for a new tentative solution. The general principle of
the proposed method can be summarized as follows

Principle of the CEP algorithm:

• Step 1. At iteration k = 1, select a random population of N ∈ N elements
{x1[1], . . . ,xN [1]} ⊂ Ω. Compute f(x1[1]), . . . , f(xN [1]).

• Step 2. At iteration k > 1,

– Selection stage: choose uniformly at random a pair of different candidates
in the population. Keep the candidate with smaller cost function value and
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discard the other from the population.

– Search stage: search around in a neighbourhood of the selected candidate to
find a new candidate.

– Replacement: add this new candidate to the population.

• Step 3. If none of stopping criteria are met then set k ← k+ 1, return to Step 2 else
stop.

The CEP algorithm and memetic algorithms in general do not require computation of deriva-
tives (e.g. gradient, Hessian matrices) but only the computation of the cost function. This
property is a great advantage of the method over deterministic methods (e.g. gradient-type or
Newton-type methods). For this reason, other objective functions than the quadratic function
(6), like the `1-norm or more generally `p-norms but also the Kullback-Leibler divergence [15]
become quite simple to handle.

Finally, a few stages of the CEP algorithm are displayed in Fig. 1 on a very simple didactic
example. In this example, we search for a solution in a 2D disk by minimizing the Euclidean
distance to the solution (symbolized by a bigger red point). A population of four candidate
solutions is used.

Blue
survives

New
candidate

Magenta
survives

Figure 1: From left to right: illustration of the different steps of two iterations of the CEP method: selection
search and replacement applied to a simple problem: find a point (in red) within a 2D disk (bounded by the
blue circle). A population of 4 candidate solutions (points in black, magenta, blue, and green) is used.

4. Application of memetic algorithms to the non-negative CPD problem

As already explained in the second Section, the non-negative CPD problem is formulated
as an optimization problem which relies on a well-chosen cost function. This cost function can
involve either a quadratic norm (6) (as in most approaches dealing with tensor decompositions)
or more generally `p functions (5). More precisely, in this article, a partial `p cost function of
randomly chosen equations (see (7)) is suggested to reduce even more the complexity of the cost
function computation but also to be able to address the missing data problem with exactly the
same algorithm. We notice that the idea of a random sampling has already been used in [63][12]
where tensor “fibers” or blocks of sub-tensors are selected randomly which can be regarded as a
particular case of the partial cost function suggested herein. Now, we are going to explain and
discuss all the elements specific to memetic algorithms.

4.1. Selection and local search
Assume that at generation k, two candidate solutions are selected, namely xN1 and xN2

(N1 6= N2 ∈ {1, . . . , N}) and that the cost function value using xN1 is smaller than the one
using xN2 . The candidate xN2 is discarded and we proceed to a local search which means that
we now seek for a new candidate solution x̃ in a neighborhood of xN1 in order to replace xN2 .
From now on, to simplify the notations, we omit the population index in the selected candidate
and simply denote xN1 by x = (x1, x2, . . . , xL)> ∈ RL. Our search strategy is very simple.
Only one component xl of x, chosen uniformly at random in {1, . . . , L}, is modified by simply
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adding a quantity µ̂l to its value. If the value of xl+ µ̂l is negative then we use its absolute value
instead. This corresponds to a reflection. Letting µ = [0, . . . , 0, µl, 0, . . . , 0], we have

x̃ = x + µ, (8)

or, at the k + 1-th iteration

x̃[k + 1] = x[k] + µ[k], (9)

where x̃[k+1] = (x̃1[k+1], x̃2[k+1], . . . , x̃L[k+1])> and µ[k] = [0, . . . , 0, µl[k], 0, . . . , 0],
with ∀l ∈ {1, . . . , L}:

x̃l[k + 1] =

{
xl[k] + µl[k] = |xl[k] + µ̂l[k]| if l = l,

xl[k] otherwise.
(10)

The use of the absolute function |·| ensures that x̃[k + 1] is non-negative. The modification of a
single component instead of a set of components is motivated by the possibility of pre-stocking
and of a low-cost computation for the cost function FpM (see the next subsection 4.2). The
crucial question of the choice of µ̂l[k] is discussed in subsection 4.3. In the general context of
non-negative N th-order tensor decompositions, we propose stochastic local steps. Besides, in
the particular case of a quadratic cost function (p = 2), a possible (locally) optimal step and
some hybrid variants can be introduced (see subsection 4.5).

4.2. Cheap cost function computation
Our goal is now to compute the value of the cost function FpM at the new candidate solution

x̃[k + 1] = x[k] + µ[k] accurately and efficiently, knowing that FpM (x[k]) has already been
computed. To perform this task, a simple economic computation of FpM (x̃[k + 1]) is proposed.
We also show later in Subsection 4.4 that the computational expense can be even more reduced
using pre-stocking techniques when the size of the population is equal to 2.

We denote by IlM ⊂ IM the set of all the indices involving the variable xl (see subsection
2.3 for the definition of IM ) i.e.

IlM = {(i1, i2, . . . , iN ) ∈ IM | xl appears in the equation}. (11)

By considering I0 = 0, we can notice that if

1 +

n−1∑
i=0

RIi ≤ l ≤
n∑
i=1

RIi (12)

then the n-th mode was selected in subsection 4.1. Moreover, it is also possible to detect which
variable a(n)i

l
,r

l
is in fact considered when the variable xl is chosen:

rl =

b
(l−

∑n−1
i=0 IiR)

In
c+ 1 if (l −

∑n−1
i=0 IiR) mod In 6= 0

b (l−
∑n−1

i=0 IiR)

In
c else

(13)

il =

{
(l −

∑n−1
i=0 IiR) mod In if (l −

∑n−1
i=0 IiR) mod In 6= 0

In else
(14)

where mod stands for the modulo and b·c is the floor operator. For all (i1, . . . , iN ) ∈ IlM , we
have

ei1...iN [k + 1] = ti1...iN −
∑
r 6=r

l

a
(1)
i1r

[k] . . . a
(N)
iN r

[k]− a(1)i1rl [k] . . .

a
(n−1)
i
l−1

r
l
[k]
(
a
(n)
i
l
r
l
[k] + µl[k]

)
a
(n+1)
i
l+1

r
l
[k] . . . a

(N)
iN rl

[k], (15)
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Hence, we have

ei1...iN [k + 1] = ei1...iN [k]− µl[k] a
(1)
i1rl

[k] . . . a
(n−1)
i
l−1

r
l
[k]a

(n+1)
i
l+1

r
l
[k] . . . a

(N)
iN rl

[k]︸ ︷︷ ︸
z
(−x

l
)

i1...iN ,r
l
[k]

(16)

where

z
(−x

l
)

i1...iN ,rl
[k] = a

(1)
i1r

[k] . . . a
(N)
iN r

[k]/a
(n)
i
l
r
l
[k] if a

(n)
i
l
r
l
[k] 6= 0

Letting
GM (x̃[k + 1],x[k]) = FpM (x̃[k + 1])−FpM (x[k]), (17)

we finally have

GM (x̃[k + 1],x[k]) =
∑

(i1,...,iN )∈Il
M

[
|ei1...iN [k]− µl[k] · z(−xl)i1...iN ,rl

[k]|p − |ei1...iN [k]|p
]
.

(18)

Since card(IlM ) is often by far smaller than card(IM ) = M , the calculation of GM (x̃[k +
1],x[k]) is rather economic. This leads to a cheap computation ofFpM (x̃[k+1]) sinceFpM (x̃[k+
1]) = FpM (x[k]) + GM (x̃[k + 1],x[k]).

4.3. Stochastic step
We now have to address the important question of the choice of the step size µl[k]. In

iterative optimization algorithms, the choice of the step size is often crucial. A too large step size
may lead to a divergence while a too small step size may lead to a slow convergence rate. For
standard stochastic algorithms like the stochastic gradient with decaying step size, it is proven
under convexity assumptions that if the rate of decay is chosen a priori and verifies

∑∞
k=1 µ[k] =

∞ and
∑∞
k=1 µ

2[k] <∞ the convergence to a local minimum is granted [33]. A frequently used
step size is µ[k] = 1/k.
In our case, we suggest the use of a stochastic step size µl[k] drawn from the uniform law
U(−b[k], b[k])1. The parameter b[k] does not depend directly on the value of x[k] but is adapted
to FpM (x[k]). More precisely the parameter µ[k] decreases when the cost function FpM (x[k])
decreases.
We now explain the heuristics used to build this step size. We target a step µ[k] such that the
corresponding residuals in (3) at x̃[k + 1] = x[k] + µ[k] are close to 0 which involves that for
all (i1, . . . , iN ) ∈ IlM , ei1...iN [k + 1] ' 0. Thus, Eq. (15) (or Eq. (16)) can be rewritten as

ei1...iN [k] = ti1...iN −
R∑
r=1

a
(1)
i1r

[k] . . . a
(N)
iN r

[k] ' µl[k]z
(−x

l
)

i1...iN ,rl
[k]. (19)

The estimation of our step size µl[k] therefore rely on two heuristics.

1. First, the quantity p

√
Fp

M
(x[k])

M
indicates the mean error that we have on each term |ti1...iN−∑R

r=1 a
(1)
i1r

[k] . . . a
(N)
iN r

[k]| = |ei1...iN [k]| belonging to FpM (x[k]).

1Other distributions could be used, however we choose the uniform distribution for its simplicity
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2. The second heuristic is based on an approximation of
z
(−x

l
)

i1...iN ,rl
[k] = a

(1)
i1rl

[k] . . . a
(n−1)
i
l−1

,r
l
[k]a

(n+1)
i
l+1

r
l
[k] . . . a

(N)
iN rl

[k].

If we assume that all the components of x[k] are equal, i.e. x1[k] = . . . = xL[k] = τ [k],
we have

∑
(i1,...,iN )∈IM

ti1...iN =
∑

(i1,...,iN )∈IM

R∑
r=1

a
(1)
i1r

[k] . . . a
(N)
iN r

[k] = MRτN [k]. (20)

leading to

τ [k] =
N

√∑
(i1,...,iN )∈IM

ti1...iN

MR
= τ (21)

This heuristic τ , is also useful for the initialization of the algorithm. Under this coarse
approximation of equal values components, z(−n)i1...iN ,r

[k] can be approximated by τN−1.

And finally, thanks to the two heuristics above, the stochastic step size denoted by µsto[k], can
be drawn from the following uniform distribution

µsto[k] ∼ U (−b[k], b[k]) ,

where b[k] =
p

√
FpM (x[k])

M

/
τN−1. (22)

4.4. Choice of the population size
Genetic and memetic algorithms usually involve a large population in order to ensure the

convergence to a global extremum in presence of many local extrema. However, if the conver-
gence is still ensured with a small population, this convergence is more likely to be faster. So
we will now test our algorithm with different sizes of the population starting from a population
of N = 2 candidates until a population of N = 50 candidates. Numerical experiments are
performed on a non-negative 100× 100× 100 tensor generated from randomly chosen loading
matrices drawn from a uniform law U(0, 1) withN ∈ {2, 10, 20, 50}. To be able to compare the
results, an error index is needed. One common error measure (usually used in CPD problems),
is the Relative Reconstruction Error (RRE) which writes

RRE =
‖T̂ − T ‖2F
‖T ‖2F

RREdB = 10 log10(RRE), (23)

where T̂ stands for the reconstructed tensor. The resulting RRE and computation time are pro-
vided in Table 1. The obtained results are averaged over 10 runs.

N = 2 N = 10 N = 20 N = 50

Mean CPU time (s) 1014 2283 5187 16189
Mean RRE (dB) -70.03 -70.05 -70.01 -70.01

Table 1: Performances in terms of RRE and computation time versus the size of the population.

We can observe that although all our numerical tests reach the same performance (RRE ' −70
dB), the use of a population of size N = 2 candidates reduces by a factor 2 (resp. 5 or 16)
the computer running time compared to that needed with a population of N = 10 (resp. N =
20, 50) candidates. When solving the CPD problem, the use of two candidates happens to be
optimal in the convergence speed of the proposed algorithm. This property seems to be quite
general based on the other cases we have tested. From now on, we will focus on the version of
the algorithm involving only two candidates.
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Another advantage of using a candidate population of size two is that it becomes easy to reduce
the computational complexity by pre-stocking previously computed terms. Indeed, we suggest
to store the values of residual errors ei1...iN and to update, at each iteration, only the card(IlM )
modified ones (see 4.2). We recall that the residual error ei1...iN [k + 1] is given by (16), i.e. for

any (i1, . . . , iN ) ∈ IlM , ei1...iN [k + 1] = ei1...iN [k]− µl[k] · z(−xl)i1...iN ,rl
[k].

4.5. New versions of the algorithm in the quadratic case
In the specific case of quadratic cost functions, new versions of the algorithm can be derived.

They rely on a choice of the step size that is different from the preceding stochastic step.

i) Locally optimal step
We propose herein a new way to compute the step µ[k] = (0, . . . , 0, µl[k], 0, . . . , 0). In the

particular case of a quadratic cost function, F2
M (x[k] + µ[k]) can be expressed as

F2
M (x[k] + µ[k]) =

∑
(i1,...,iN )∈Il

M

(ei1...iN [k]− µl[k] · z(−xl)i1...iN ,rl
[k])2 +

∑
(i1,...,iN )∈IM\IlM

e2i1...iN [k]

=µ2
l [k]α0[k]− 2µl[k]α1[k] + α2[k],

where

α0[k] =
∑

(i1,...,iN )∈Il
M

(z
(−x

l
)

i1...iN ,rl
[k])2,

α1[k] =
∑

(i1,...,iN )∈Il
M

ei1...iN [k] · z(−xl)i1...iN ,rl
[k],

α2[k] =
∑

(i1,...,iN )∈IM

e2i1...iN [k].

∂F2
M (x[k] + µ[k])

∂µl
= 2µl[k]α0[k]− 2α1[k] = 0⇒ µopt

l
[k] =

α1[k]

α0[k]
,

This optimization stage is similar to one step of the ALS method except that, here, we compute
the solution of a least square problem involving one single variable selected at random instead
of blocks of variables selected cyclically.

ii) Hybrid strategies
Stochastic optimization algorithms usually exhibit a slow convergence rate when compared to

deterministic optimization algorithms. However, they are, in general, more robust since more
likely to find a global solution to optimization problems than deterministic algorithms which
may converge to a local minimum. Furthermore, when the initialization is close enough to the
global minimum, deterministic methods converge really fast. Starting from this observation, we
propose three possible combinations of the stochastic search strategy with the locally optimal
search strategy in order to better exploit the advantages of each of these two strategies:

(H1) Randomly choose between sµ consecutive stochastic steps µsto and one locally optimal
step µopt (sµ ∈ N∗),

(H2) Initially use µsto then when the estimate x[k] is close enough to the solution (e.g. in the
sense that the RRE ≤ εRRE) then choose µopt until convergence,

(H3) First, use K ∈ N∗ iterations with µsto, then alternate between K iterations using µopt or

µsto if the relative diminishing rate of the quadratic criterion ‖F
2
M [·+K]−F2

M [·]‖
F2

M
[·] is smaller

than εK ∈]0, 1[ (this alternative technique avoids a too slow convergence rate).
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4.6. Resulting algorithm
The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 NTF-STO
1: Let x1[1],x2[1], . . . ,xN [1] ∈ RL

+ and (N,R,M,K) ∈ N4, N ≥ 2.
{Initialization}

2: Select Fp
M at random. {Choice of partial cost function}

3: Calculate Fp
M (x1[1]), . . . ,Fp

M (xN [1]).
4: for k = 1, 2, ..., kmax do {k-th iteration}
5: if p = 2 then {Storing Stage}
6: store the residual values ei1...iN [k], Eq. (3);
7: end if
8: Select randomly (N1, N2) ⊂ {1, . . . , N}, N1 6= N2.
9: if Fp

M (xN1 [k]) ≤ Fp
M (xN2 [k]) then {Selection stage}

10: x[k] = xN1 [k].
11: else
12: x[k] = xN2 [k].
13: end if
14: Select a component xl of x randomly. {Search stage}
15: Compute µ̂l[k] based on µsto[k], Eq. (22) (or µopt[k], Eq. (24) or hybrid strate-

gies (Section 4.5) if p = 2). {Step size calculation}
16: Update the population: xN1 [k+1] = x[k],xN2 [k+1] = x̃[k+1] = x[k]+µ[k],

Eq. (10), other candidates are unchanged. {Replacement stage}
17: Calculate Fp

M (xN2 [k + 1]) using Eq. (18).{Cost function computation}
18: end for

5. Computer simulations on synthetic data

We now study the behavior of the proposed memetic algorithm and of its variants on numer-
ically generated data. For simplicity, we will denote by:

• (S), the version of the memetic algorithm based on stochastic steps only,

• (O), the version of the memetic algorithm based on locally optimal steps only,

• (H1), (H2), (H3), the three hybrid versions based on an alternation between stochastic
and locally optimal steps and on the following choice of parameters:

– sµ = 10 in (H1)

– εRRE = 0.01 in (H2)

– εK = 0.01 in (H3) with K = 4× 104.

The same initialization or set of initializations is used for all the considered algorithms. For all
simulations, three stopping conditions are considered:

1. maximum number of iterations kmax = 6.108 is reached,
2. relative reconstruction error RRE is less than 10−7,

3. relative diminishing rate of FpM reads ‖F
p
M

[·+l]−Fp
M

[·]‖
Fp

M
[·] < 10−7 with l = 4× 104.

We will now present the results obtained with the different versions of the suggested algo-
rithm in different contexts and we will also perform a comparison with other well-established
methods of the literature (e.g. Bro’s N -way [8], fast HALS [45] algorithms).
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5.1. Description of the data
The main targeted application is chemometry and environmental data analysis thanks to 3D

fluorescence spectroscopy data sets. In most simulations (except in subsection 5.7 where the
studied tensors are randomly generated), the considered tensors are simulated synthetic fluo-
rescence spectroscopy data. The simulated (non-negative) third-order tensor is composed of 3
loading matrices A(1),A(2),A(3), which respective sizes are I1 = 100, I2 = 47, I3 = 100
rows and R = 5 columns. The dimensions of the resulting tensor are thus 100 × 47 × 100.
The columns of matrices A(1),A(2) stand for the emission and the excitation spectra of the flu-
orescent chemical components. Spectra are modeled using shifted generalized Gaussian density
functions (see [66][65]). Each fluorescent chemical component is characterized by a so-called
Fluorescence Excitation-Emission Matrix (FEEM), resulting from the outer product of two vec-
tors, the corresponding emission and excitation spectrum. The concentration A(3) of all compo-
nents is drawn from a uniform distribution in [0, 10]. The considered FEEM and the (normalized)
spectra and concentrations are displayed in Fig. 2 and Fig. ?? respectively.

λ ex

(1)

250

300

350

400
(2)

λ
em

(3)

250 300 350 400

λ ex

λ
em

(4)

250 300 350 400
250

300

350

400

Reference

λ
em

(5)

250 300 350 400 

 

0

10

20

30

40

50

60

70

80

90

0

0.02

0.04
Excitation spectra

0

0.05

0.1
Emission spectra

0

500

1000
Concentrations

0

0.05

0.1

0

0.05

0.1

0

200

400

0

0.02

0.04

0

0.05

0.1

0

500

1000

0

0.02

0.04

0

0.05

0.1

0

200

400

250 300 350 400
0

0.05

λ
ex

250 300 350 400
0

0.02

0.04

λ
em

0 50 100
0

200

400

Experiments

Figure 2: Ground truth FEEM (left). Ground truth excitation spectra, emission spectra and concentrations
for each of the 5 components (right).

5.2. Error indexes
When we tackle the problems of overfactoring (i.e. R > R) and want to assess their influence
on the CP Decomposition algorithms, the RRE index is no more sufficient That is why we need
to introduce two other error indexes that are used to evaluate more accurately the quality of the
estimation. The first one, denoted by E1, measures the relative error of estimation but discard-
ing the over-factoring part. The second one, denoted by E2 measures the error induced only
by the over-factoring part. In this case, the inherent indetermination of the CPD problem (i.e.
permutation and scaling ambiguities) also has to be taken into account: if we apply to a given
solution a permutation of their loading factors or an appropriate scaling of their loading matri-
ces, the obtained result is also a solution and defines the same decomposition. Permutation and
scaling-independent measurements of the errors are therefore necessary.
For N -way tensors, the loading matrices A(n), for all n ∈ {1, . . . , N}, are first normalized
in such a way that each column of A(n) for n ∈ {1, ..., N − 1} is normalized in `1 and each
column of A(N) carries the weight. The estimated normalized solutions of the CPD algorithm
are denoted by Â(n). Then, the R column vectors of Â(n) are permuted such that their Eu-
clidean distance to Ā(n) is minimized. The permuted normalized estimates are denoted by Â

(n)
σ

while Â
(n)
σ (1 : R) means that only its R first columns are considered and σ is the considered
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permutation. Thus, the estimation error E1 is defined by

E1(σ) =

∑N
n=1 ‖Â

(n)
σ (1 : R)−A(n)‖1∑N
n=1 ‖A(n)‖1

⇒

{
E1 = minσ E1(σ) or E1dB = 10 log10(E1)

σopt = arg minσ E1(σ)
(24)

The error E2 concerning the over-factoring part, i.e. the remaining components R + 1, . . . , R,
is thus computed as follows

E2 = ‖
R∑

r=R+1

a
(1)

σopt,r
◦ · · · ◦ a(N)

σopt,r
‖1 or E2dB = 10 log10(E2). (25)

5.3. Equation selection in the cost function (noiseless case)
Our first objective is to study the behaviour of the proposed algorithms with respect to the

number of random equations M involved in F2
M (see Eq. 7). The obtained results are presented

in Fig. 3. The tested values of M are {2L, 4L, 6L, 10L, I1I2I3} where L = (I1 + I2 +
I3)R which, in terms of percentage m of involved constituent terms in F2

M (m = 100×M
I1I2I3

),
corresponds tom = {0.5%, 1%, 1.5%, 2.6%, 100%} respectively. For each value ofM , we use
10 randomly chosen partial cost functions FpM while the algorithms are all started from the same
random initialization. In Fig. 3, we observe that the suggested algorithms converge whatever

Figure 3: Performance of the different variants of the algorithm with respect to the number M of equations
involved in the partial cost function F2

M (M = 2, 4, 6, 10 times the number of unknowns, and finally the
total cost function).

the considered configuration as soon as m ≥ 1%. In other words, only 1% of the available
information seems to be sufficient for convergence in these tests. The use of a larger value of
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M ensures the convergence but is time-consuming, while a too small value of M may lead to a
divergence. These conclusions remain true for all the proposed variants of the algorithm.
Our next objective is to study the robustness of the proposed algorithms with respect to the
choices of the set of M random equations involved in F2

M (see Eq. 7). To that aim, the size M
of F2

M is set to M = 4L, since the convergence is ensured for all the versions of the algorithm
in such a case. For each algorithm, the simulations are performed over 10 different sets of
M randomly chosen constituent terms involved in the partial cost functions F2

M . A unique
initialization drawn from the uniform distribution U(0, 2τ) is used for all the experiments where
τ is defined in Eq. 21.

Figure 4: Behavior of the proposed memetic algorithms using ten different choices of M = 4L equations
for the calculation of the partial cost function F2

M .

The Fig. 4 illustrates the evolution of the error indexes E1 with respect to each algorithms
over time. The range in which they vary and the corresponding median value are traced. When
M = 4L, we can observe that all algorithms are able to converge and to attain a good level of
performance (-60dB in this case). Among the different variants of the algorithm, the version with
locally optimal steps (O) and the hybrid versions (H1, H2) converge the fastest. Considering the
median value, (H2) happens to be the fastest of the three algorithms. Moreover, their computa-
tion times are relatively close to each other and by far faster than the stochastic step version (S)
which remains the slowest. The hybrid versions (H3) falls between (H1, H2, O) and (S).

5.4. Robustness with respect to initialization
We now test the robustness of all the considered algorithms versus the initialization. To study

that problem, we draw ten initial values of the loading matrices from the uniform distribution
U(0, 2τ) (and respectively from U(0, τ

50
), U(0, τ

5
), U(0, 20τ), U(0, 200τ)), thus involving a

total of 50 different initializations. The same partial cost function F2
M of size M = 4L, is used

for all the experiments. Then the resulting errors E1 are arranged in ascending order. They are
shown in Fig. 5.
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Figure 5: Estimation error E1 obtained with the memetic algorithms using 50 different initial values drawn
from U(0, τ

50
), U(0, τ

5
), U(0, 2τ), U(0, 20τ), U(0, 200τ). Noise-free case and the cost function size

M = 4L.

We can observe that the versions (S, H2, H3) converge in all experiments (but sometimes (S) is
too slow too reach the same level of performance as (H2, H3)) while the versions (O, H1) only
converge in respectively 70% and 38% of the cases. Indeed, this phenomenon happens when the
initialization is either relatively too close to 0 (drawn from U(0, τ

50
)) or too large (drawn from

U(0, 200τ)).

5.5. Robustness with respect to noise
We suppose now that the observed tensor T is corrupted by noise. We consider an additive

uniform noise U(0, b), (b > 0) and different SNR values: 10 dB, 50 dB, 100 dB, 150 dB
and 200 dB respectively. The Fig. 6 illustrates the performance of the five variants of the
suggested algorithm using 10 different random initializations drawn from U(0, 2τ). The partial
cost function F2

M is fixed (M = 4L).
We observe that all the algorithms behave in a quite similar way with regards to noise. The
weaker the noise is the smaller the error is. The median values of the error E1 are rather close
whatever the considered version of the algorithm and the results hardly depend on the initial
values.

To conclude this first set of experiments: Using a partial cost function instead of the whole cost
function enables to considerably accelerate the algorithms. Moreover, if

1. (S) is robust with respect to noise and initialisation, it remains the slowest of the five
algorithms,

2. (H3) is robust with respect to noise and initialisation, but remains relatively slow,
3. (H1) (O) converge rapidly, yet they are more sensitive to a good initialisation choice,
4. (H2) seems to be the best of the five algorithms since it is both fast and robust.

We will now study another type of cost function, namely the `p-norm function.
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Figure 6: Median of the estimation errors versus the level of noise for the five variants of the suggested
algorithms.

5.6. Choice of the `p-norm
Only the standard stochastic version (S) of the algorithm is tested since the calculations of

the locally optimal step size are generally more complicated to conduct.

5.6.1. Special case of `1 cost function
First, we focus on the `1 cost function. Fig. 7 presents the behaviour of our memetic algo-

rithm using the `1 cost functionF1
M . Various values ofM are tested,M ∈ {4L, 20L, 40L, 60L,

100L, 200L, I1I2I3}, which correspond to the following percentage of constituent terms in-
volved in FpM : m = 1%, 5%, 10%, 15%, 25%, 50% and 100% . A single initialization is drawn
from U(0, 2τ). While at M = 4L, the algorithm converges in the case of the `2 cost function
F2
M (see Fig. 3 at the bottom), this is no more true forF1

M under exactly the same conditions (i.e.
same initialization, same corresponding index set IM and same stopping conditions), see in Fig.
7 the black line at 1%. Indeed, the convergence occurs for larger values of M : M = 20L (i.e.
m = 5%) or greater. Thus, the rates of convergence are approximately linear and the shortest
computation time is observed when m = 10%.

5.6.2. Choice of the `p norm for the partial cost function
We now examine the behavior of (S) using `p cost functions with p ∈ {1, 1.5, 2, 3, 4}. Note

that a same setting and M = 4L is fixed for all tests. Fig. 8 shows the evolution of E1 versus
time. We observe that the convergence occurs in all cases except when p = 1. The fastest
convergence is obtained with the `2 cost function (p = 2).

5.7. Comparison of different algorithms
Finally, we compare the computation time obtained with the different suggested algorithms

(S, O, H1, H2, H3) and with some popular methods e.g. the NTF-ALS [15], the fast NTF-HALS
[45][44], and the N -way algorithms [9]. A unique configuration is set up for all experiments.
Indeed, we use herein randomly generated data sets (i.e. all the loading matrices are drawn
from uniform distributions). For simplicity, the tested tensors are chosen in cubic form, i.e.
I1 = I2 = I3 = I , where I takes value in {100, 200, 400}. We consider two values for the

17



0 2 4 6 8 10 12 14 16

x 104

−60

−50

−40

−30

−20

−10

0

E
1
 (dB)

Time (s)

dB

 

1%	
5%
10%
15%
25%
50%
100%

Figure 7: The computation time for the NTF-STO algorithm (S) w.r.t. the size M of the cost function F1
M

(in % of constituent terms involved in F1
M ).

tensor rankR = R = 5 or 10 but forR = 10, we will consider only I = 100. The initializations
are drawn from the uniform law U(0, 2τ).
In Table 2, we can see that the new versions of our algorithms (O, H1, H2) are the fastest algo-
rithms to converge among our proposed methods. In addition, we also observe a significant im-
provement in terms of computation time when a pre-stocking is used. Furthermore, the versions
(O, H1, H2) outperform the NTF-ALS and the Bro’s N-way when I becomes large, and remains
competitive with these methods even when the tensor rank R increases for small scale tensors.
This is not the case of the stochastic version (S). We could not make a fair comparison with
the fast NTF-HALS because the algorithm does not attain the same performance (RRE= 10−8)
than other methods. The computation time of the fast NTF-HALS is given as an indication only.
Nevertheless, we note that version (O) of our algorithm is close to the fast HALS in terms of
computation time on the hardest problems. As compared to the method suggested in [66] (S)
without pre-stoking, we were able to gain a significant factor in the overall speed of convergence
(ranging from 15 to 45).

5.8. Estimation of the tensor rank
In the previous simulations of this section, the tensor rank R was assumed to be known. In this
subsection however, we target a more general tensor decomposition problem where the rank is
unknown. To that aim, different approaches have been developed. Most of them are based on
the addition of regularization terms [48][65] in the cost function. Here, we suggest the use of
the NTF-STO algorithms together with a strategy to estimate R by progressively increasing the
value of R. This idea has already been used as an acceleration method [34] in order to compute
gradually the coefficients of the development of a function on an orthogonal basis. The technique
can be summarized as follows:

Step 1. We assume a low tensor rank R ≤ R.
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Figure 8: Evolution of the error index E1 versus time with the NTF-STO algorithm (S) for different `p cost
functions, p ∈ {1, 1.5, 2, 3, 4}, M = 4L.

Step 2. We estimate the corresponding R loading factors of each component using one of the
variants (S, O, H1, H2, H3) of the algorithm,

Step 3. If a stopping criterion is met (e.g. when FpM [k] ≤ εF ) then we break. If not, we increase
the rank by 1 unit, i.e. R ← R + 1. We then form a new initialization: R + 1 loading
factors for each factor matrices formed by the previously estimated R loading vectors
and a loading vector whose terms are all initialized using a constant (non-null) value.
This value is computed using the same kind of heuristic as the one used to initialize the
algorithm except that this time the tensor is replaced by the model error obtained at the
previous step. We then return to Step 1.

We now illustrate the principle of this technique on noiseless fluorescence spectroscopy like
data presented at the beginning of this section. We use a random initialization with a small
starting rank e.g. R = 2, εRRE = 0.1. The stopping conditions performed with rank R are
kmax = 24×107, RRE< 10−8, εK < 10−7 withK = 4×104. The obtained FEEM are shown
in Fig. 9 for each tested value of R. The process indeed ended when R = R = 5. The obtained
RRE at the end of each phase (R ∈ {2, 3, 4, 5}) are given Table 3.

R = 2 R = 3 R = 4 R = 5

RRE 0.199 0.109 5.62× 10−5 7× 10−9

Table 3: Obtained RRE at the end of each phase (R ∈ {2, 3, 4, 5}) using the proposed method, the tensor
rank is increased progressively.

We observe that the tensor rank can be estimated and that the FEEM (and all the loading factors
even if they are not displayed here) are well recovered.
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I = 100
R = R = 5

I = 200
R = R = 5

I = 400
R = R = 5

I = 100
R = R = 10

NTF-ALS 15s 113s 957s 32s
fast HALS 2.7s 8.7s 46s 15s

N-way 11s 52s 388s 20s
(S) without stocking 216s 383s 1283s 2508s

(S) with stocking 85s 183s 430s 847s
NTF-STO (O) 10s 23s 50s 55s

NTF-STO (H1) 13s 26s 70s 63s
NTF-STO (H2) 11s 21s 65s 61s
NTF-STO (H3) 86s 182s 396s 393s

Table 2: Computer running time (s) of the different methods (best in bold and second best in italic), stopping
conditions: relative reconstruction error RRE ≤ 10−8 except for fast HALS where RRE ≤ 7 × 10−7.
Noise-free randomly generated data.

6. Computer simulations on experimental data: a water monitoring campaign

We now study a real experimental data set corresponding to a water monitoring campaign
[13]. The data in this experiment were acquired automatically every 5 minutes, during a 9 days
monitoring campaign performed on water samples collected from an urban river. The size of
the baseline data set considered here is 36 × 111 × 2592. The excitation wavelengths range
from 225nm to 400nm with a 5nm bandwidth, whereas the emission wavelengths range from
280nm to 500nm with a 2nm bandwidth. The FEEMs have been pre-processed using the Zepp’s
method [68] to eliminate the Rayleigh and Raman scattering2. All remaining negative values
(representing 0.34%) of the data were set to 0. One example of a FEEM before and after pre-
processing is shown in Fig. 10.
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Figure 10: One of the 2594 original FEEM acquired during the monitoring campaign and the same FEEM
after pre-processing using the Zepp’s method.

Additional pre-processing were applied: the data corresponding to the first 6 emission slits were
removed since most of the negative values in the original data occur here. To increase the read-
ability of charts we have chosen here to discard the first 1200 FEEMs where no significant
change seems to occur. Two other FEEMs (corresponding to the 1737th and 1738th acquisition

2 Indeed, other pre-processing techniques among which are mathematical morphology [51] or other filter-
ing techniques, calibration thanks to the use of a blank, reset or shifts can be applied. We underline (though
these results are not presented here) that the estimations of the loading matrices performed thanks to the
optimization algorithms presented here (i.e. N -way, NLCG, NTF-STO) can significantly differ from the
application of one pre-processing technique to another.
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Figure 9: True FEEM (bottom right) and estimated FEEM obtained at the end of each stage when R = 2,
R = 3, R = 4 and for the last stage R = 5.

time) were suppressed due to noticeable acquisition problems3. Finally, the size of data that are
processed in this example is 36 × 105 × 1392 (from the 5th day to the 9th day). The number
of fluorescent substances present in this experiment is unknown. However by observation of the
acquired FEEM, we can notice that an abnormal pattern appears at the seventh day whereas the
FEEM obtained before this day appear to be quite stable versus time. The Fig. 11 shows some
FEEM acquired before, during, and after that event.

3The positions of the scattering effect in these two FEEMs do not correspond to the description in the
literature.
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Figure 11: Example of four (pre-processed) FEEM acquired before (top left), during (top right, bottom left),
and after (bottom right) day 7.

6.1. Results
Different tensor ranks (i.e. different estimates of the number of chemical compounds) are tested:
R = 4/6. In the NLCG method [49], a `1 regularization is used. The regularization parameters
are set at α = 5× 105 for R = 4 (resp. α = 3× 105 for R = 6) (see [64]4).

In the memetic method, however, no regularization was performed and the hybrid strategy
(H2) was tested since it seems to be the best variant of our algorithms in terms of robustness and
rapidity. The estimation obtained with this method when R = 6 was derived by progressively
increasing the rank with the starting estimated rank R = 4. Finally, the N -way algorithm with
non-negativity constraints is tested on the data of interest using the same initialization as the
previously mentioned methods.
The reconstructed Fluorescence Excitation Emission Matrices obtained by all the methods are
displayed on the left of Fig. 12 (resp. 13) for R = 4 compounds (resp. for R = 6 compounds).
Their concentrations are given on the right of Fig. 12 for R = 4 compounds, and in Fig. 14 for
R = 6 compounds.

4To guide the choice of regularization parameters, we considered the ratio between the value of the fidelity
term and that of the regularization terms. Various values for this regularization parameter were tested, yet
we found that the best results (in terms of low quadratic criterion and of regularization effectiveness) were
obtained with these choice of parameters
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Figure 12: Estimated FEEMs (left) and concentrations (right) using N -way algorithm (top), NLCG algo-
rithm (2c) (middle), memetic algorithm (H2) (bottom), case R = 4.

We observe that for R = 4, the three algorithms exhibit very close results, yet, we observe
differences for R = 6. With the N -way and the NTF-STO algorithms, we obtain very close
results again, which is not surprising since these two algorithms do not involve regularisation
terms to enforce the sparsity of the solution. On the contrary, the NLCG algorithm, which is
regularized tends to enforce sparsity and, in this case, leads us to conclude that there are probably
only four fluorescent compounds in the studied collected samples of water. On this experimental
data set, the incremental technique suggested in the previous section to both estimate the tensor
rank and the factor matrices did not seem to be able to stop the algorithm when the true rank is
reached. It may have many causes: model errors, noise, and so on. So, possible improvements
will be now to consider regularization terms in our partial cost functions too.

7. Conclusion & perspectives

In this article, we have presented a new stochastic method based on a memetic algorithm in
order to solve the CPD problem under non-negativity constraints. This algorithm relies on the
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Figure 13: Estimated FEEM using theN -way (top, left), the NLCG ((2a), top, right), the memetic algorithm
(bottom), case R = 6.

choice of a population of candidates, on a search stage involving the calculation of a step size
and on an `p cost function.

First, we have shown that in the case of a stochastic step size adapted to the value of the `p
cost function, the algorithm makes it possible to solve the CPD problem. Furthermore we have
remarked that a population of two candidates was sufficient and optimal in terms of computa-
tional time to solve this problem. Then, we have tried to reduce the size of the problem by only
keeping a random fraction of the involved equations. This idea was efficient too because we
were able to recover the hidden loading matrices by keeping only 1% of the original equations.
Another improvement was the cheap computation of the `2 cost function thanks to a computa-
tion of only the difference between its values at two consecutive steps. This was particularly
efficient because our search stage consists of changing one component at a time of the vector of
unknowns. The last trick to improve the speed of convergence was the introduction of a locally
“optimal” step size which was obtained by solving a least square problem on one component of
the vector of unknowns. The algorithm based on this new step happens to be much more efficient
than the one based on the stochastic step, yet, it is less robust versus initialization. When the ini-
tialization was too far from the solution, it may fail to converge. This lead us to propose a hybrid
version of the algorithm taking advantages of the robustness of the stochastic step size method
and the efficiency of the optimal step size method. The combination of all these tools increased
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Figure 14: Estimated concentrations using the N -way (top, left), NLCG ((2a), top, right), and memetic
algorithm (bottom), case R = 6.

the efficiency of the crude stochastic algorithm by several degrees of magnitude. We have also
made some comparison with standard deterministic algorithms. Compared to Bro’s N -way and
the fast HALS algorithms, the hybrid versions of our proposed method is highly competitive in
terms of computation time, especially when the tensor dimensions are large. Moreover, the ap-
proach is quite efficient since the same algorithm can also tackle the CPD problem with missing
data which is not the case of classical deterministic methods for which a weighting matrix has
to be introduced. Finally, we made a final attempt to improve the algorithm by changing the `2
cost function into a general `p cost function. The numerical results seem to show that the choice
p = 2 is close to optimality. The different variant of these memetic algorithms were tested on
synthetic and real experimental data. The hybrid variant (H2) seems to offer the best compromise
ensuring good performances, a fast convergence and robustness versus noise and initialization.
Finally, we also tested an incremental technique to stop the algorithm when the tensor rank is
unknown. If good results were obtained on synthetic noiseless data, this way to proceed does not
seem to work on real experimental data. That is why we will have to test modified cost functions
involving regularization terms.
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à la tomographie par impédance électrique,” Ph.D. dissertation, Aix-Marseille Université,
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