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ABSTRACT	18	

Porewater	fluxes,	including	fresh	groundwater	discharge	and	circulation	of	surface	19	

waters	through	sediments,	are	increasingly	documented	to	play	an	important	role	in	20	

hydrological	and	biogeochemical	cycles	of	coastal	water	bodies.	In	most	studies,	the	21	

magnitude	of	porewater	fluxes	is	inferred	from	geochemical	tracers,	but	a	detailed	22	

understanding	of	the	underlying	physical	forces	driving	these	fluxes	remains	limited.	In	23	

this	study,	we	evaluate	the	mechanisms	driving	porewater	fluxes	in	the	shallow	coastal	24	

La	Palme	lagoon	(France).	We	combined	measurements	of	variations	of	salinity	and	25	

temperature	in	the	subsurface	with	1-dimensional	fluid,	salt	and	heat	transport	models	to	26	

evaluate	the	dynamics	of	porewater	fluxes	across	the	sediment-water	interface	in	27	

response	to	temporally	variable	forcings.	Two	main	processes	were	identified	as	major	28	

drivers	of	porewater	fluxes:	i)	temporal	variations	of	lagoon	water	depths	(forcing	29	

porewater	fluxes	up	to	25	cm	d-1)	and	ii)	locally-generated	wind	waves	(porewater	fluxes	30	

of	~50	cm	d-1).	These	processes	operate	over	different	spatial	and	temporal	scales;	Wind-31	

driven	waves	force	the	shallow	circulation	of	surface	lagoon	waters	through	sediments	32	

(mostly	<	0.2	m),	but	are	restricted	to	strong	wind	events	(typically	lasting	for	1-3	days).	33	

In	contrast,	porewater	fluxes	driven	by	variations	of	lagoon	water	depths	flush	a	much	34	

greater	depth	of	sediment	(>1	m).	The	spatial	and	temporal	scales	of	driving	forces	will	35	

largely	determine	the	significance	of	porewater	fluxes,	as	well	as	their	chemical	36	

composition.	Thus,	an	appropriate	evaluation	of	the	magnitude	of	porewater-driven	37	

solute	fluxes	and	their	consequences	for	coastal	ecosystems	requires	a	solid	and	site-38	

specific	understanding	of	the	underlying	physical	forces.		39	

	40	

Keywords:	porewater	exchange,	submarine	groundwater	discharge,	coastal	lagoon,	41	

driving	forces,	waves,	salinity,	temperature	 	42	
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1.	INTRODUCTION	43	

Water	fluxes	circulating	through	permeable	sediments	are	increasingly	being	recognized	44	

as	an	important	source	of	dissolved	solutes	(e.g.	nutrients,	metals,	pollutants)	to	surface	45	

water	bodies	(Anschutz	et	al.,	2009;	Liefer	et	al.,	2013;	Rodellas	et	al.,	2015).	In	coastal	46	

settings,	these	fluxes	across	the	sediment-water	interface	are	commonly	referred	to	as	47	

Submarine	Groundwater	Discharge	(SGD)	or	porewater	exchange	(PEX),	depending	on	48	

the	scale	of	the	circulation	process	(Moore,	2010;	Santos	et	al.,	2012).	In	this	study,	we	49	

use	the	term	porewater	fluxes	to	refer	to	the	total	efflux	of	water	and	solutes	across	the	50	

permeable	sediments	to	surface	waters,	thus	including	both	SGD	and	PEX.	Porewater-51	

driven	fluxes	of	solutes	may	exert	a	major	control	on	the	biogeochemistry,	water	quality	52	

and	ecological	functioning	of	receiving	water	bodies,	e.g.	contributing	to	sustaining	the	53	

primary	production	and	community	composition	of	phytoplankton	in	coastal	areas	54	

(Andrisoa	et	al.,	2019;	Garcés	et	al.,	2011;	Valiela	et	al.,	1990),	promoting	eutrophication	55	

of	surface	waters	(Hwang	et	al.,	2005;	Paerl,	1997),	and	leading	to	recurrent	harmful	algal	56	

blooms	(Gobler	and	Sañudo-Wilhelmy,	2001;	Lee	et	al.,	2010).		57	

	58	

The	physical	mechanisms	driving	porewater	fluxes	strongly	affect	the	residence	time	of	59	

waters	within	sediments	or	the	coastal	aquifer,	determining	the	extent	and	rates	of	60	

biogeochemical	reactions	and	therefore	the	composition	of	discharging	fluids	(Santos	et	61	

al.,	2012;	Weinstein	et	al.,	2011).	An	appropriate	understanding	of	the	magnitude	of	62	

solute	fluxes	driven	by	groundwater	and	porewater	discharge	requires	thus	identifying	63	

the	mechanism	forcing	these	inputs.	Many	physical	processes	produce	pressure	gradients	64	

at	the	sediment-water	interface	that	can	force	advective	porewater	fluxes.	The	main	65	

driving	forces	include	the	terrestrial	hydraulic	gradient	and	its	seasonal	oscillations,	66	

wave	and	tidal	pumping,	the	interaction	of	currents	and	seafloor	topography,	convection	67	



	 4	

driven	by	density	inversions	or	pumping	activities	of	benthic	fauna	(Huettel	et	al.,	2014;	68	

Santos	et	al.,	2012).	These	different	forcing	mechanisms,	which	are	of	both	marine	(e.g.	69	

wave	and	tidal	setup)	and	terrestrial	(e.g.	hydraulic	gradient)	origin,	are	highly	dynamic	70	

and	irregular,	span	a	wide	range	of	exchange	lengths	and	timescales	and	are	frequently	71	

superimposed	(Robinson	et	al.,	2017;	Santos	et	al.,	2012,	2009).		72	

	73	

A	large	number	of	studies	highlight	the	overall	magnitude	and	the	significance	of	74	

porewater	fluxes	(e.g.	(Cho	et	al.,	2018;	Kwon	et	al.,	2014;	Moore	et	al.,	2008;	Rodellas	et	75	

al.,	2015)),	but	there	is	still	little	information	about	their	driving	forces	(Robinson	et	al.,	76	

2017).	Studies	conducted	to	date	have	evaluated	the	effect	of	individual	driving	forces	in	77	

isolation	and	have	been	mainly	focused	on	regular	and	short-term	forces	(e.g.	semi-78	

diurnal/diurnal	tides,	density-driven	flows),	mainly	as	a	consequence	of	the	difficulties	79	

inherent	in	investigating	irregular	and	longer	period	forcing	via	field	experiments	and	in	80	

unraveling	the	various	forcing	effects	(Robinson	et	al.,	2017).	Irregular	forcings,	such	as	81	

episodic,	high	intensity	events,	may	have	a	great	impact	on	fluxes	of	water	and	solutes	82	

driven	by	porewater	fluxes	(Sawyer	et	al.,	2013;	Smith	et	al.,	2008).	The	understanding	of	83	

these	forcing	is	thus	required	to	better	predict	the	effects	of	increasing	stressors	in	the	84	

system	(e.g.	climate	change,	anthropogenic	pressure)	and	to	better	identify	settings	85	

where	specific	forcings	may	dominate	over	the	others.		86	

	87	

This	study	is	aimed	at	characterizing	porewater	fluxes	in	a	shallow	coastal	lagoon	(La	88	

Palme	Lagoon,	France),	where	the	circulation	of	significant	volumes	of	surface	water	89	

through	sediments	have	been	previously	documented	(Cook	et	al.,	2018a;	Rodellas	et	al.,	90	

2018;	Stieglitz	et	al.,	2013;	Tamborski	et	al.,	2018).	These	previous	studies	have	91	

estimated	the	average	magnitude	of	porewater	fluxes	to	the	lagoon,	but	they	provided	92	
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little	insight	into	their	temporal	variations	and	the	mechanisms	driving	these	fluxes.	The	93	

current	paper	examines	variations	of	subsurface	temperature	and	porewater	salinity	in	94	

La	Palme	lagoon	to	evaluate	the	dynamics	of	porewater	fluxes	and	to	provide	some	95	

insight	into	controlling	forcings.	In	this	study,	we	focus	on	two	mechanisms	that	can	96	

control	porewater	fluxes	in	the	lagoon	and	that	operate	over	different	temporal	and	97	

spatial	scales:	i)	the	variations	of	lagoon	water	depths,	which	can	influence	the	terrestrial	98	

hydraulic	gradient	and	drive	long-scale	(>1	m)	porewater	fluxes,	and	ii)	wave	pumping	99	

produced	by	the	strong	winds	of	the	region,	which	forces	the	flushing	of	shallow	100	

sediments	(short-scale	porewater	fluxes).	Other	active	mechanisms	are	likely	101	

significantly	contributing	to	total	porewater	fluxes	(e.g.	bioirrigation	or	current-102	

topography	interactions),	but	they	are	not	specifically	evaluated	in	this	study.	103	

	 	104	
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2.	METHODS	105	

2.1.	Study	site:	La	Palme	lagoon,	France	106	

La	Palme	is	a	small	(500	ha	surface	area),	shallow	coastal	lagoon,	with	mean	and	107	

maximum	water	depths	of	~0.7	and	~2	m,	respectively	(Fig.	1).	It	is	connected	with	the	108	

Mediterranean	Sea	through	a	small	opening	in	the	coastal	sand	spit,	which	may	be	109	

seasonally	closed,	and	it	receives	continuous	fresh	groundwater	inputs	(0.01	–	0.04	m3	s-110	

1)	mainly	from	a	regional	karst	aquifer,	constituted	by	karstified	Jurassic	and	Lower	111	

Cretaceous	limestones	(Stieglitz	et	al.,	2013;	Wilke	and	Boutière,	2000).	The	lagoon	is	also	112	

connected	with	a	shallow	alluvial	aquifer	(Alluvial	aquifer	of	Aude	and	Berre	rivers),	but	113	

little	information	is	available	on	the	aquifer-lagoon	interaction.	The	internal	mixing	of	the	114	

lagoon	and	its	exchange	with	coastal	waters	is	driven	primarily	by	the	strong	north-115	

westerly	winds	characteristic	of	the	region	(regularly	exceeding	10	m	s-1).	Given	that	tidal	116	

variations	in	the	Mediterranean	Sea	are	usually	small	and	the	exchange	between	La	117	

Palme	lagoon	and	the	sea	is	highly	restricted	by	three	physical	barriers	(railway	dike,	118	

road	dike	and	sandy	barrier;	Fig.	1),	tidal	forcing	plays	a	minor	role	on	the	hydrodynamic	119	

functioning	of	this	lagoon	(tidal	range	in	the	lagoon	<1cm;	(Fiandrino	et	al.,	2012)).	Most	120	

of	the	lagoon	is	covered	by	fine-to-coarse	grained	sands	(100-500	µm)	and	only	the	121	

northern	part	of	the	lagoon	is	dominated	by	fine-grained	sediments	(~50	µm).	The	122	

eastern	part	of	the	lagoon	is	surrounded	by	evaporation	ponds,	but	there	is	no	visual	or	123	

chemical	evidence	of	a	connection	between	the	lagoon	and	the	salt	pond	(Rodellas	et	al.,	124	

2018;	Tamborski	et	al.,	2018).	125	

	126	

A	study	conducted	by	Stieglitz	et	al.	(2013)	hypothesized	that	strong	winds	produced	127	

circulation	of	large	amounts	of	lagoon	water	through	surface	sediments.	Different	studies	128	

have	estimated	porewater	inputs	to	the	entire	lagoon	at	0.4	–	2.1	m3	s-1	(0.8	–	4.1	cm	d-1),	129	
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which	is	the	equivalent	of	the	volume	of	the	entire	lagoon	circulating	through	the	130	

sediments	every	20	-	90	days	(Rodellas	et	al.,	2018;	Stieglitz	et	al.,	2013;	Tamborski	et	al.,	131	

2018).	However,	to	date,	the	forces	driving	these	fluxes	have	not	been	evaluated	in	detail.		132	

	133	

2.2.	Sampling	and	analysis	134	

Four	different	stations	(Pz1,	Pz2,	Pz3,	Pz4)	were	established	in	areas	considered	135	

representative	of	the	different	sediment	types	of	the	lagoon	(Fig	1).	In	May	2017,	a	136	

sediment	core	(up	to	50	cm	depth)	was	collected	at	each	one	of	these	locations	and	sliced	137	

every	5	cm.	The	grain	size	distribution	of	each	sediment	sample	was	determined	through	138	

a	Coulter	LS230	laser	diffraction	particle	size	analyzer.	Average	sediment	porosities	for	139	

each	location	were	obtained	from	Tamborski	et	al.	(2018),	who	collected	sediment	cores	140	

at	the	same	locations.	Sensors	for	measuring	temperature,	salinity,	lagoon	water	depths	141	

and	wave	parameters	were	also	installed	at	these	sites	and	porewater	samples	were	142	

collected,	as	discussed	in	the	following	sections.	143	

	144	

Hourly	rainfall,	temperature,	wind	(speed	and	direction)	and	atmospheric	pressure	data	145	

at	the	nearby	meteorological	station	“Leucate”	was	extracted	from	the	database	of	the	146	

French	meteorological	service	(Météo	France).	Additional	monthly	data	on	lagoon	water	147	

depths	and	salinity	at	three	sites	in	the	northern	lagoon	(PN	stations	in	Fig.	1)	was	148	

obtained	from	the	database	of	“Parc	Naturel	Régional	de	la	Narbonnaise	en	149	

Méditerranée”	(PNRNM).	Data	on	daily	piezometric	levels	of	the	alluvial	aquifer	150	

connected	to	the	lagoon	(Alluvial	aquifer	of	Aude	and	Berre	rivers)	was	obtained	from	the	151	

French	Groundwater	National	Portal	(piezometer	code	BSS002LRH;	ades.eaufrance.fr).	152	

	153	

2.2.1.	Subsurface	salinity	time	series	154	
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Porewater	samples	for	salinity	analysis	were	collected	during	7	different	sampling	155	

campaigns	between	March	2016	and	June	2017	(March,	April,	June,	October	and	156	

November	2016;	April	and	June	2017).	During	each	campaign,	porewater	samples	were	157	

collected	from	3	different	locations	(Pz1,	Pz2	and	Pz3)	using	a	direct-push,	shielded-158	

screen	well-point	piezometer	(Charette	and	Allen,	2006).	Porewater	samples	for	salinity	159	

analysis	(10	mL)	were	collected	at	depths	ranging	from	5	to	140	cm	below	the	sediment-160	

water	interface	(including	surface	water)	and	measured	using	a	pre-calibrated	WTW	161	

multiparameter	sonde	(WTW	Multi	3430	meter	with	TetraCon®	925	probe).		162	

	163	

A	CTD	logger	(LTC	Levelogger®	from	Solinst®)	was	installed	at	Pz1	from	1st	April	2017	164	

to	31st	December	2017	at	10	cm	above	the	sediment-water	interface	to	monitor	water	165	

level	(measurements	were	corrected	for	atmospheric	pressure)	and	salinity	variations	in	166	

surface	waters.	Additionally,	a	CTD	logger	(LTC	Levelogger®	from	Solinst®)	was	placed	167	

at	30	cm	below	the	sediment-water	interface	to	record	changes	in	porewater	salinities	at	168	

this	depth	for	the	same	period.	This	logger	was	driven	into	sediments	by	using	a	plastic	169	

rod	with	a	shielded	protection	to	avoid	clogging	of	the	conductivity	cell	(which	was	also	170	

protected	with	a	membrane)	during	installation	and	to	minimize	the	disturbance	of	171	

sediments.	Changes	in	pressure	were	also	recorded	at	30	cm	below	the	sediment-water	172	

interface,	but	water	level	gradients	between	this	depth	and	surface	water	were	too	small	173	

to	be	measured.		174	

	175	

2.2.2.	Subsurface	temperature	time	series	176	

In	situ	temperature	data	was	acquired	by	a	string	of	Thermochron	iButton©	thermistors	177	

(Measuring	Systems	Ltd),	which	are	small-size,	stand-alone	and	inexpensive	temperature	178	

loggers	with	a	reported	accuracy	of	±0.2ºC	and	a	resolution	of	0.06	ºC	(Johnson	et	al.,	179	
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2005).	The	sensors	were	placed	at	depths	of	5,	10,	15,	25	and	40	cm	below	the	sediment-180	

water	interface	and	at	10	cm	above	the	seafloor	by	vertically	driving	a	2	cm	diameter	181	

wooden	rod	(with	the	thermistors	inserted)	into	the	sediments.	These	strings	of	182	

thermistors	were	installed	simultaneously	at	each	of	the	above	4	locations	in	La	Palme	183	

lagoon	(Pz1,	Pz2,	Pz3,	Pz4)	during	2	periods	of	~1	month	(between	May	9	and	May	30,		184	

and	between	June	9	and	July	5).	The	strings	of	thermistors	were	also	installed	between	185	

November	and	December	2017,	but	the	data	obtained	from	this	deployment	is	not	186	

included	in	this	manuscript	because	it	was	a	period	of	abrupt	changes	in	lagoon	water	187	

depths	which	makes	interpretation	of	the	data	difficult.	Once	recovered,	the	thermistors	188	

were	intercalibrated	in	a	calibration	bath.	During	the	deployment	periods,	pressure	189	

sensors	(NKE,	SP2T10)	were	installed	at	stations	Pz1,	Pz2	and	Pz3	measuring	water	190	

depths	for	5	minutes	per	hour	at	a	frequency	of	4Hz	to	monitor	the	variability	of	wave	191	

parameters	(significant	wave	height	and	period)	and	water	depths.	A	barometer	192	

(Barologger	Edge	from	Solinst®)	was	also	installed	in	La	Palme	lagoon	to	correct	water	193	

pressures	for	changes	in	atmospheric	pressure.		194	

	195	

2.3.	Numerical	modeling	196	

2.3.1.	Numerical	modeling	of	subsurface	salinities	to	estimate	deep	porewater	197	

fluxes	198	

Models	of	salt	transport	have	been	used	to	estimate	the	exchange	of	water	and	solutes	199	

across	the	sediment-water	interface,	where	surface	and	porewaters	have	distinctive	salt	200	

concentrations	(Martin	et	al.,	2007,	2004;	Morris,	1995;	Rapaglia	and	Bokuniewicz,	201	

2009).	A	vertical	one-dimensional	finite	element	model	was	developed	to	investigate	202	

porewater	fluxes	from	the	subsurface	to	the	lagoon,	based	on	the	equations	of	(Simmons	203	

et	al.,	2001;	Voss	and	Souza,	1987).	The	fluid	mass	balance	equation	is:	204	
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𝜌𝑆#$
%$
%&
+ 𝜃 %)

%*
%*
%&
+ %

%+
𝜃𝜌𝑣 = 𝑄$		 	 	 (1)	205	

where	ρ	is	the	fluid	density	[kg	m3],	Sop	is	the	compressibility	of	the	saturated	sediment	206	

[Pa-1],	p	is	pressure	[Pa],	θ	is	the	porosity	[dimensionless],	C	is	the	concentration	of	the	207	

chemical	species	(salt)	[kg	m-3],	Qp	is	the	water	source	or	sink	[kg	m-3	s-1]	and	v	is	the	fluid	208	

velocity	[m	s-1]	defined	as:		209	

𝑣 = − 1
23

%$
%+
− 𝜌𝑔 	 	 	 (2)	210	

where	k	is	the	permeability	of	the	sediment	[m2],	μ	is	the	viscosity	of	the	fluid	[Pa	s]	and	g	211	

is	the	gravitational	constant	[9.8	m	s-2],	212	

	213	

To	simulate	the	movement	of	the	solute	species	(salt,	in	this	case),	Equation	1	is	coupled	214	

to	the	transport	equation	(Simmons	et	al.,	2001;	Voss	and	Souza,	1987):		215	

𝜃𝜌 %*
%&
+ %

%+
𝜃𝜌𝑣𝐶 − %

%+
𝜃𝜌𝐷 %*

%+
= 𝑄$ 𝐶$ − 𝐶 		 	 	 (3)	216	

where	D	is	the	dispersion	coefficient	[m2	s-1]	and	Cp	is	the	concentration	of	solute	species	217	

(salt)	in	the	fluid	source	[kg	m-3].		218	

	219	

The	equations	were	solved	with	a	Galerkin	finite	element	numerical	technique	using	one-220	

dimensional	linear	element,	which	was	implemented	in	Python	using	the	NumPy	and	221	

SciPy	libraries	(Oliphant,	2007;	van	der	Walt	et	al.,	2011).	The	fluid	(Eq.	1)	and	solute	(Eq.	222	

3)	transport	equations	were	solved	iteratively	until	the	residuals	for	both	pressure	and	223	

concentration	were	<10-9.	The	term	𝜕𝜌/𝜕𝐶	was	assumed	to	be	a	constant	value.		224	

	225	

Parameter	values	used	in	the	one-dimensional	model	are	shown	in	Table	1.	The	model	226	

was	assumed	to	be	homogeneous,	with	uniform	properties	for	permeability,	viscosity,	227	

porosity	and	dispersity.	The	model	implemented	boundary	conditions	of	pressure	and	228	
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concentration	at	both	the	top	and	bottom	node	of	the	model,	with	pressure	approximated	229	

as	p	≈	ρgh.	The	water	flux	exchanged	across	the	sediment-water	interface	(cm	d-1	or	cm3	230	

cm-2	d-1)	was	assessed	by	determining	the	Darcy	flux	(v	θ)	in	the	uppermost	element.	The	231	

model	was	set	with	element	length	of	0.05	m	between	the	lagoon	bed	and	1	m	depth,	0.1	232	

m	between	1	and	2	m,	and	0.2	m	between	2	and	4	m	depth.	These	depths	were	chosen	so	233	

that	nodes	were	coincident	with	the	location	of	porewater	observations.	The	upper	234	

pressure	and	salinity	boundary	conditions	were	taken	from	measured	values	in	the	235	

lagoon	(see	2.2.1);	Between	21st	January	2016	and	29th	June	2017,	boundary	conditions	236	

were	obtained	by	linearly	interpolating	between	monthly	measurements	in	station	PN1.	237	

Between	29th	June	2017	and	31st	December	2017,	the	salinity	and	pressure	values	were	238	

obtained	from	the	CTD	logger	installed	in	the	surface	water	at	station	Pz1	(see	2.2.1).	The	239	

lower	boundary	condition	was	fixed	at	a	constant	salinity	for	the	duration	of	the	240	

simulation;	however,	the	lower	pressure	boundary	was	linearly	varied	over	6-month	241	

periods	as	part	of	model	calibration.	Notice	that	the	variations	in	lower	pressure	242	

boundary	essentially	represent	variations	in	the	inland	groundwater	head	that	are	243	

transmitted	to	lagoon	sediments.	The	model	was	implemented	with	a	4-hours	time	step	244	

with	a	total	simulation	period	of	two	years.	245	

	246	

Calibration	was	undertaken	by	fitting	the	model	results	to	the	porewater	depth	profiles	247	

and	the	CTD	logger	data	at	0.3	m	depth.	All	of	the	parameters	were	fixed	for	the	248	

calibration,	with	the	exception	of	hbot,	Cbot,	k,	θ	and	α.	Calibration	was	undertaken	using	249	

the	truncated	Newton	method	(Nash,	1984),	implemented	in	SciPy	(Oliphant,	2007).	The	250	

adjustable	parameters	(hbot,	Cbot,	k,	θ	and	α)	were	modified	to	reduce	the	misfit	between	251	

the	modeled	and	observed	values	of	salinity	at	depth.	This	model	was	only	implemented	252	

at	station	Pz1	because	it	was	the	only	station	where	all	the	input	data	needed	for	the	253	
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model	was	collected	(e.g.	porewater	depth	profiles,	surface	salinities	and	water	depths,	254	

continuous	data	at	0.3	m).	The	initial	concentration	profile	was	determined	by	linearly	255	

interpolating	between	the	measured	concentrations	and	the	lower	boundary	conditions	256	

to	produce	a	continuous	concentration	profile.	This	initial	concentration	profile	was	used	257	

to	generate	a	steady	state	pressure	distribution	in	the	profile	to	use	as	the	starting	258	

conditions	for	the	transient	model	simulation.	This	was	achieved	by	solving	Eq.	1	where	259	

the	variation	of	concentration	and	pressure	with	time	were	set	to	zero.	260	

	261	

2.3.2.	Numerical	modeling	of	subsurface	temperatures	to	estimate	shallow	262	

porewater	fluxes	263	

Heat	has	been	used	as	an	environmental	tracer	for	investigating	groundwater,	porewater	264	

and	surface	water	interactions	in	a	range	of	hydrogeologic	settings	(Boano	et	al.,	2014;	265	

Cranswick	et	al.,	2014;	Martin	et	al.,	2006;	Savidge	et	al.,	2016).	Its	application	is	based	on	266	

temperature	differences	between	surface	water	bodies,	which	are	subject	to	diel	or	267	

seasonal	temperature	variations,	and	porewater	or	groundwaters,	which	typically	display	268	

reduced	temperature	variation	(Cranswick	et	al.,	2014).	Most	of	the	studies	have	applied	269	

the	heat	transport	equation	in	thermal	porewater	records	to	estimate	groundwater	270	

advection.	However,	it	can	also	be	applied	to	estimate	shallow	rapid	porewater	exchange	271	

by	using	a	1-D	enhanced	dispersion	term	that	includes	(aside	from	thermal	conductivity)	272	

an	effective	dispersion	term	accounting	for	the	increase	of	heat	transport	driven	by	273	

porewater	exchange	(Bhaskar	et	al.,	2012;	Wilson	et	al.,	2016).	In	a	system	without	net	274	

groundwater	advection,	the	enhanced	dispersion	coefficient	can	be	obtained	using:		275	

9:
9;
= D=

9>:
9?>
	 	 (4)	276	

where	T	is	temperature,	t	is	time,	z	is	depth	and	De	is	the	enhanced	dispersion	coefficient.	277	

	278	
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A	finite	difference	model	was	written	in	Fortran	95	to	solve	Eq.	4.	Rather	than	calibrating	279	

the	model	to	observed	temperatures	at	all	depths	simultaneously,	we	chose	to	calibrate	280	

temperature	at	each	depth	separately	for	discrete	48-hour	periods	with	relatively	281	

constant	wave	conditions.	A	period	of	48	hours	was	chosen	because	periods	of	high	wind	282	

of	much	longer	duration	did	not	occur	during	our	periods	of	measurement	and	shorter	283	

periods	are	less	likely	to	induce	significant	temperature	changes	in	the	subsurface.	To	284	

evaluate	the	relevance	of	wave	pumping	as	a	driver	of	porewater	fluxes,	several	48-hour	285	

periods	during	the	different	monitoring	periods	were	selected	to	represent	both	high	and	286	

low	wind	(wave)	conditions.	287	

	288	

Although	shallow	porewater	fluxes	are	likely	to	produce	an	effective	dispersion	289	

coefficient	that	decreases	with	depth	(Qian	et	al.,	2009;	Wilson	et	al.,	2016),	we	model	the	290	

data	using	a	constant	dispersion	coefficient,	but	model	the	temperature	at	each	depth	291	

separately.	The	best-fit	dispersion	coefficient	(De)	therefore	represents	a	combination	of	292	

conduction	and	the	apparent	dispersion	coefficient	due	to	porewater	exchange	fluxes,	to	293	

the	relevant	depth.	The	model	was	run	for	each	of	the	selected	48-hour	periods,	and	each	294	

piezometer	and	depth	using	different	values	of	De	(in	increments	of	3.5·10-4	m2	d-1).	The	295	

lowest	RMSE	(Root	Mean	Square	Error)	value	in	each	case	identified	the	best-fit	value	of	296	

De.	Uncertainties	associated	with	dispersion	coefficients	were	estimated	based	on	the	297	

shape	of	the	RMSE	versus	De	plot	for	each	piezometer	and	each	48-hour	period.	298	

Considering	the	accuracy	of	the	temperature	sensors	(0.2	ºC),	upper	and	lower	bounds	299	

were	defined	by	RMSE	values	0.1	ºC	greater	than	the	minimum	RMSE	in	each	case.	300	

Considering	the	little	dependence	of	thermal	conductivity	on	salinity	(Caldwell,	1974),	we	301	

assume	that	variations	of	porewater	salinities	have	a	negligible	influence	on	the	302	

computations.	303	
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	304	

The	time	for	temperature	changes	in	surface	water	to	propagate	into	the	subsurface	can	305	

be	expressed	as:	306	

t = +>

ABC
	 	 (5)	307	

Thus,	for	De	=	4·10-2	m2	d-1	(a	typical	value	for	enhanced	dispersion	coefficient	due	to	308	

wind	and	wave	action;	see	below),	the	time	for	surface	water	temperature	changes	to	309	

propagate	to	depths	(z)	of	5,	10,	15,	25	and	40	cm	(depths	at	which	sensors	were	310	

installed)	is	0.4,	1.5,	3.3,	9.3	and	24	hours,	respectively.	We	thus	chose	to	focus	on	depths	311	

of	10	and	15	cm,	as	temperatures	at	greater	depths	do	not	respond	sufficiently	to	wave	312	

conditions	within	the	48-hour	period.	We	also	discarded	the	sensors	at	5	cm	because	of	313	

uncertainties	in	the	depth	of	installation	and	the	potential	effects	of	artifacts	associated	314	

with	the	installation	of	the	wooden	rod	(e.g.	alteration	of	sediment-water	interface).		315	

	316	

To	calibrate	the	model,	the	upper	boundary	condition	was	specified	as	the	measured	317	

surface	water	temperature	(sensor	at	10	cm	above	the	sediment-water	interface),	and	a	318	

constant	temperature	(20	ºC)	was	specified	at	a	depth	of	20	m.	The	initial	condition	was	319	

specified	to	be	the	measured	temperatures	at	the	start	of	each	period,	with	linear	320	

interpolation	between	observation	depths.	Initial	temperatures	between	the	deepest	321	

sensor	and	the	model	lower	boundary	at	20	m	were	also	determined	by	linear	322	

interpolation	between	the	deepest	measurement	and	the	specified	lower	boundary	323	

temperature.	Varying	the	temperature	value	of	the	lower	boundary	confirmed	that	this	324	

did	not	affect	simulated	temperatures	at	the	observation	depths.	Depth	discretisation	was	325	

0.005	m,	and	temporal	discretisation	was	3.5·10-5	d	(0.05	min).		326	

	327	
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Fig.	2	shows	how	different	values	of	De	affect	time	series	of	temperature	at	15	cm	depth.	328	

Lower	De	values	result	in	reduced	diurnal	variations	and	increased	lag	between	329	

temperature	minimum	and	maximum	values	in	the	surface	water	and	in	the	subsurface.	330	

Simulation	of	subsurface	temperature	and	comparison	with	measured	values	hence	331	

allows	De	to	be	estimated.	332	

	333	

Enhanced	dispersion	coefficient	(De)	estimated	following	this	approach	include	both	334	

thermal	conductivity	(De(cond))	and	dispersion	due	to	advective	porewater	exchange	335	

(De(adv)).	De(cond)	at	each	station	can	be	derived	from	the	following	equation	(Irvine	et	al.,	336	

2015;	Wilson	et	al.,	2016):			337	

	338	

𝐷D(F#GH) =
JK

LM3 )NFNO3)PFP
= JN QRS ·JPS

LM3 )NFNO3)PFP
	 (6)	339	

	340	

where	Kb	is	the	bulk	thermal	conductivity	of	sediments,	Ks,	cs	and	rs	are	the	thermal	341	

conductivity,	specific	heat	capacity	and	density	of	the	solid	phase,	respectively,	Kw,	cw	and	342	

rw	are	the	corresponding	terms	for	the	water	phase	and	𝜃	is	the	sediment	porosity.	343	

	 	344	
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3.	RESULTS		345	

3.1.	Sediment	analysis	346	

The	grain	size	distributions	of	the	4	sediment	cores	collected	in	La	Palme	lagoon	are	347	

shown	in	Supplementary	Information	(Table	S1).	The	contents	of	silt	and	clay	in	348	

sediments	from	Pz1,	Pz2	and	Pz3	were	low,	generally	below	10-15	%.	Sediments	from	349	

these	three	sites	were	mainly	composed	of	fine	and	medium-size	sands.	In	contrast,	350	

sediments	from	Pz4	mainly	comprised	silt	(>40	%)	and	had	a	significant	clay	content	(>	351	

15	%).	The	grain	size	was	relatively	constant	with	depth,	with	the	only	exception	being	352	

Pz3,	which	included	a	layer	(from	~30	to	~40	cm)	with	a	higher	content	of	silts	and	clays	353	

(>	20	%).	Estimated	sediment	permeabilities	from	the	grain	size	distribution	and	sorting	354	

following	(Berg,	1970)	were	on	the	order	of	10-10	-	10-11	m2	for	Pz1,	Pz2	and	Pz3	and	10-15	355	

m2	for	Pz4.	Sediments	from	Pz1,	Pz2	and	Pz3	are	thus	characterized	by	a	relatively	high	356	

permeability	(Huettel	et	al.,	2014),	whereas	Pz4	were	lower	permeability	sediments.	357	

Average	porosities	(θ)	were	0.47,	0.43,	0.39	and	0.70	for	Pz1,	Pz2,	Pz3	and	Pz4,	358	

respectively	(Tamborski	et	al.,	2018).	359	

	360	

3.2.	Wind,	wave	and	lagoon	water	depth	dynamics	361	

The	region	is	characterized	by	frequent	strong	winds	(>10	m	s-1)	generally	blowing	from	362	

the	N-W	(locally	called	“Tramontane”)	and	sporadic	winds	from	the	sea	(S-E)	that	can	363	

also	reach	high	speeds	and	that	are	usually	linked	to	storms.	Indeed,	in	2017,	most	events	364	

where	wind	speed	exceeded	10	m	s-1	were	blowing	either	from	the	NW	(59%)	or	the	SE	365	

(37%).	The	time	series	of	wind	speeds	during	the	main	period	of	samplings	(April	2017	–	366	

December	2017)	is	shown	in	Fig	3.a.		 	367	

	368	



	 17	

Water	depths	in	the	lagoon	decreased	progressively	from	April	to	September	2017	(from	369	

~0.9	to	~0.4	m	in	Pz1;	Fig	3.b.),	mainly	as	a	consequence	of	an	increase	in	temperatures	370	

and	a	reduction	of	precipitation	and	groundwater	inputs	that	resulted	in	evaporative	371	

losses	exceeding	water	inputs	(Rodellas	et	al.,	2018).	During	this	period,	wind	dynamics	372	

exerted	a	minor	control	on	the	water	depths	of	the	lagoon	and	were	only	responsible	for	373	

water	depth	oscillations	(<	0.5	m)	that	lasted	for	less	than	24	hours.	Significant	changes	374	

in	lagoon	water	depths	were	measured	between	15th-20th	October	(predominantly	SE	375	

winds)	and	6th-15th	November	(NW	winds),	as	a	consequence	of	strong	wind	events	that	376	

opened	the	sandy	barrier	that	separates	the	lagoon	from	the	sea	(which	remained	open	377	

for	a	few	days	after	the	wind	event):	lagoon	water	in	the	northern	basin	increased	by	378	

~0.2	m	in	October	as	a	consequence	of	the	SE	wind	event,	which	brought	water	from	the	379	

central	and	southern	basins	(and	the	Mediterranean	Sea),	and	it	decreased	by	~0.15	m	in	380	

November	due	to	NW	winds.	After	these	events	the	sandy	barrier	became	less	381	

consolidated	and	thus	more	permeable	to	water	exchange	and	most	of	the	subsequent	382	

wind	events	produced	significant	changes	in	lagoon	water	depths.		383	

	384	

The	generation	of	waves	in	the	lagoon	is	highly	controlled	by	the	wind	regime	(direction,	385	

speed	and	duration),	as	evidenced	by	the	similar	wind	and	wave	patterns	(Fig.	4).	During	386	

calm	periods,	wave	height	remained	below	0.02	m.	Strong	wind	events	produced	rapid	387	

increases	of	wave	heights	(wave	height	up	to	0.10	m;	wave	period	of	1-2	s),	which	388	

remained	elevated	for	the	duration	of	the	event.	No	major	differences	in	wave	height	and	389	

period	were	observed	between	the	different	sampling	stations	(Pz1,	Pz2	and	Pz3),	which	390	

were	located	in	different	areas	of	the	lagoon.	The	spectral	analysis	of	lagoon	water	depths	391	

revealed	that	the	influence	of	seiches	and	tides	was	negligible	at	La	Palme	lagoon	for	the	392	
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studied	periods.	We	thus	exclude	them	as	drivers	of	porewater	fluxes	for	La	Palme	393	

lagoon.		394	

	395	

3.3.	Porewater	salinities	396	

Porewater	could	be	easily	sampled	with	a	push-point	piezometer	from	most	of	the	depths	397	

at	the	locations	Pz1,	Pz2	and	Pz3,	indicating	a	relatively	high	hydraulic	permeability	for	398	

the	sandy	sediments	at	these	locations.	The	only	exception	was	a	low	permeability	layer	399	

found	at	Pz3,	extending	from	~30	to	~40	cm	below	the	sediment-water	interface	(see	400	

section	3.1.).	Porewater	samples	could	not	be	collected	at	Pz4	due	to	the	low	hydraulic	401	

conductivities,	which	is	consistent	with	the	low	permeabilities	derived	from	sediment	402	

core	particle	size	analysis	(see	section	3.1.).	Salinities	in	porewater	mainly	reflect	a	403	

mixing	between	two	endmembers	(Fig.	5):	i)	lagoon	waters	with	varying	salinities	404	

depending	on	the	season	and	the	location	(salinities	usually	between	20	and	40)	and	ii)	405	

deep	hypersaline	porewaters,	with	salinities	above	80,	most	likely	from	an	evaporative	406	

origin	(Fig.	5).	As	a	consequence,	porewater	salinities	generally	increased	downwards,	407	

although	these	trends	depend	on	the	dynamics	of	this	2-endmember	mixing,	which	varies	408	

significantly	depending	on	the	sampling	time	and	location.		409	

	410	

3.3.1.	Estimation	of	advective	vertical	velocities	from	subsurface	salinities		411	

The	significantly	greater	salinities	measured	in	deep	porewater	than	in	shallow	412	

porewaters	produce	deep	porewaters	being	significantly	denser	than	overlying	fluids	413	

(notice	that	temperature	differences	between	surface	and	deep	waters	(differences	<	10	414	

ºC)	have	a	minor	influence	on	fluid	density	differences	in	comparison	to	the	controls	415	

played	by	salinity	differences).	These	conditions	produce	stable	density	profiles	that	416	

prevent	gravitational	convection	or	salt	fingering	(Bokuniewicz	et	al.,	2004;	Simmons	et	417	
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al.,	2001).	However,	the	variability	of	salinity	in	porewaters	observed	at	each	site	during	418	

the	different	sampling	periods	(Fig.	5)	suggests	that	porewater	advection	(driven	by	419	

hydraulic	head	gradients)	exerts	a	major	control	on	the	vertical	profiles.	Subsurface	420	

salinity	variations	can	be	used	to	assess	the	magnitude	of	porewater	advection	(i.e.	deep	421	

porewater	fluxes)	and	their	temporal	variability	by	applying	the	fluid	and	salt	transport	422	

one-dimensional	model	described	in	section	3.2.1,	which	accounts	for	both	density	and	423	

hydraulic	gradient	differences.		424	

	425	

The	results	of	the	observed	and	modeled	subsurface	salinities	for	station	Pz1	are	shown	426	

in	Figures	6	and	7,	and	include	both	the	porewater	profiles	collected	at	different	periods	427	

(Fig.	6)	and	the	continuous	measurements	at	30	cm	below	the	sediment-water	interface	428	

(Fig.	7).	The	model	reproduces	the	observed	subsurface	salinities	remarkably	well,	429	

particularly	for	the	observations	at	30	cm	below	the	sediment-water	interface.	Some	430	

differences	between	observed	and	model	salinities	at	the	shallow	area	of	the	porewater	431	

profiles	might	be	related	to	mechanisms	driving	shallow	and	rapid	lagoon	water-432	

porewater	exchange	(e.g.	increase	porewater	fluxes	driven	by	wave	pumping	or	433	

bioirrigation)	that	are	not	accounted	for	in	the	advection-dispersion	model.	It	should	also	434	

be	noted	that	these	results	are	also	limited	by	the	boundary	conditions,	which	were	435	

assumed	i)	to	vary	linearly	between	monthly	measurements	at	the	top	(continuously	436	

measured	for	the	last	~6	months),	and	ii)	to	be	constant	for	salinity	and	vary	linearly	over	437	

6-months	periods	for	pressure	at	the	lower	boundary.		438	

	439	

The	modeled	vertical	porewater	fluxes	needed	to	reproduce	the	observed	subsurface	440	

salinities	using	the	lagoon	water	depths	and	salinities	measured	in	surface	water	are	441	

shown	in	Figure	8.	Estimated	porewater	advection	(darcy)	fluxes	range	from	-11	to	25	cm	442	
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d-1,	with	positive	fluxes	representing	porewater	fluxes	to	the	lagoon	and	negatives	values	443	

the	infiltration	of	lagoon	water	to	the	sediments.	These	modeled	porewater	advection	444	

rates	for	station	Pz1	show	a	correspondence	with	lagoon	water	depths	(Fig.	8):	negligible	445	

or	negative	porewater	fluxes	to	the	lagoon	occurring	during	periods	of	relatively		446	

constant	and	high	water	depths	(e.g.	from	April	to	October	2017)	and	high	upward	447	

advection	rates	occurring	as	a	consequence	of	decreases	of	lagoon	water	depths	(e.g.	448	

from	July	to	October	2016).	This	pattern	is	consistent	with	the	advection	of	deep	449	

hypersaline	porewaters	driven	by	the	hydraulic	gradient,	largely	controlled	by	changes	450	

on	lagoon	water	depths:	steep	hydraulic	gradients	occur	in	periods	of	shallow	lagoon	451	

water	depths	or	after	the	rapid	drop	of	lagoon	water	levels,	leading	to	increased	upward	452	

advection	of	porewaters.	It	should	be	noted	that	not	only	the	absolute	lagoon	water	depth	453	

but	also	the	rate	of	change	of	lagoon	water	depths	are	determining	the	magnitude	of	454	

porewater	fluxes.		455	

	456	

3.4.	Subsurface	temperatures	and	derived	enhanced	dispersion	coefficients	457	

For	all	locations	(Pz1,	Pz2,	Pz3	and	Pz4)	and	deployment	periods	(May,	June	and	458	

November),	temperature	records	clearly	show	large	amplitude	daily	fluctuations	in	459	

surface	waters	(typically	3-5	ºC)	(example	in	Fig.	9).	A	damping	in	the	amplitude	of	460	

diurnal	temperature	cycles	at	increasing	depths	is	immediately	apparent,	as	it	is	the	461	

phase	shifting	with	increasing	depth	of	measurement.	Separate	calibration	of	the	462	

numerical	model	within	the	discrete	low	and	high	wind	(and	wave)	48-hour	periods	was	463	

therefore	performed	to	determine	whether	changes	in	wave	regime	induced	changes	in	464	

porewater	exchange	rate,	as	reflected	by	values	of	the	enhanced	dispersion	coefficient.	465	

	466	

3.4.1.	Estimation	of	enhanced	dispersion	coefficients	467	



	 21	

The	enhanced	dispersion	coefficient	(De)	for	each	of	the	selected	48-hour	periods	is	468	

determined	by	selecting	the	De	that	best	fits	(the	lowest	RMSE)	the	subsurface	469	

temperature	records	at	a	given	depth.	As	an	example,	Fig.	10	shows	the	variation	in	RMSE	470	

vs	De	for	the	different	48-hour	periods	selected	in	June	2017	(temperatures	at	15	cm	471	

depth	at	Pz1).	For	the	two	periods	of	low	winds,	best-fit	values	of	De	are	2.6·10-2	m2	d-1	472	

(RMSE	values	of	0.15	and	0.12	ºC,	respectively).	For	the	three	periods	of	high	wind,	best-473	

fit	values	of	De	are	4.4·10-2,	3.9·10-2	and	3.2·10-2	m2	d-1	(RMSE	values	of	0.22,	0.19	and	474	

0.02	ºC,	respectively).	Variations	in	the	best-fit	RMSE	value	are	probably	related	partly	to	475	

the	uniformity	of	the	wave	conditions	(and	thus	porewater	exchanges	and	De)	within	the	476	

chosen	48-hour	periods.	In	many	cases,	minimum	RMSE	values	are	close	or	lower	than	477	

the	accuracy	of	the	sensors	(0.2	ºC).	478	

	479	

The	best-fit	values	of	De	for	each	profile	and	each	of	the	discrete	periods	(calm	and	windy	480	

periods)	for	May	and	June	2017	deployments,	together	with	their	uncertainties,	are	481	

shown	in	Table	2.	In	some	cases,	modeled	temperature	could	not	fit	properly	the	482	

observed	temperature	(lowest	RMSE	higher	than	temperature	sensor	accuracy)	and	the	483	

De	values	derived	from	these	cases	are	not	reported.		484	

	485	

The	approach	followed	here	to	estimate	dispersion	coefficients	from	temperature	time	486	

series	is	based	on	the	assumption	that	there	is	no	net	porewater	advection	(no	advection	487	

term	in	Eq.	4).	The	relative	importance	of	heat	transport	by	advective	to	conductive	heat	488	

flux	can	be	assessed	using	the	dimensionless	thermal	Peclet	Number	(Pe)	(Anderson,	489	

2005;	Bhaskar	et	al.,	2012):	490	

𝑃D =
VW
X
	 	 (7)	491	
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where	v	is	porewater	velocity	(m	d-1),	L	is	the	scale	length	(m)	and	D	is	the	dispersion	492	

coefficient	(m2	d-1).	Using	the	maximum	vertical	porewater	fluxes	derived	from	the	fluid-493	

salt	transport	model	for	the	periods	of	temperature	subsurface	measurements	(v	of	~5	494	

cm	d-1),	an	average	value	of	the	estimated	enhanced	dispersion	coefficient	under	calm	495	

conditions	(~0.03	m2	d-1)	and	using	the	mean	grain	diameter	as	the	representative	length	496	

(L	=	2·10-4	m)	as	suggested	by	Bhaskar	et	al.	(2012),	gives	a	thermal	Peclet	number	of	497	

<10-3.	This	value	suggests	a	clear	dominance	of	conductive	heat	transport	over	advective	498	

transport	(Anderson,	2005).	A	qualitative	comparison	can	also	be	performed	considering	499	

the	time	for	surface	water	temperature	changes	to	propagate	to	the	subsurface.	Few	500	

hours	would	be	required	to	propagate	the	surface	temperature	signal	to	the	depths	at	501	

which	sensors	were	installed	if	heat	transport	was	dominated	by	dispersion	(e.g.	~3	502	

hours	to	15	cm	below	the	sediment-water	interface;	see	Eq.	5),	whereas	few	days	would	503	

be	required	if	advection	was	the	dominant	transport	mechanism	(~3	days).	We	thus	504	

assume	that	the	advective	heat	transfer	will	not	significantly	affect	the	interpretation	of	505	

subsurface	temperature	data.		506	

	507	

It	should	be	noted	that	both	thermal	conductivity	(De(cond))	and	dispersion	due	to	508	

advective	porewater	exchange	(De(adv))	are	included	within	the	calculated	values	of	509	

enhanced	dispersion	coefficient	(De).	The	parameters	used	to	estimate	De(cond)	following	510	

Eq.	6	are	summarized	in	Table	3.	Note	that	none	of	these	parameters	are	constant,	since	511	

all	of	them	depend	on	sediment	or	water	specific	properties	(e.g.	water	salinity	and	512	

temperature,	sediment	composition,	grain	size)	and	they	might	be	highly	variable	(Duque	513	

et	al.,	2016).	Thus,	calculated	De(cond)	should	only	be	used	as	an	approximation.	Estimated	514	

De(cond)	range	from	1.8·10-2	m2	d-1	at	Pz4	(θ	=	0.70)	to	3.0·10-2	m2	d-1	at	Pz3	(θ	=	0.70).	The	515	

enhanced	dispersion	coefficients	(De)	derived	from	temperature	profiles	for	the	calm	516	
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periods	in	May	and	June	2017	are	in	general	good	agreement	with	the	theoretically	517	

calculated	thermal	conductivities	(De(cond)	in	Eq.	6),	particularly	for	the	stations	Pz1,	Pz2	518	

and	Pz3	(Fig.	11).	This	suggests	that	the	porewater	temperature	records	for	calm	periods	519	

are	mainly	governed	by	thermal	conductivity.	Notice	that	there	is	a	significant	520	

disagreement	between	the	calculated	thermal	conductivity	and	the	estimated	De	for	calm	521	

periods	for	Pz4,	but	these	differences	could	be	related	to	the	used	of	literature-based	522	

thermal	parameters	instead	of	specific	measurements	for	the	clayey	sediments	of	Pz4.		523	

	524	

3.4.2.	Comparison	of	dispersion	coefficients	for	calm	and	windy	conditions		525	

As	shown	in	Table	2	and	Fig.	11,	enhanced	dispersion	coefficients	(De)	obtained	for	windy	526	

48-hour	periods	for	a	given	location	are	generally	higher	than	those	obtained	for	calm	527	

periods.	A	Kruskal-Wallis	test	was	applied	to	compare	modeled	enhanced	dispersion	528	

coefficients	for	windy	and	calm	periods	(evaluating	together	the	results	from	the	10	cm	529	

and	15	cm	sensors	for	the	different	deployments),	confirming	that	modeled	De	for	windy	530	

periods	are	significantly	higher	than	those	modeled	for	calm	periods	for	the	deployments	531	

of	May	and	June	2017	(Kruskal-Wallis,	p<0.01).		532	

	533	

When	the	results	are	clustered	by	locations,	De	for	windy	periods	are	consistently	higher	534	

than	those	modeled	for	calm	periods	in	all	the	stations	(Fig.	11).	The	difference	in	De	at	535	

each	site	between	calm	and	windy	periods	reveals	an	increase	of	the	rate	of	heat	536	

transport	in	windy	periods,	likely	driven	by	enhanced	porewater	exchange	fluxes.	537	

Assuming	that	the	modeled	De	for	the	calm	periods	represents	mainly	heat	transport	due	538	

to	thermal	conductivity,	the	effective	dispersion	driven	by	porewater	exchange	(De(adv))	539	

can	be	estimated	as	the	difference	between	De	in	calm	and	windy	periods.	Estimated	540	

De(adv)	during	the	wind	periods	for	15	cm	temperature	sensors	are	(1.7	±	0.6)·10-2,	(2.5	±	541	
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0.8)·10-2,	(1.4	±	0.7)·10-2	and	(0.6	±	0.6)·10-2	m2	d-1	for	stations	Pz1,	Pz2,	Pz3	and	Pz4	in	542	

May	2017,	respectively,	and	(1.2	±	0.6)·10-2,	(1.0	±	1.1)·10-2,	(1.5	±	1.2)·10-2	and	(0.4	±	543	

0.4)·10-2	m2	d-1	for	stations	Pz1,	Pz2,	Pz3	and	Pz4	in	June	2017.	Slightly	lower	but	544	

comparable	coefficients	are	estimated	when	using	the	temperature	sensors	installed	at	545	

10	cm	below	the	sediment-water	interface.	The	only	station	where	dispersion	driven	by	546	

porewater	fluxes	(i.e.	differences	in	De	modeled	for	calm	and	windy	periods)	is	not	547	

statistically	significant	is	Pz4,	where	the	presence	of	low-permeability	sediments	548	

(permeabilities	<	10-12	m2)	likely	results	in	a	significant	reduction	of	porewater	fluxes	549	

(Huettel	et	al.,	2014).		 	550	
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4.	DISCUSSION	551	

4.1.	Deep	porewater	fluxes	to	La	Palme	lagoon	driven	by	oscillations	of	lagoon	552	

water	depths:	insights	from	porewater	salinities		553	

The	hydraulic	gradient	between	the	aquifer	and	coastal	water	bodies	(and	its	seasonal	554	

variations)	is	commonly	a	major	force	driving	groundwater	or	porewater	fluxes	(Santos	555	

et	al.,	2012).	Many	studies	have	focused	on	the	influence	and	variability	of	inland	556	

groundwater	head,	which	is	driven	by	the	aquifer	recharge	(Anderson	and	Emanuel,	557	

2010;	Michael	et	al.,	2005;	Sugimoto	et	al.,	2015;	Yu	et	al.,	2017),	and	only	a	limited	558	

number	of	studies	have	evaluated	how	changes	on	surface	water	levels	in	receiving	water	559	

bodies	alter	the	hydraulic	gradient	and,	consequently,	the	water	and	solute	fluxes	across	560	

the	land-ocean	interface	(Gonneea	et	al.,	2013;	Lee	et	al.,	2013;	Michael	et	al.,	2013).		561	

	562	

In	the	case	of	La	Palme	Lagoon,	water	depths	in	the	lagoon	are	controlled	by	both	i)	563	

seasonal	changes	on	the	balance	between	water	inputs	and	evaporative	losses	(e.g.	higher	564	

evaporation	and	lower	water	inputs	in	dry	summer	months,	resulting	in	lower	water	565	

levels	in	summer),	and	ii)	wind	events	that	control	the	opening	of	the	sandy	barrier	and	566	

the	exchange	of	water	between	the	lagoon	and	the	open	sea.	Changes	on	lagoon	water	567	

depths	are	thus	occurring	over	relatively	short	time-scales	(few	days-weeks),	when	the	568	

inland	hydraulic	head	can	be	assumed	to	be	constant.	Maximum	variations	in	coastal	569	

piezometric	levels	from	the	alluvial	aquifer	are	indeed	on	the	order	of	30-40	cm	570	

(piezometer	code	BSS002LRH;	ades.eaufrance.fr),	occurring	over	annual	cycles.	In	571	

addition,	the	relatively	large	size	of	the	lagoon	limits	the	effect	of	variations	in	inland	572	

groundwater	head	on	porewater	fluxes.	Lagoon	water	depth	is	thus	expected	to	573	

contribute	more	to	the	variability	in	the	hydraulic	gradient	than	variation	in	groundwater	574	

head	does.	As	a	consequence,	in	periods	of	decreases	of	lagoon	water	depths,	the	575	
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increased	hydraulic	gradient	favors	the	upward	advection	of	deep	hypersaline	576	

porewaters	(porewater	fluxes	up	to	25	cm	d-1),	as	derived	from	the	results	of	the	fluid-577	

salt	transport	model	and	the	measured	subsurface	salinities	(Fig.	8).	Similarly,	increases	578	

of	lagoon	water	depths	may	force	the	infiltration	of	lagoon	waters	into	the	sediments	579	

driven	by	the	reduced	hydraulic	gradient	and	density	convection.		580	

	581	

4.2.	Shallow	porewater	fluxes	to	La	Palme	lagoon	driven	by	wind	waves:	insights	582	

from	temperature	time	series	583	

4.2.1.	Drivers	of	increased	heat	transport	during	windy	periods	584	

A	number	of	driving	forces	have	been	identified	to	produce	transient	porewater	fluxes	585	

across	the	sediment-water	interface,	including	hydraulic	gradients,	wave	and	tidal	586	

pumping,	interaction	of	bottom	currents	and	seafloor	topography,	density	instabilities	587	

and	pumping	activities	of	benthic	fauna	(Huettel	et	al.,	2014;	Santos	et	al.,	2012).		588	

Among	all	the	potential	drivers,	short-term	wind-driven	wave	forcing	is	the	only	589	

mechanism	that	can	explain	the	highly	dynamic	nature	of	the	observed	porewater	fluxes	590	

with	systematically	higher	fluxes	during	windy	periods.	As	detailed	in	section	3.2,	the	591	

strong	SE	and,	mainly,	NW	winds	in	the	area	produce	locally-generated	wind	waves	that	592	

can	reach	significant	wave	heights	of	5-10	cm	lasting	for	some	hours	to	few	days.		593	

	594	

Wave	action	can	drive	large	volume	of	water	to	circulate	under	the	swash	zone,	but	this	595	

mechanism	is	only	acting	in	the	shoreline	(Li	and	Barry,	2000;	Robinson	et	al.,	2014;	Sous	596	

et	al.,	2016).	In	submerged	areas,	waves	can	also	induce	advective	shallow	porewater	597	

exchange	fluxes	either	through	pressure	gradients	generated	by	the	different	hydrostatic	598	

pressures	between	wave	crests	and	troughs	or	through	wave-induced	oscillatory	599	

currents	that	interact	with	sediment	topography	(Cardenas	and	Jiang,	2011;	Li	et	al.,	600	
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2017;	Precht	and	Huettel,	2003).	Wind-driven	waves	and	currents	can	also	induce	shear	601	

stress	producing	resuspension	of	sediments	and	increasing	the	magnitude	of	porewater	602	

exchange	fluxes	(Almroth-Rosell	et	al.,	2012;	Whipple	et	al.,	2018).	The	magnitude	of	603	

wind-	(wave-)	driven	porewater	fluxes	will	depend	on	both	the	physical	characteristics	of	604	

the	water	body	(e.g.	hydraulic	conductivities	of	the	sediments,	water	depths)	and	the	605	

magnitude	of	the	forcing	itself	(i.e.	wave	frequency,	wave	amplitude,	duration	of	the	606	

events)	(Robinson	et	al.,	2017).	607	

	608	

Qian	et	al	(Qian	et	al.,	2009)	developed	a	model	to	examine	the	effect	of	wave	action	on	609	

porewater	solute	profiles,	which	related	the	enhanced	dispersion	coefficient	at	the	610	

sediment	surface	with	wave	and	sediment	parameters:	611	

𝐷D =
YZJ[
W3

	 	 	 (8)	612	

where	α	is	the	hydrodynamic	dispersivity	(m),	K	is	the	sediment	hydraulic	conductivity	613	

(m	d-1),	a	is	the	half-wave	amplitude	and	L	is	the	wavelength	(m).	Using	previously	614	

derived	parameters	for	La	Palme	lagoon	(α	=	0.005	m;	L	=	1	m;	K	=	2-4	m	d-1;	(Cook	et	al.,	615	

2018a))	and	a	=	0.03-0.05	m	derived	from	wave	measurements,	a	De	at	the	sediment-616	

water	interface	of	(0.4	–	1.3)·10-2	m2	d-1	is	calculated.	This	range	is	comparable	with	the	617	

modeled	thermal	dispersion	driven	by	porewater	fluxes	(De(adv)),	suggesting	that	the	618	

increase	in	porewater	flux	in	windy	(wave)	periods	is	consistent	with	wave	pumping	619	

being	the	principal	driver	of	porewater	fluxes	in	La	Palme	lagoon.		620	

	621	

4.2.2.	Magnitude	of	wave-driven	shallow	porewater	fluxes	622	

Estimating	the	porewater	flux	required	to	create	these	modeled	De(adv)	is	not	a	623	

straightforward	step	(Rau	et	al.,	2014).	For	solute	transport	(as	opposed	to	heat	624	
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transport),	the	dispersion	coefficient	(De)	can	be	related	to	porewater	flux	through	the	625	

hydrodynamic	dispersivity	(α)	626	

𝐷D =
\]^Z
3
	 	 	 (9)	627	

where	𝑞V	is	the	mean	upward	or	downward	flux	averaged	across	the	upwelling	and	628	

downwelling	phases	(Anderson,	2005;	Cook	et	al.,	2018a).	The	calculated	𝑞V	is	thus	a	629	

function	of	the	selected	hydrodynamic	dispersivity	(α),	which	is	a	scale-dependent	630	

parameter	difficult	to	constrain	for	short-scale	porewater	fluxes	(Cook	et	al.,	2018a).	631	

Whereas	solute	dispersion	depends	linearly	on	fluid	velocity,	the	linear	dependence	of	632	

thermal	dispersion	and	fluid	velocity	is	under	debate	(Bhaskar	et	al.,	2012;	Molina-633	

Giraldo	et	al.,	2011;	Rau	et	al.,	2012).	Assuming	that	the	dispersion	of	heat	is	analogous	to	634	

dispersion	of	a	conservatively	transported	solute	tracer	in	water,	calculated	median	635	

porewater	exchange	rates	during	windy	periods	would	be	on	the	order	of	50	cm	d-1	636	

(derived	from	Eq.	9,	using	a	hydrodynamic	dispersivity	of	0.005	m	(Cook	et	al.,	2018a;	637	

Gelhar	et	al.,	1992)).	Considering	that	the	average	water	depths	of	La	Palme	lagoon	638	

usually	ranges	from	0.5	to	1.5	m,	the	porewater	exchange	rates	estimated	in	this	study	639	

would	imply	that	the	entire	water	volume	of	the	lagoon	would	circulate	through	its	640	

sediments	every	1	-	3	days,	i.e.	during	a	multi-day	wind	event.	641	

	642	

King	et	al.	(King	et	al.,	2009)	used	a	generalized	analytical	model	to	estimate	wave-driven	643	

porewater	rates	on	the	order	of	10	cm	d-1	for	a	setting	with	characteristics	similar	to	644	

those	from	La	Palme	lagoon	(wave	amplitude	of	5	cm;	wave	period	of	1	s;	water	depth	of	645	

0.5	m;	permeability	of	1011	m2).	Even	though	these	estimates	from	King	et	al.	(2009)	do	646	

not	consider	the	porewater	fluxes	caused	by	the	interaction	of	oscillatory	flows	and	647	

bottom	topography,	which	may	exceed	those	fluxes	from	wave	pumping	alone	(Precht	648	

and	Huettel,	2003),	these	rates	are	comparable	with	the	advection	rates	roughly	649	
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estimated	for	wind	periods	in	La	Palme	lagoon.	Thus,	temperature-derived	porewater	650	

fluxes	estimated	for	strong	wind	events	in	La	Palme	lagoon	are	likely	a	good	order-of-651	

magnitude	approximation	of	wave-driven	porewater	fluxes	for	the	studied	site.	652	

	653	

4.3.	Magnitudes	and	temporal	scales	of	driving	forces	and	porewater	fluxes	654	

Recent	studies	conducted	in	La	Palme	lagoon	have	estimated	average	porewater	fluxes	to	655	

the	entire	lagoon	to	be	on	the	order	of	0.8	–	4.1	cm	d-1	(Bejannin	et	al.,	2017;	Rodellas	et	656	

al.,	2018;	Stieglitz	et	al.,	2013;	Tamborski	et	al.,	2018).	These	fluxes,	which	were	657	

estimated	from	whole-of-lagoon	radionuclide	mass	balances,	are	in	good	agreement	with	658	

the	porewater	fluxes	driven	by	oscillations	of	lagoon	water	depths	estimated	in	this	study	659	

from	the	fluid-salt	transport	model	(yearly	averaged	porewater	fluxes	of	1.2	cm	d-1;	660	

interquartile	range	(q1	–	q3)	of	-3.0	–	3.2	cm	d-1).	Some	of	the	whole-of-lagoon	studies	661	

were	conducted	in	calm	periods	with	relatively	high	and	constant	lagoon	waters	depths	662	

(e.g.	April	and	June	2017;	(Rodellas	et	al.,	2018)),	when	porewater	fluxes	driven	by	663	

oscillations	of	lagoon	water	depths	and	wind-driven	waves	are	expected	to	be	low	as	664	

inferred	from	subsurface	salinities	and	temperatures.	We	thus	cannot	exclude	the	665	

existence	of	a	porewater	base	flux	to	La	Palme	lagoon	driven	by	other	mechanisms	(e.g.	666	

bioirrigation,	current-topography	interactions,	etc.).	However,	results	of	this	study	667	

provide	evidence	that	porewater	fluxes	increase	significantly	during	periods	of	decreases	668	

of	lagoon	water	depths	or	during	strong	wind	events,	as	a	consequence	of	increased	669	

hydraulic	gradients	and	increased	wave	pumping,	respectively	(Fig.	12).		670	

	671	

Importantly,	the	two	mechanisms	evaluated	in	this	study	occur	over	different	spatial	and	672	

temporal	scales.	At	the	larger	scale,	variations	of	the	lagoon	water	depth	drive	deep	673	

porewater	fluxes	at	the	scale	of	meters.	At	the	smaller	scale,	wind-driven	waves	force	674	



	 30	

surface	water	to	move	in	and	out	of	the	shallow	sediments	(i.e.	shallow	porewater	fluxes).	675	

The	length	of	the	porewater	flowpath	have	a	large	influence	on	the	biogeochemical	676	

processes	occurring	within	sediments	and	on	the	chemical	composition	of	porewaters	677	

discharging	across	the	sediment-water	interface	(Heiss	et	al.,	2017;	Lamontagne	et	al.,	678	

2018;	Weinstein	et	al.,	2011).	Consequently,	the	spatial	scale	of	porewater	fluxes	needs	to	679	

be	considered	to	evaluate	the	overall	magnitude	of	solute	inputs	driven	by	porewater	680	

fluxes.	From	a	temporal	perspective,	porewater	fluxes	driven	by	wave	pumping	will	only	681	

occur	during	important	wind	events,	typically	over	periods	of	1-3	days	(Fig.	4).	682	

Contrarily,	reduced	lagoon	water	depths	occur	mainly	as	a	consequence	of	the	high	683	

evaporative	loss	in	summer	and/or	strong	wind	events	that	control	the	opening	of	the	684	

sandy	barrier	and	force	the	export	of	water	towards	the	Mediterranean	Sea.	Periods	of	685	

shallow	water	depths	are	typically	extending	from	several	days	to	few	months	(Fig.	3.b)	686	

and	thus	the	duration	of	porewater	fluxes	forced	by	reduced	lagoon	water	depths	can	be	687	

far	larger	than	that	of	wave-induced	fluxes.	 688	

	689	

A	proper	evaluation	of	the	magnitude	of	porewater	fluxes	and	their	relevance	for	water	690	

systems	thus	requires	understanding	their	temporal	and	spatial	scales.	As	detailed	in	691	

Wilson	et	al.	(2015),	most	of	the	studies	conducted	elsewhere	evaluating	porewater	692	

fluxes	are	focused	on	specific	short-term	(1-5	days)	samplings	that	only	provide	“snap-693	

shot”	observations	and	that	are	generally	biased	towards	the	summer	field	season	and	694	

periods	with	calm	conditions,	when	some	of	the	driving	forces	(e.g.	wind-waves)	might	695	

not	operate.	Long-term	observations	are	thus	required	to	capture	all	the	potential	696	

mechanisms	driving	porewater	fluxes,	including	those	forcings	operating	in	sporadic	697	

intense	events	(e.g.	storms,	heavy	rainfalls)	(Sawyer	et	al.,	2013;	Smith	et	al.,	2008).	In	698	

addition,	the	driving	force	that	is	captured	will	also	depend	on	the	tracer	technique	or	699	
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approach	used	to	estimate	porewater	fluxes	(Cook	et	al.,	2018b;	King,	2012;	Rodellas	et	700	

al.,	2017).	Future	studies	in	lagoons	and	coastal	environments	should	focus	on	long-term	701	

observations	and	combine	different	tracers	to	capture	and	differentiate	the	fluxes	702	

produced	by	the	diverse	driving	mechanisms.	Long-term	studies	also	allow	isolating	the	703	

driving	mechanism	based	on	temporal	variations	of	porewater	fluxes,	considering	704	

periods	when	one	forcing	dominates	over	the	other	(Cook	et	al.,	2018b),	as	done	in	this	705	

study.	It	should	additionally	be	noted	that	the	interaction	between	different	forcings	is	706	

generally	nonlinear	and	porewater	fluxes	cannot	be	estimated	simply	as	a	sum	of	707	

independent	drivers	(King,	2012;	Yu	et	al.,	2017).	Rather,	a	thorough	understanding	of	708	

the	different	drivers	and	their	interactions	is	required.	709	

	710	

CONCLUSIONS	711	

This	study	documents	the	role	of	lagoon	water	depth	variations	and	wind-driven	waves	712	

as	drivers	of	porewater	fluxes	in	a	coastal	lagoon.	The	dynamics	of	these	physical	driving	713	

forces	are	evaluated	in	isolation,	through	measurements	of	variations	of	salinity	and	714	

temperature	in	the	subsurface:	715	

- The	temporal	and	vertical	variability	of	porewater	salinity	profiles	(coupled	with	a	716	

fluid	and	salt	transport	model)	suggests	that	oscillations	of	lagoon	water	depth	act	as	717	

a	major	control	on	the	fluxes	of	deep	(>1	m)	porewaters.	In	periods	of	shallow	lagoon	718	

water	depths	or	when	sudden	decreases	of	lagoon	water	depths	occur,	the	increased	719	

hydraulic	gradient	favors	the	upward	advection	of	deep	hypersaline	porewaters,	720	

whereas	porewater	inputs	are	restricted	(or	reversed)	in	periods	of	constant	and	721	

high	lagoon	water	depths.		722	

- The	temperature	records	in	the	lagoon	subsurface	(coupled	with	a	heat	transport	723	

model)	reveal	that	porewater	fluxes	are	significantly	higher	in	windy	periods	as	a	724	
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consequence	of	locally-generated	wind	waves	that	force	the	circulation	of	lagoon	725	

waters	through	sediments.		726	

	727	

Wave	pumping	and	the	hydraulic	gradient	contribute	to	significantly	increase	porewater	728	

fluxes	to	the	lagoon	during	wind	events	and	in	periods	with	shallow	lagoon	water	depths,	729	

respectively.	Whereas	the	large	fluxes	driven	by	wave	pumping	only	flush	relatively	730	

shallow	sediments	and	are	restricted	to	the	duration	of	strong	wind	events,	porewater	731	

fluxes	driven	by	the	hydraulic	gradient	involve	deeper	sediments	(>	1	m)	and	their	732	

relevance	may	extend	for	longer	periods	(up	to	few	months).	The	temporal	and	spatial	733	

scale	of	porewater	fluxes	will	largely	determine	the	overall	magnitude	of	solute	inputs	734	

driven	by	porewater	fluxes.	An	appropriate	evaluation	of	not	only	the	magnitude	of	735	

porewater	fluxes	but	also	their	underlying	physical	forces	is	thus	required	to	fully	736	

understand	the	significance	of	these	fluxes	and	their	implications	for	coastal	water	737	

bodies.	738	
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FIGURES	759	

FIGURE	1	760	

	761	

Figure	1.	Study	site	(La	Palme	lagoon)	location	on	the	French	Mediterranean	coastline.	762	

The	location	of	sampling	stations	(Pz1,	Pz2,	Pz3	and	Pz4)	for	sediment	core	collection,	763	

temperature	and	CTD	logger	installation	and	porewater	collection	are	shown.	The	764	

position	of	monitoring	stations	(PN1,	PN2	and	PN3)	from	the	“Parc	Naturel	Régional	de	la	765	

Narbonnaise	en	Méditerranée”	(PNRNM)	is	also	indicated.	766	

	 	767	
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FIGURE	2	768	

	769	

Figure	2.	Measured	surface	water	temperatures	at	Pz1	between	22-26	June	2017,	and	770	

modeled	subsurface	temperatures	at	15	cm	depth	based	on	enhanced	dispersion	771	

coefficients	(De)	between	1.5·10-2	and	6.0·10-2	m2	d-1.		772	
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FIGURE	3	774	

	775	

Figure	3.	a)	Wind	speeds	(averaged	for	6	hours)	and	b)	water	depth	variations	in	Pz1	776	

during	the	main	period	of	samplings	(April	2017	–	December	2017).	For	simplicity,	all	the	777	

winds	blowing	from	the	N	(270º	–	90º)	are	represented	as	positive	and	assumed	to	be	778	

NW	winds,	and	winds	blowing	from	the	S	(90º	–	270º)	are	represented	as	negative	and	779	

assumed	to	be	SE	winds.	Green	and	red	vertical	areas	highlight	abrupt	increase	or	780	

decrease,	respectively,	in	lagoon	water	depths.	781	
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FIGURE	4	782	

	783	

Figure	4.	Significant	wave	height	Hs	(m)	measured	at	stations	Pz1,	Pz2	and	Pz3	during	784	

the	three	periods	of	deployment	of	temperature	sensors	and	high-frequency	pressure	785	

sensors.	Hourly-averaged	wind	speeds	(m	s-1)	and	directions	(°)	are	also	shown.	Discrete	786	

48-hour	periods	selected	to	represent	both	high	(red	vertical	areas)	and	low	(green	787	

vertical	areas)	wave	conditions	are	also	shown.	788	

	789	

	 	790	
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FIGURE	5	791	

	792	

Figure	5.	Depth	profiles	(in	cm	below	the	sediment-water	interface)	of	salinity	in	793	

porewater	for	the	three	piezometers	collected	at	each	campaign.	Reported	values	at	a	794	

depth	of	0	correspond	to	the	samples	collected	in	surface	waters	(~10	cm	above	the	795	

sediment-water	interface).	The	grey	area	represents	the	position	of	the	layer	with	low	796	

permeability	found	at	Pz3.	797	
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FIGURE	6	799	

	800	

Figure	6.	Observed	and	modeled	porewater	salinity	profiles	(depth	in	cm	below	the	801	

sediment-water	interface)	at	station	Pz1	from	the	different	sampling	campaigns.	The	grey	802	

salinity	profile	shown	in	(a)	represents	the	linear	interpolation	between	the	measured	803	

salinities	in	March	2016	and	the	lower	boundary	conditions,	which	is	used	as	initial	804	

concentration	profile	for	the	model.	805	
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FIGURE	7	807	

	808	

Figure	7.	Observed	and	modeled	salinities	at	30	cm	below	the	sediment-water	interface	809	

at	station	Pz1	for	the	studied	period	(2016-17).	Observed	data	include	porewater	810	

samples	collected	with	piezometers	(“Observed-Pz”)	and	directly	measured	with	the	CTD	811	

logger	installed	in	the	sediments	(“Observed-CTD”).		812	
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FIGURE	8	814	

	815	

	816	

Figure	8.	Modeled	vertical	porewater	fluxes	(cm	d-1)	at	station	Pz1,	together	with	817	

variations	of	lagoon	water	depths	at	the	same	station	(including	monthly	measurements	818	

from	PNRNM	and	continuous	measurements	with	the	CTD	logger	installed	at	surface	819	

waters).	Positive	porewater	fluxes	represent	advection	from	sediments	to	surface	lagoon	820	

waters.	821	

	 	822	

Depth-CTD
Depth-PNRNM
Modeled Flux

Fl
ux

 (c
m

 d
-1

)

−20

−10

0

10

20

30

W
ater depth (m

)

0

0.2

0.4

0.6

0.8

1.0

Jan Apr Jul Oct Jan Apr Jul Oct Jan
2016 2017



	 42	

FIGURE	9	823	

	824	

Figure	9.	Temperature	records	at	station	Pz1	for	the	May	2017	deployment	period,	825	

including	temperatures	in	surface	waters	and	at	different	depths	below	the	sediment-826	

water	interface.		827	
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FIGURE	10	829	

	830	

Figure	10.	Dispersion	coefficient	(De)	versus	RMSE	for	June	2017	data	for	the	831	

temperature	sensor	at	15	cm	depth	at	Pz1.	The	different	De	vs	RMSE	curves	account	for	832	

the	different	discrete	48-hours	periods	selected	for	June	2017	temperature	data	(Fig.	4):	833	

2	calm	periods	(Calm-J1	and	Calm-J2)	and	3	windy	periods	(Wind-J1,	Wind-J2	and	Wind-834	

J3).	Minimum	values	of	RMSE	for	each	period	indicate	the	best-fit	value	of	De.	835	

Uncertainties	are	defined	by	RMSE	values	0.1	ºC	greater	than	the	minimum	RMSE	in	each	836	

case.		837	
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FIGURE	11	839	

	840	

Figure	11.	Best-fit	values	of	enhanced	dispersion	coefficients	(De)	for	15	cm	temperature	841	

sensors	derived	from	the	48-hour	periods	from	May	and	June	2017	deployments.	De	842	

reported	for	June	2017	represent	the	average	(±	standard	deviation)	of	the	2	(calm)	or	3	843	

(windy)	events	selected	during	this	deployment.	Horizontal	black	lines	represent	the	844	

thermal	conductivity	estimated	from	Eq.	6.	845	
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FIGURE	12	847	

	848	

	849	

Figure	12.	Conceptual	model	describing	changes	on	shallow	and	deep	porewater	fluxes	850	

into	a	coastal	lagoon	depending	on	variations	of	lagoon	water	depths	and	locally-851	

generated	wind	waves:	a)	Potential	base	porewater	flux	in	periods	of	calm,	high	water	852	

conditions;	b)	Locally-generated	wind	waves	produce	an	increase	of	shallow	porewater	853	

fluxes;	c)	The	reduced	lagoon	water	depths	(as	a	consequence	of	high	evaporation	or	the	854	

wind-driven	outflow	of	lagoon	waters)	produce	an	increase	of	deep	porewater	fluxes.		855	
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TABLES	858	

TABLE	1		859	

Table	1.	Parameter	values	used	in	the	one-dimensional	model	of	subsurface	salinities.	860	

Values	for	h	represent	the	pressure	head,	not	the	total	head.	861	

	862	

Parameter	 Units	 Specified	
value	

Allowable	
range	

Calibrated	
value	

htop	 m	 0	-	0.91*	 -	 -	
hbot	 m	 -	 3.0	-	5.0	 Day	0:	4.32	

Day	182:	4.24	
Day	365:	4.	80	
Day	547:	4.17	
Day	730:	4.13	

Ctop	 -	 16.8	-	35.9	*	 -	 -	
Cbot	 -	 -	 90	-	130	 100	
k	 m2	 -	 10-13	-	10-12	 1.63·10-12**	
μ	 Pa	s	 8.9·10-4	 -	 -	
∂ρ/∂C	 -	 0.77	 -	 -	
θ	 -	 -	 0.4	-	0.	5	 0.40	
Sop	 Pa-1	 1·10-8	 -	 -	
α	 m	 -	 0.2	-	1.0	 0.2	
DM	 m2	s-1	 1.16·10-9	 -	 -	
	863	
*	Taken	from	measurements	in	the	Lagoon	(at	stations	Pz1	and	PN1).	864	
**	Corresponds	to	a	hydraulic	conductivity	of	1.55	m	d-1	for	non-saline	water.	865	
	866	

	867	

	868	
	869	
	 	870	
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TABLE	2	871	

Table	2.	Best-fit	values	of	enhanced	dispersion	coefficients	for	0.10	and	0.15	m	872	

temperature	sensors	for	discrete	48-hour	periods.	Units	are	·10-2	m2	d-1.	No	simulations	873	

were	conducted	for	loggers	at	stations	Pz2	and	Pz4	in	November	2017	because	water	874	

depths	were	too	shallow	and	the	surface	sensor	was	often	outside	the	water.	n.r.	indicates	875	

cases	when	the	data	from	the	logger	could	not	be	recovered.	876	

	877	

	 	 Sensor	at	10	cm	 	 Sensor	at	15	cm	
Event	Numb	 Pz	 Best_10cm	 -Δ	 +Δ	 	 Best-15cm	 -Δ	 +Δ	
May	17	

	 	 	 	 	 	 	 	Calm-M1	 PZ1	 2.3	 0.4	 0.5	 	 2.2	 0.4	 0.4	
Calm-M1	 PZ2	 3.0	 0.5	 0.6	 	 2.3	 0.3	 0.4	
Calm-M1	 PZ3	 2.8	 0.4	 0.5	 	 2.8	 0.4	 0.4	
Calm-M1	 PZ4	 3.1	 0.5	 0.5	 	 3.1	 0.4	 0.4	
Wind-M1	 PZ1	 3.3	 0.4	 0.5	 	 3.9	 0.5	 0.5	
Wind-M1	 PZ2	 4.0	 0.5	 0.6	 	 4.8	 0.6	 0.8	
Wind-M1	 PZ3	 3.8	 0.5	 0.6	 	 4.2	 0.5	 0.6	
Wind-M1	 PZ4	 3.3	 0.4	 0.5	 	 3.7	 0.4	 0.5	

	 	 	 	 	 	 	 	 	June	17	
	 	 	 	 	 	 	 	Calm-J1	 PZ1	 n.r.	 	 	 	 2.6	 0.8	 1.1	

Calm-J2	 PZ1	 n.r.	 	 	 	 2.6	 0.5	 0.7	
Calm-J1	 PZ2	 2.7	 0.5	 0.5	 	 3.1	 0.5	 0.6	
Calm-J2	 PZ2	 2.5	 0.4	 0.4	 	 2.7	 0.4	 0.4	
Calm-J1	 PZ3	 2.5	 0.6	 0.7	 	 3.2	 0.6	 0.8	
Calm-J2	 PZ3	 2.4	 0.4	 0.4	 	 2.8	 0.4	 0.4	
Calm-J1	 PZ4	 n.r.	 	 	 	 3.4	 0.5	 0.6	
Calm-J2	 PZ4	 n.r.	 	 	 	 3.0	 0.4	 0.5	
Wind-J1	 PZ1	 n.r.	 	 	 	 4.4	 0.6	 0.7	
Wind-J2	 PZ1	 n.r.	 	 	 	 3.9	 0.6	 0.7	
Wind-J3	 PZ1	 n.r.	 	 	 	 3.2	 0.6	 0.7	
Wind-J1	 PZ2	 4.0	 0.5	 0.6	 	 4.8	 0.6	 0.8	
Wind-J2	 PZ2	 3.4	 0.5	 0.6	 	 4.0	 0.6	 0.8	
Wind-J3	 PZ2	 2.6	 0.6	 0.7	 	 2.7	 0.6	 0.8	
Wind-J1	 PZ3	 4.1	 0.6	 0.8	 	 5.4	 0.9	 1.1	
Wind-J2	 PZ3	 3.9	 0.6	 0.7	 	 4.9	 0.8	 0.9	
Wind-J3	 PZ3	 2.6	 0.6	 0.8	 	 3.1	 0.7	 0.9	
Wind-J1	 PZ4	 n.r.	 	 	 	 3.8	 0.5	 0.7	
Wind-J2	 PZ4	 n.r.	 	 	 	 3.6	 0.5	 0.6	
Wind-J3	 PZ4	 n.r.	 	 	 	 3.3	 0.6	 0.7	
	 	878	
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TABLE	3	879	

Table	3.	Parameters	used	for	deriving	thermal	conductivity	(Irvine	et	al.,	2015;	Wilson	et	880	

al.,	2016).		881	

Parameter	 Symbol	 Value	 Units	
Density	of	water	 ρw	 1025	 kg	m-3	
Density	of	solids	 ρs	 2650	 kg	m-3	
Specific	heat	capacity	of	water	 cw	 4180	 J	kg-1	ºC-1	
Specific	heat	capacity	of	solids	 cs	 1170	 J	kg-1	ºC-1	
Thermal	conductivity	of	water	 Kw	 0.57	 J	s-1	m-1	ºC-1	
Thermal	conductivity	of	solids	 Ks	 2.0	 J	s-1	m-1	ºC-1	
	 	882	



	 49	

REFERENCES	883	

Almroth-Rosell,	E.,	Tengberg,	A.,	Andersson,	S.,	Apler,	A.,	Hall,	P.O.J.,	2012.	Effects	of	884	

simulated	natural	and	massive	resuspension	on	benthic	oxygen,	nutrient	and	885	

dissolved	inorganic	carbon	fluxes	in	Loch	Creran,	Scotland.	J.	Sea	Res.	72,	38–48.	886	

https://doi.org/10.1016/J.SEARES.2012.04.012	887	

Anderson,	M.P.,	2005.	Heat	as	a	Ground	Water	Tracer.	Ground	Water	43,	951–968.	888	

https://doi.org/10.1111/j.1745-6584.2005.00052.x	889	

Anderson,	W.P.,	Emanuel,	R.E.,	2010.	Effect	of	interannual	climate	oscillations	on	rates	of	890	

submarine	groundwater	discharge.	Water	Resour.	Res.	46.	891	

https://doi.org/10.1029/2009WR008212	892	

Andrisoa,	A.,	Stieglitz,	T.C.,	Rodellas,	V.,	Raimbault,	P.,	2019.	Primary	production	in	coastal	893	

lagoons	supported	by	groundwater	discharge	and	porewater	fluxes	inferred	from	894	

nitrogen	and	carbon	isotope	signatures.	Mar.	Chem.	210,	48–60.	895	

https://doi.org/10.1016/J.MARCHEM.2019.03.003	896	

Anschutz,	P.,	Smith,	T.,	Mouret,	A.,	Deborde,	J.,	Bujan,	S.,	Poirier,	D.,	Lecroart,	P.,	2009.	897	

Tidal	sands	as	biogeochemical	reactors.	Estuar.	Coast.	Shelf	Sci.	84,	84–90.	898	

https://doi.org/10.1016/j.ecss.2009.06.015	899	

Bejannin,	S.,	van	Beek,	P.,	Stieglitz,	T.,	Souhaut,	M.,	Tamborski,	J.,	2017.	Combining	900	

airborne	thermal	infrared	images	and	radium	isotopes	to	study	submarine	901	

groundwater	discharge	along	the	French	Mediterranean	coastline.	J.	Hydrol.	Reg.	902	

Stud.	13,	72–90.	https://doi.org/10.1016/J.EJRH.2017.08.001	903	

Berg,	R.R.,	1970.	Method	for	Determining	Permeability	from	Reservoir	Rock	Properties	904	

20.	905	

Bhaskar,	A.S.,	Harvey,	J.W.,	Henry,	E.J.,	2012.	Resolving	hyporheic	and	groundwater	906	

components	of	streambed	water	flux	using	heat	as	a	tracer.	Water	Resour.	Res.	48.	907	



	 50	

https://doi.org/10.1029/2011WR011784	908	

Boano,	F.,	Harvey,	J.W.,	Marion,	A.,	Packman,	A.I.,	Revelli,	R.,	Ridolfi,	L.,	Wörman,	A.,	2014.	909	

Hyporheic	flow	and	transport	processes:	Mechanisms,	models,	and	biogeochemical	910	

implications.	Rev.	Geophys.	52,	603–679.	https://doi.org/10.1002/2012RG000417	911	

Bokuniewicz,	H.,	Pollock,	M.,	Blum,	J.,	Wilson,	R.,	2004.	Submarine	Ground	Water	912	

Discharge	and	Salt	Penetration	Across	the	Sea	Floor.	Ground	Water	42,	983–989.	913	

https://doi.org/10.1111/j.1745-6584.2004.tb02637.x	914	

Caldwell,	D.R.,	1974.	Thermal	conductivity	of	sea	water.	Deep	Sea	Res.	Oceanogr.	Abstr.	915	

21,	131–137.	https://doi.org/10.1016/0011-7471(74)90070-9	916	

Cardenas,	M.B.,	Jiang,	H.,	2011.	Wave-driven	porewater	and	solute	circulation	through	917	

rippled	elastic	sediment	under	highly	transient	forcing.	Limnol.	Oceanogr.	Fluids	918	

Environ.	1,	23–37.	https://doi.org/10.1215/21573698-1151658	919	

Charette,	M.A.,	Allen,	M.C.,	2006.	Precision	Ground	Water	Sampling	in	Coastal	Aquifers	920	

Using	a	Direct-Push,	Shielded-Screen	Well-Point	System.	Gr.	Water	Monit.	Remediat.	921	

26,	87–93.	https://doi.org/10.1111/j.1745-6592.2006.00076.x	922	

Cho,	H.-M.,	Kim,	G.,	Kwon,	E.Y.,	Moosdorf,	N.,	Garcia-Orellana,	J.,	Santos,	I.R.,	2018.	Radium	923	

tracing	nutrient	inputs	through	submarine	groundwater	discharge	in	the	global	924	

ocean.	Sci.	Rep.	8,	2439.	https://doi.org/10.1038/s41598-018-20806-2	925	

Cook,	P.G.,	Rodellas,	V.,	Andrisoa,	A.,	Stieglitz,	T.C.,	2018a.	Exchange	across	the	sediment-926	

water	interface	quantified	from	porewater	radon	profiles.	J.	Hydrol.	559,	873–883.	927	

https://doi.org/10.1016/j.jhydrol.2018.02.070	928	

Cook,	P.G.,	Rodellas,	V.,	Stieglitz,	T.C.,	2018b.	Quantifying	Surface	Water,	Porewater	and	929	

Groundwater	Interactions	Using	Tracers:	Tracer	Fluxes,	Water	Fluxes	and	930	

Endmember	Concentrations.	Water	Resour.	Res.	931	

https://doi.org/10.1002/2017WR021780	932	



	 51	

Cranswick,	R.H.,	Cook,	P.G.,	Lamontagne,	S.,	2014.	Hyporheic	zone	exchange	fluxes	and	933	

residence	times	inferred	from	riverbed	temperature	and	radon	data.	J.	Hydrol.	519,	934	

1870–1881.	https://doi.org/10.1016/J.JHYDROL.2014.09.059	935	

Duque,	C.,	Müller,	S.,	Sebok,	E.,	Haider,	K.,	Engesgaard,	P.,	2016.	Estimating	groundwater	936	

discharge	to	surface	waters	using	heat	as	a	tracer	in	low	flux	environments:	the	role	937	

of	thermal	conductivity.	Hydrol.	Process.	30,	383–395.	938	

https://doi.org/10.1002/hyp.10568	939	

Fiandrino,	A.,	Giraud,	A.,	Robin,	S.,	Pinatel,	C.,	2012.	Validation	d’une	méthode	940	

d’estimation	des	volumes	d’eau	échangés	entre	la	mer	et	les	lagunes	et	définition	941	

d’indicateurs	hydrodynamiques	associés.	942	

Garcés,	E.,	Basterretxea,	G.,	Tovar-Sánchez,	A.,	2011.	Changes	in	microbial	communities	in	943	

response	to	submarine	groundwater	input.	Mar.	Ecol.	Prog.	Ser.	438,	47–58.	944	

https://doi.org/10.3354/meps09311	945	

Gelhar,	L.W.,	Welty,	C.,	Rehfeldt,	K.R.,	1992.	A	critical	review	of	data	on	field-scale	946	

dispersion	in	aquifers.	Water	Resour.	Res.	28,	1955–1974.	947	

https://doi.org/10.1029/92WR00607	948	

Gobler,	C.,	Sañudo-Wilhelmy,	S.,	2001.	Temporal	variability	of	groundwater	seepage	and	949	

brown	tide	blooms	in	a	Long	Island	embayment.	Mar.	Ecol.	Prog.	Ser.	217,	299–309.	950	

Gonneea,	M.E.,	Mulligan,	A.E.,	Charette,	M.A.,	2013.	Climate-driven	sea	level	anomalies	951	

modulate	coastal	groundwater	dynamics	and	discharge.	Geophys.	Res.	Lett.	40,	952	

2701–2706.	https://doi.org/10.1002/grl.50192	953	

Heiss,	J.W.,	Post,	V.E.A.,	Laattoe,	T.,	Russoniello,	C.J.,	Michael,	H.A.,	2017.	Physical	Controls	954	

on	Biogeochemical	Processes	in	Intertidal	Zones	of	Beach	Aquifers.	Water	Resour.	955	

Res.	53,	9225–9244.	https://doi.org/10.1002/2017WR021110	956	

Huettel,	M.,	Berg,	P.,	Kostka,	J.E.,	2014.	Benthic	exchange	and	biogeochemical	cycling	in	957	



	 52	

permeable	sediments.	Ann.	Rev.	Mar.	Sci.	6,	23–51.	958	

https://doi.org/10.1146/annurev-marine-051413-012706	959	

Hwang,	D.W.,	Lee,	Y.W.,	Kim,	G.,	2005.	Large	submarine	groundwater	discharge	and	960	

benthic	eutrophication	in	Bangdu	Bay	on	volcanic	Jeju	Island,	Korea.	Limnol.	961	

Oceanogr.	50,	1393–1403.	962	

Irvine,	D.,	Simmons,	C.,	Werner,	A.,	Graf,	T.,	2015.	Heat	and	solute	tracers:	how	do	they	963	

compare	in	heterogeneous	aquifers?	Ground	Water	53,	10–20.	964	

https://doi.org/10.1111/gwat.12146	965	

Johnson,	A.N.,	Boer,	B.R.,	Woessner,	W.W.,	Stanford,	J.A.,	Poole,	G.C.,	Thomas,	S.A.,	O’Daniel,	966	

S.J.,	2005.	Evaluation	of	an	Inexpensive	Small-Diameter	Temperature	Logger	for	967	

Documenting	Ground	Water-River	Interactions.	Gr.	Water	Monit.	Remediat.	25,	68–968	

74.	https://doi.org/10.1111/j.1745-6592.2005.00049.x	969	

King,	J.N.,	2012.	Synthesis	of	benthic	flux	components	in	the	Patos	Lagoon	coastal	zone,	970	

Rio	Grande	do	Sul,	Brazil.	Water	Resour.	Res.	48.	971	

https://doi.org/10.1029/2011WR011477	972	

King,	J.N.,	Mehta,	A.J.,	Dean,	R.G.,	2009.	Generalized	analytical	model	for	benthic	water	flux	973	

forced	by	surface	gravity	waves.	J.	Geophys.	Res.	114,	C04004.	974	

https://doi.org/10.1029/2008JC005116	975	

Kwon,	E.Y.,	Kim,	G.,	Primeau,	F.,	Moore,	W.S.,	Cho,	H.-M.,	DeVries,	T.,	Sarmiento,	J.L.,	976	

Charette,	M.A.,	Cho,	Y.-K.,	2014.	Global	estimate	of	submarine	groundwater	discharge	977	

based	on	an	observationally	constrained	radium	isotope	model.	Geophys.	Res.	Lett.	978	

n/a-n/a.	https://doi.org/10.1002/2014GL061574	979	

Lamontagne,	S.,	Cosme,	F.,	Minard,	A.,	Holloway,	A.,	2018.	Nitrogen	attenuation,	dilution	980	

and	recycling	in	the	intertidal	hyporheic	zone	of	a	subtropical	estuary.	Hydrol.	Earth	981	

Syst.	Sci.	22,	4083–4096.	https://doi.org/10.5194/hess-22-4083-2018	982	



	 53	

Lee,	E.,	Hyun,	Y.,	Lee,	K.-K.,	2013.	Sea	level	periodic	change	and	its	impact	on	submarine	983	

groundwater	discharge	rate	in	coastal	aquifer.	Estuar.	Coast.	Shelf	Sci.	121–122,	51–984	

60.	https://doi.org/10.1016/j.ecss.2013.02.011	985	

Lee,	Y.W.,	Kim,	G.,	Lim,	W.A.,	Hwang,	D.W.,	2010.	A	relationship	between	submarine	986	

groundwater-borne	nutrients	traced	by	Ra	isotopes	and	the	intensity	of	987	

dinoflagellate	red-tides	occurring	in	the	southern	sea	of	Korea.	Limnol.	Oceanogr.	55,	988	

1–10.	989	

Li,	L.,	Barry,	D..,	2000.	Wave-induced	beach	groundwater	flow.	Adv.	Water	Resour.	23,	990	

325–337.	https://doi.org/10.1016/S0309-1708(99)00032-9	991	

Li,	Y.,	Šimůnek,	J.,	Wang,	S.,	Zhang,	W.,	Yuan,	J.,	2017.	Simulating	the	Effects	of	Lake	Wind	992	

Waves	on	Water	and	Solute	Exchange	across	the	Lakeshore	Using	Hydrus-2D.	Water	993	

9,	566.	https://doi.org/10.3390/w9080566	994	

Liefer,	J.D.,	MacIntyre,	H.L.,	Su,	N.,	Burnett,	W.C.,	2013.	Seasonal	Alternation	Between	995	

Groundwater	Discharge	and	Benthic	Coupling	as	Nutrient	Sources	in	a	Shallow	996	

Coastal	Lagoon.	Estuaries	and	Coasts	37,	1–16.	https://doi.org/10.1007/s12237-997	

013-9739-4	998	

Martin,	J.B.,	Cable,	J.E.,	Jaeger,	J.,	Hartl,	K.,	Smith,	C.G.,	2006.	Thermal	and	chemical	999	

evidence	for	rapid	water	exchange	across	the	sediment-water	interface	by	1000	

bioirrigation	in	the	Indian	River	Lagoon,	Florida.	Limnol.	Oceanogr.	51,	1332–1341.	1001	

https://doi.org/10.4319/lo.2006.51.3.1332	1002	

Martin,	J.B.,	Cable,	J.E.,	Smith,	C.,	Roy,	M.,	Cherrier,	J.,	2007.	Magnitudes	of	submarine	1003	

groundwater	discharge	from	marine	and	terrestrial	sources:	Indian	River	Lagoon,	1004	

Florida.	Water	Resour.	Res.	43,	n/a-n/a.	https://doi.org/10.1029/2006WR005266	1005	

Martin,	J.B.,	Cable,	J.E.,	Swarzenski,	P.W.,	Lindenberg,	M.K.,	2004.	Enhanced	Submarine	1006	

Ground	Water	Discharge	from	Mixing	of	Pore	Water	and	Estuarine	Water.	Ground	1007	



	 54	

Water	42,	1000–1010.	https://doi.org/10.1111/j.1745-6584.2004.tb02639.x	1008	

Michael,	H.A.,	Mulligan,	A.E.,	Harvey,	C.F.,	2005.	Seasonal	oscillations	in	water	exchange	1009	

between	aquifers	and	the	coastal	ocean.	Nature	436,	1145–8.	1010	

https://doi.org/10.1038/nature03935	1011	

Michael,	H.A.,	Russoniello,	C.J.,	Byron,	L.A.,	2013.	Global	assessment	of	vulnerability	to	1012	

sea-level	rise	in	topography-limited	and	recharge-limited	coastal	groundwater	1013	

systems.	Water	Resour.	Res.	49,	2228–2240.	https://doi.org/10.1002/wrcr.20213	1014	

Molina-Giraldo,	N.,	Bayer,	P.,	Thermal,	P.B.-I.J.	of,	2011,		undefined,	2011.	Evaluating	the	1015	

influence	of	thermal	dispersion	on	temperature	plumes	from	geothermal	systems	1016	

using	analytical	solutions.	Int.	J.	Therm.	Sci.	50,	1223–1231.	1017	

https://doi.org/doi.org/10.1016/j.ijthermalsci.2011.02.004	1018	

Moore,	W.S.,	2010.	The	Effect	of	Submarine	Groundwater	Discharge	on	the	Ocean.	Ann.	1019	

Rev.	Mar.	Sci.	2,	59–88.	https://doi.org/10.1146/annurev-marine-120308-081019	1020	

Moore,	W.S.,	Sarmiento,	J.L.,	Key,	R.M.,	2008.	Submarine	groundwater	discharge	revealed	1021	

by	228Ra	distribution	in	the	upper	Atlantic	Ocean.	Nat.	Geosci.	1,	309–311.	1022	

https://doi.org/10.1038/ngeo183	1023	

Morris,	J.T.,	1995.	The	Mass	Balance	of	Salt	and	Water	in	Intertidal	Sediments:	Results	1024	

from	North	Inlet,	South	Carolina.	Estuaries	18,	556.	1025	

https://doi.org/10.2307/1352376	1026	

Nash,	S.G.,	1984.	Newton-Type	Minimization	via	the	Lanczos	Method.	SIAM	J.	Numer.	1027	

Anal.	21,	770–788.	https://doi.org/10.1137/0721052	1028	

Oliphant,	T.E.,	2007.	Python	for	Scientific	Computing.	Comput.	Sci.	Eng.	9,	10–20.	1029	

https://doi.org/10.1109/MCSE.2007.58	1030	

Paerl,	H.,	1997.	Coastal	eutrophication	and	harmful	algal	blooms:	Importance	of	1031	

atmospheric	deposition	and	groundwater	as"	new"	nitrogen	and	other	nutrient	1032	



	 55	

sources.	Limnol.	Oceanogr.	42,	1154–65.	1033	

Precht,	E.,	Huettel,	M.,	2003.	Advective	pore-water	exchange	driven	by	surface	gravity	1034	

waves	and	its	ecological	implications.	Limnol.	Oceanogr.	48,	1674–1684.	1035	

https://doi.org/10.4319/lo.2003.48.4.1674	1036	

Qian,	Q.,	Clark,	J.J.,	Voller,	V.R.,	Stefan,	H.G.,	2009.	Depth-Dependent	Dispersion	Coefficient	1037	

for	Modeling	of	Vertical	Solute	Exchange	in	a	Lake	Bed	under	Surface	Waves.	J.	1038	

Hydraul.	Eng.	135,	187–197.	https://doi.org/10.1061/(ASCE)0733-1039	

9429(2009)135:3(187)	1040	

Rapaglia,	J.P.,	Bokuniewicz,	H.J.,	2009.	The	effect	of	groundwater	advection	on	salinity	in	1041	

pore	waters	of	permeable	sediments.	Limnol.	Oceanogr.	54,	630–643.	1042	

Rau,	G.C.,	Andersen,	M.S.,	Acworth,	R.I.,	2012.	Experimental	investigation	of	the	thermal	1043	

dispersivity	term	and	its	significance	in	the	heat	transport	equation	for	flow	in	1044	

sediments.	Water	Resour.	Res.	48.	https://doi.org/10.1029/2011WR011038	1045	

Rau,	G.C.,	Andersen,	M.S.,	McCallum,	A.M.,	Roshan,	H.,	Acworth,	R.I.,	2014.	Heat	as	a	tracer	1046	

to	quantify	water	flow	in	near-surface	sediments.	Earth-Science	Rev.	129,	40–58.	1047	

https://doi.org/10.1016/J.EARSCIREV.2013.10.015	1048	

Robinson,	C.,	Xin,	P.,	Li,	L.,	Barry,	D.A.,	2014.	Groundwater	flow	and	salt	transport	in	a	1049	

subterranean	estuary	driven	by	intensified	wave	conditions.	Water	Resour.	Res.	50,	1050	

165–181.	https://doi.org/10.1002/2013WR013813	1051	

Robinson,	C.E.,	Xin,	P.,	Santos,	I.R.,	Charette,	M.A.,	Li,	L.,	Barry,	D.A.,	2017.	Groundwater	1052	

dynamics	in	subterranean	estuaries	of	coastal	unconfined	aquifers:	Controls	on	1053	

submarine	groundwater	discharge	and	chemical	inputs	to	the	ocean.	Adv.	Water	1054	

Resour.	https://doi.org/10.1016/J.ADVWATRES.2017.10.041	1055	

Rodellas,	V.,	Garcia-Orellana,	J.,	Masqué,	P.,	Feldman,	M.,	Weinstein,	Y.,	2015.	Submarine	1056	

groundwater	discharge	as	a	major	source	of	nutrients	to	the	Mediterranean	Sea.	1057	



	 56	

Proc.	Natl.	Acad.	Sci.	U.	S.	A.	112,	3926–30.	1058	

https://doi.org/10.1073/pnas.1419049112	1059	

Rodellas,	V.,	Garcia-Orellana,	J.,	Trezzi,	G.,	Masqué,	P.,	Stieglitz,	T.C.,	Bokuniewicz,	H.,	1060	

Cochran,	J.K.,	Berdalet,	E.,	2017.	Using	the	radium	quartet	to	quantify	submarine	1061	

groundwater	discharge	and	porewater	exchange.	Geochim.	Cosmochim.	Acta	196.	1062	

https://doi.org/10.1016/j.gca.2016.09.016	1063	

Rodellas,	V.,	Stieglitz,	T.C.,	Andrisoa,	A.,	Cook,	P.G.,	Raimbault,	P.,	Tamborski,	J.J.,	van	Beek,	1064	

P.,	Radakovitch,	O.,	2018.	Groundwater-driven	nutrient	inputs	to	coastal	lagoons:	1065	

The	relevance	of	lagoon	water	recirculation	as	a	conveyor	of	dissolved	nutrients.	Sci.	1066	

Total	Environ.	642,	764–780.	https://doi.org/10.1016/j.scitotenv.2018.06.095	1067	

Santos,	I.R.,	Burnett,	W.C.,	Chanton,	J.,	Dimova,	N.,	Peterson,	R.N.,	2009.	Land	or	ocean?:	1068	

Assessing	the	driving	forces	of	submarine	groundwater	discharge	at	a	coastal	site	in	1069	

the	Gulf	of	Mexico.	J.	Geophys.	Res.	114,	C04012.	1070	

https://doi.org/10.1029/2008JC005038	1071	

Santos,	I.R.,	Eyre,	B.D.,	Huettel,	M.,	2012.	The	driving	forces	of	porewater	and	1072	

groundwater	flow	in	permeable	coastal	sediments:	A	review.	Estuar.	Coast.	Shelf	Sci.	1073	

98,	1–15.	https://doi.org/10.1016/j.ecss.2011.10.024	1074	

Savidge,	W.B.,	Wilson,	A.,	Woodward,	G.,	2016.	Using	a	Thermal	Proxy	to	Examine	1075	

Sediment–Water	Exchange	in	Mid-Continental	Shelf	Sandy	Sediments.	Aquat.	1076	

Geochemistry	22,	419–441.	https://doi.org/10.1007/s10498-016-9295-1	1077	

Sawyer,	A.H.,	Shi,	F.,	Kirby,	J.T.,	Michael,	H.A.,	2013.	Dynamic	response	of	surface	water-1078	

groundwater	exchange	to	currents,	tides,	and	waves	in	a	shallow	estuary.	J.	Geophys.	1079	

Res.	Ocean.	118,	1749–1758.	https://doi.org/10.1002/jgrc.20154	1080	

Simmons,	C.T.,	Fenstemaker,	T.R.,	Sharp,	J.M.,	2001.	Variable-density	groundwater	flow	1081	

and	solute	transport	in	heterogeneous	porous	media:	approaches,	resolutions	and	1082	



	 57	

future	challenges.	J.	Contam.	Hydrol.	52,	245–275.	https://doi.org/10.1016/S0169-1083	

7722(01)00160-7	1084	

Smith,	C.G.,	Cable,	J.E.,	.Martin,	J.B.,	2008.	Episodic	high	intensity	mixing	events	in	a	1085	

subterranean	estuary:	Effects	of	tropical	cyclones.	Limnol.	Oceanogr.	53,	666–674.	1086	

https://doi.org/10.4319/lo.2008.53.2.0666	1087	

Sous,	D.,	Petitjean,	L.,	Bouchette,	F.,	Rey,	V.,	Meulé,	S.,	Sabatier,	F.,	Martins,	K.,	2016.	Field	1088	

evidence	of	swash	groundwater	circulation	in	the	microtidal	rousty	beach,	France.	1089	

Adv.	Water	Resour.	97,	144–155.	1090	

https://doi.org/10.1016/J.ADVWATRES.2016.09.009	1091	

Stieglitz,	T.C.,	Beek,	P.,	Souhaut,	M.,	Cook,	P.G.,	2013.	Karstic	groundwater	discharge	and	1092	

seawater	recirculation	through	sediments	in	shallow	coastal	Mediterranean	lagoons,	1093	

determined	from	water,	salt	and	radon	budgets.	Mar.	Chem.	156,	73–84.	1094	

https://doi.org/10.1016/j.marchem.2013.05.005	1095	

Sugimoto,	R.,	Honda,	H.,	Kobayashi,	S.,	Takao,	Y.,	Tahara,	D.,	Tominaga,	O.,	Taniguchi,	M.,	1096	

2015.	Seasonal	Changes	in	Submarine	Groundwater	Discharge	and	Associated	1097	

Nutrient	Transport	into	a	Tideless	Semi-enclosed	Embayment	(Obama	Bay,	Japan).	1098	

Estuaries	and	Coasts.	https://doi.org/10.1007/s12237-015-9986-7	1099	

Tamborski,	J.,	Bejannin,	S.,	Garcia-Orellana,	J.,	Souhaut,	M.,	Charbonnier,	C.,	Anschutz,	P.,	1100	

Pujo-Pay,	M.,	Conan,	P.,	Crispi,	O.,	Monnin,	C.,	Stieglitz,	T.,	Rodellas,	V.,	Andrisoa,	A.,	1101	

Claude,	C.,	van	Beek,	P.,	2018.	A	comparison	between	water	circulation	and	1102	

terrestrially-driven	dissolved	silica	fluxes	to	the	Mediterranean	Sea	traced	using	1103	

radium	isotopes.	Geochim.	Cosmochim.	Acta	238,	496–515.	1104	

https://doi.org/10.1016/J.GCA.2018.07.022	1105	

Valiela,	I.,	Costa,	J.,	Foreman,	K.,	Teal,	J.M.,	Howes,	B.,	Aubrey,	D.,	1990.	Transport	of	1106	

groundwater-borne	nutrients	from	watersheds	and	their	effects	on	coastal	waters.	1107	



	 58	

Biogeochemistry	10,	177–197.	https://doi.org/10.1007/BF00003143	1108	

van	der	Walt,	S.S.,	Colbert,	S.C.,	Varoquaux,	G.G.,	2011.	The	NumPy	Array:	A	Structure	for	1109	

Efficient	Numerical	Computation.	Comput.	Sci.	Eng.	13,	22–30.	1110	

https://doi.org/10.1109/MCSE.2011.37	1111	

Voss,	C.I.,	Souza,	W.R.,	1987.	Variable	density	flow	and	solute	transport	simulation	of	1112	

regional	aquifers	containing	a	narrow	freshwater-saltwater	transition	zone.	Water	1113	

Resour.	Res.	23,	1851–1866.	https://doi.org/10.1029/WR023i010p01851	1114	

Weinstein,	Y.,	Yechieli,	Y.,	Shalem,	Y.,	Burnett,	W.C.,	Swarzenski,	P.W.,	Herut,	B.,	2011.	1115	

What	is	the	role	of	fresh	groundwater	and	recirculated	seawater	in	conveying	1116	

nutrients	to	the	coastal	ocean?	Environ.	Sci.	Technol.	45,	5195–200.	1117	

https://doi.org/10.1021/es104394r	1118	

Whipple,	A.C.,	Luettich,	R.A.,	Reynolds-Fleming,	J.	V.,	Neve,	R.H.,	2018.	Spatial	differences	1119	

in	wind-driven	sediment	resuspension	in	a	shallow,	coastal	estuary.	Estuar.	Coast.	1120	

Shelf	Sci.	213,	49–60.	https://doi.org/10.1016/J.ECSS.2018.08.005	1121	

Wilke,	M.,	Boutière,	H.,	2000.	Synthèse	générale	du	fonctionnement	hydrobiologique	de	1122	

l’étang	de	La	Palme,	CEH.	Perpignan,	France.	1123	

Wilson,	A.M.,	Evans,	T.B.,	Moore,	W.S.,	Schutte,	C.A.,	Joye,	S.B.,	2015.	What	time	scales	are	1124	

important	for	monitoring	tidally	influenced	submarine	groundwater	discharge?	1125	

Insights	from	a	salt	marsh.	Water	Resour.	Res.	51,	4198–4207.	1126	

https://doi.org/10.1002/2014WR015984	1127	

Wilson,	A.M.,	Woodward,	G.L.,	Savidge,	W.B.,	2016.	Using	heat	as	a	tracer	to	estimate	the	1128	

depth	of	rapid	porewater	advection	below	the	sediment–water	interface.	J.	Hydrol.	1129	

538,	743–753.	https://doi.org/10.1016/j.jhydrol.2016.04.047	1130	

Yu,	X.,	Xin,	P.,	Lu,	C.,	Robinson,	C.,	Li,	L.,	Barry,	D.A.,	2017.	Effects	of	episodic	rainfall	on	a	1131	

subterranean	estuary.	Water	Resour.	Res.	53,	5774–5787.	1132	



	 59	

https://doi.org/10.1002/2017WR020809	1133	

	1134	


