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Abstract
The paper deals with base revision for Answer Set Programming (ASP). Base revision in clas-

sical logic is done by the removal of formulas. Exploiting the non-monotonicity of ASP allows one
to propose other revision strategies, namely addition strategy or removal and/or addition strategy.
These strategies allow one to define families of rule-based revision operators. The paper presents
a semantic characterization of these families of revision operators in terms of answer sets. This
semantic characterization allows for equivalently considering the evolution of syntactic logic pro-
grams and the evolution of their semantic content. It then studies the logical properties of the
proposed operators and gives complexity results.

1. Introduction

Answer Set Programming (ASP) is an efficient unified formalism for both knowledge representation 
and reasoning in Artificial Intelligence (AI). It has its roots in non-monotonic reasoning and logic 
programming and gave rise to intensive research since Gelfond and Lifschitz’s seminal paper (Gel-
fond & Lifschitz, 1988). ASP has an elegant and conceptually simple theoretical foundation and has 
been proved useful for solving a wide range of problems in various domains (Schaub & Woltran, 
2018). Beyond its ability to formalize various problems from AI and to encode combinatorial prob-
lems (Baral, 2003; Niemelä, 1999), ASP provides also an interesting way to practically solve such 
problems since some efficient solvers are available (Gebser, Kaufmann, &  Schaub, 2 012; Leone, 
Pfeifer, Faber, Eiter, Gottlob, Perri, & Scarcello, 2006). But in most domains, information is evolv-
ing and subject to change, it is thus necessary to modify ASP logic programs when new information 
is received.

Belief change in a classical logic setting, in particular belief revision, has been extensively stud-
ied for decades. It applies to situations where an agent faces incomplete or uncertain information 
and where new and more reliable information may be contradictory with its initial beliefs. Belief 
revision consists in modifying the initial agent’s beliefs while taking into account new information 
and ensuring the consistency of the result. Belief revision relies on three main principles: (i) Suc-
cess: Change must succeed, new information has to be accepted, (ii) Consistency: The result of the 
revision operation must be a consistent set of beliefs, and (iii) Minimal change: The initial beliefs 
have to be changed as little as possible.

Two main frameworks became standard according to the nature of the involved representation 
of beliefs. AGM paradigm (Alchourrón & Makinson, 1985) for deductively closed set of beliefs
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or theory revision, rephrased by Katsuno and Mendelzon (1991) for model-based revision, consists
in providing the models of new information which are the closest (according to some criteria) to
the models of the initial beliefs. On contrast, formula-based revision (or base revision) introduced
by Hansson (1999) consists in selecting subsets of the initial beliefs maximally (according to some
criteria) consistent with new information. Several concrete base revision operators have been pro-
posed. Most approaches focus on the construction of consistent subbases maximal with respect to
several criteria (Benferhat, Cayrol, Dubois, Lang, & Prade, 1993; Lehmann, 1995). From a dual
point of view, others stem from the minimal withdrawal of formulas in order to restore consis-
tency with new information like Kernel revision (Hansson, 1997) or like Removed Sets Revision
(RSR) (Papini, 1992; Würbel, Jeansoulin, & Papini, 2000; Benferhat, Bennaim, Papini, & Würbel,
2010) that focuses on subsets of formulas minimal with respect to cardinality to remove. All these
approaches require selection functions that encode the revision strategies for selecting among sub-
bases or among subsets of formulas to remove.

This paper aims at studying base revision when beliefs are represented by ASP logic programs.
Due to the non-monotonic nature of logic programs under answer set semantics, the problem of
change in ASP is different and can be solved with more strategies than in classical logic. To illustrate
this issue, consider the following example. In a medical context, patients suffering from a certain
disease (disease1) generally take a drug (drug1), unless they take another drug (drug2). Suppose we
know that Lea is suffering from disease1 and that in this case the medical team does not recommend
her hospitalization. We can conclude that Lea takes drug1. It can be represented by the following
ASP logic program:

take drug1(X)← suffer disease1(X),not take drug2(X). (1)
suffer disease1(lea). (2)
← hospitalization(lea). (3)

The answer set {suffer disease1(lea), take drug1(lea)} for the above logic program corresponds to
the facts we can conclude. Suppose we receive the information that Lea is allergic to drug1 and that
if the fever does not drop she should be hospitalized for further tests. This can be represented by the
following ASP logic program:

← take drug1(lea). (4)
hospitalization(lea)← not fever drop(lea). (5)

Now our beliefs about Lea are contradictory. Indeed the ASP logic program consisting in rules
(1)− (5) has no answer set. Resolving this inconsistency requires a revision mechanism. Incon-
sistency source is twofold, the first one concerns the drugs that Lea has to take and the second one
concerns her hospitalization. The belief that Lea suffers from disease1 (2) may be wrong, or rule
(1) may be questioned. Moreover the constraint (3) may be too strong. In the spirit of monotonic
revision we can restore consistency by removing rules (1) and (3), or (2) and (3). Alternatively,
within a non-monotonic setting, in absence of information on the facts that Lea takes drug2 and that
Lea’s fever is dropping we can restore consistency by adding take drug2(lea) and fever drop(lea).
Besides, combining the above approaches we can also restore consistency by removing rule (1) or
(2) and adding fever drop(lea) or by removing rule (3) and adding take drug2(lea). In this paper,
we propose three families of ASP base revision stemming from the addition and/or removal of some
rules.
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The first approaches dealing with logic programs in a dynamic setting focused on the problem
of logic program change (Zhang & Foo, 1998; Sakama & Inoue, 1999; Alferes, Leite, Pereira,
Przymusinska, & Przymusinski, 2000; Eiter, Fink, Sabbatini, & Tompits, 2002). The first work
bridging ASP in a dynamic setting and belief change has been proposed by Delgrande, Schaub,
Tompits and Woltran (2008, 2009, 2013). Their approach uses a semantic of logic programs in
terms of SE-models (Turner, 2003). Model-based revision and merging stemming from a distance
between interpretations have been extended to logic programs. Revision in this context consists in
providing the sets of SE-models of the new logic program closest to the SE-models of the initial
one. However, they noted that this approach has the drawback that arbitrary sets of SE-models
may not necessarily be expressed via a logic program. Recently this drawback has been avoided
for classes of logic programs satisfying an AGM-compliance condition on SE-models and a new
postulate (Delgrande, Peppas, & Woltran, 2013). Model-based update has been addressed in the
same spirit by Slota and Leite (2010, 2014).

From a syntactic point of view, formula-based belief merging and revision have been extended to
ASP. The “removed sets” approach for fusion and revision (RSF) (Hué, Papini, & Würbel, 2008) and
(RSR) (Benferhat et al., 2010) respectively, proposed in propositional logic have been extended to
ASP (Hué, Papini, & Würbel, 2009, 2013). Besides, Krümpelmann and Kern-Isberner extended to
ASP the “remainder sets” approach for screened consolidation initially defined in a classical setting.
The strategy of these two approaches stems from the removal of some rules in order to restore
consistency. More recently, a new approach for extending belief base revision to ASP has been
proposed with additional strategies stemming from the addition and the addition and/or removal of
some rules (Zhuang, Delgrande, Nayak, & Sattar, 2016b).

This paper focuses on three different families of ASP base revision operators. It first reviews
the RSR family, it then introduces the notions of “added Sets” and “modified Sets” and proposes the
Added Set Revision (ASR) and the Modified Set Revision (MSR). Note that these families of oper-
ators differ from the ones provided by Zhuang et al. (2016b) since the minimality criterion for the
removed, added or modified sets is cardinality and not set inclusion. Indeed, cardinality refines set
inclusion and has interesting properties as pointed by Benferhat, Dubois and Prade (1995). For each
family of ASP base revision operators the paper provides a semantic counter-part that characterizes
the operators in terms of answer sets.

The main contribution of the paper is the characterization of ASP base revision operators which
also covers the family of SLP operators proposed by Zhuang et al. (2016b). This is an important
result since it provides a new semantic characterization of logic program revision in terms of answer
sets and allows one to change the focus from the evolution of a syntactic logic program to the
evolution of its semantic content.

The paper is organized as follows. Section 2 gives a refresher on ASP and on belief base re-
vision. Section 3 recalls RSR revision and provides a semantic characterization of removed sets.
Section 4 introduces the notions of added set and ASR revision, it then gives a semantic character-
ization of added sets. Section 5 introduces the notions of modified set and MSR revision, it then
provides a semantic characterization of modified sets. Section 6 reformulates the well-known Hans-
son’s postulates defined for proposition belief base revision within the ASP framework and gives
logical properties of RSR, ASR and MSR revision operators. Section 7 presents a study on the
computational complexity of RSR, ASR and MSR revision operators. Finally Section 8 presents
some related works and Section 9 concludes the paper.
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This article is an extension of the conference paper (Garcia, Lefèvre, Papini, Stéphan, & Würbel,
2017). Besides providing full proofs for all results in the Appendix, we add here also a study
of logical properties of the proposed revision operators (Section 6) as well as complexity results
(Section 7).

2. Preliminaries

In this section, we present all the notions that will be usefull in this paper.

2.1 Answer Set Programming

Let A be a set of propositional atoms, a logic program is a finite set of rules of the form:

(c← a1, . . . , an, not b1, . . . , not bm.) n≥ 0,m≥ 0

where c,a1, . . . ,an, b1, . . .bm ∈ A . The set of all logic programs is denoted by P . The symbol
“not” represents default negation and such a program may be seen as a sub-case of the default
theory of Reiter (Reiter, 1980). A negation-free program is a definite program. For each rule r, let
head(r) = c, body+(r) = {a1, . . . ,an}, body−(r) = {b1, . . . ,bm} and r+ = (head(r)← body+(r).).
If body+(r) = /0 and body−(r) = /0 then the rule is simply written (c.) and is called a fact. For a set
of rules R, Head(R) = {head(r) | r ∈ R} and R+ = {r+ | r ∈ R}.

Let X be a set of atoms. A rule r is applicable in X if body+(r)⊆ X . App(P,X) denotes the set
of applicable rules of P in X . The least Herbrand model of a definite program P, denoted Cn(P), is
the smallest set of atoms closed under P and can be computed as the least fix-point of the following
consequence operator: TP : 2A → 2A such that TP(X) = Head(App(P,X)).

The Gelfond-Lifschitz reduct of a program P by a set of atoms X (Gelfond & Lifschitz, 1988)
is the program PX = {r+ | r ∈ P and body−(r)∩X = /0}. Since it has no default negation, such a
program is definite and then it has a unique minimal Herbrand model. By definition, an answer set
(or stable model) of P is a set of atoms X ⊆A such that X =Cn(PX). The set of answer sets of a
logic program P is denoted by AS(P). If AS(P) 6= /0 the program is said consistent otherwise it is
said inconsistent.

GR(P,X) = {r ∈ P | body+(r) ⊆ X and body−(r)∩X = /0} denotes the set of the generating
rules of a logic program P with respect to a set of atoms X . A set of rules R⊆ P is grounded if there
exists some enumeration 〈ri〉ni=1 of the rules of R such that ∀i > 0, body+(ri)⊆ {head(r j) | j < i}.
With those definitions the following result holds: X ∈ AS(P) if and only if X = Cn(GR(P,X)+) if
and only if X = Head(GR(P,X)) and GR(P,X) is grounded.

A constraint is a rule without head (← a1, . . . , an, not b1, . . . , not bm.) that should be read as
(h← a1, . . . , an, not b1, . . . , not bm, not h.) where h is a new atom symbol appearing nowhere
else in the program.

For an atom a, f act(a) denotes the corresponding fact (a.) and atom(a.) denotes the corre-
sponding atom (a). These notations are extended to sets as usual: f act(A) = {a. | a ∈ A} and
atom(F) = {a | a. ∈ F}.

Example 1. In the following example:

take drug1(lea)← suffer disease1(lea),not take drug2(lea). (1)
suffer disease1(lea). (2)
← hospitalization(lea). (3)
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Rule (2) is a fact meaning that Lea suffers from disease 1 and rule (3) is a constraint that forbids
each answer set containing that Lea is hospitalized. There is one answer set: {suffer disease1(lea),
take drug1(lea)}. Moreover, if we add the fact take drug2(lea), the only answer set becomes:
{suffer disease1(lea), take drug2(lea)}.

2.2 Classical Interpretations and Models

We now consider a rule (c← a1, . . . , an, not b1, . . . , not bm.) as a classical implication (a1∧·· ·∧
an ∧¬b1 ∧ ·· · ∧¬bm → c) which is equivalent to (¬a1 ∨ ·· · ∨¬an ∨ b1 ∨ ·· · ∨ bm ∨ c). Hence, an
interpretation of P is a set of atoms m⊆A . An interpretation m satisfies a rule r if body+(r) 6⊆ m
or body−(r)∩m 6= /0 or head(r) ∈ m. Conversely, an interpretation m falsifies a rule r if m does not
satisfy r: body+(r) ⊆ m and body−(r)∩m = /0 and head(r) 6∈ m. An interpretation m is a model
of a program P if m satisfies all rules from P. Mod(P) denotes the set of all the models of a logic
program P. A logic program P is m-consistent1 if Mod(P) 6= /0 otherwise P is said m-inconsistent.

The following property links answer sets and classical models.

Theorem 1. For any logic programs P and Q, AS(P∪Q)⊆Mod(P).

Note that, if Q is empty, AS(P) ⊆ Mod(P) holds. The converse of this property is obviously
false, even for an empty set Q: a classical model is not necessary an answer set. For example
P = {a← not b.,b← not c.,c← not a}, we have AS(P) = /0 but Mod(P) 6= /0.

2.3 Belief Base Revision

Belief revision consists in incorporating a new belief, changing as few as possible the original beliefs
while preserving consistency. Belief revision has been extensively studied within the framework of
classical logic. In this paper we focus on belief base (finite (not closed) set of formulas) revision.
More formally, let L be the classical language, a base revision operator denoted by ∗ is a function
from 2L ×L to 2L that maps a belief base B (the initial agent’s beliefs) and a formula µ (new
information) to a new belief base B ∗µ (the revised agent’s beliefs). Within this context, Hansson
(1999) proposed postulates that any base revision operation should satisfy. Such postulates are as
follows: let B,B′ be consistent belief bases and µ,φ be formulas,

1. The term is from Delgrande and al. (Zhuang et al., 2016b)
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Success µ ∈B ∗µ

Inclusion B ∗µ ⊆B∪{µ}

Consistency If µ is consistent then B ∗µ is consistent

Vacuity If B∪{µ} is consistent then B ∗µ = B∪{µ}

Core− retainment If φ ∈B and φ 6∈B ∗µ then there exists B′ such that
B′ ⊆B∪{µ}, B′ is consistent but
B′∪{φ} is inconsistent.

Relevance If φ ∈B and φ 6∈B ∗µ then there exists B′ such that
B ∗µ ⊆B′ ⊆B∪{µ}, B′ is consistent but
B′∪{φ} is inconsistent

Uniformity If for all subsets B′ ⊆B, B′∪{µ} is inconsistent
if and only if B′∪{φ} is inconsistent
then B \ (B ∗µ) = B \ (B ∗φ)

The meaning of these postulates is the following. Success and Consistency express basic revi-
sion principles. Inclusion states that the union of the initial belief bases is the upper bound of any
revision operation. Vacuity says that if new information is consistent with the belief base then the
result of revision equals the non closing expansion. Core− retainment and Relevance express the
intuition that nothing is removed from the original belief bases unless its removal in some way con-
tributes to make the result consistent. Uniformity determines that if two formulas are consistent with
the same subsets of the original belief base then the respective erased formulas should be identical.

These postulates have been proposed for base revision within a monotonic setting. The starting
hypothesis is that the initial belief base is consistent, moreover, thanks to the compactness prop-
erty of a monotonic setting, the only way to restore consistency of belief bases is to remove some
formulas. Within the ASP non-monotonic setting we relax the consistency hypothesis of the logic
programs. Moreover restoring consistency can be performed by removing rules only but also by
adding rules only or by removing and adding rules, as illustrated by the example in the introduction.

Considering consistency, within the ASP framework consistency means existence of an answer
set while in a classical setting consistency is the existence of a model (monotonic consistency).
Interpreting rules of a logic program as classical implications (see Section 2.2) leads to the no-
tion of m-consistency of a logic program and Theorem 1 shows that for any normal logic program,
consistency implies m-consistency (of course the converse does not hold). Investigating belief base
revision within the ASP framework, we have to consider both consistency and m-consistency. When
the revising logic program is not consistent but m-consistent there is a possibility to restore consis-
tency while when the revising logic program is not m-consistent there is no possibility to restore
consistency.

Example 2. Let P and Q be two normal logic programs, P = {c← b,not a.} and Q = {← a.,a←
b.,b.}. P is consistent AS(P) = { /0}, Q is m-inconsistent AS(Q) = /0 and P∪Q is m-inconsistent.
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Keeping Q unchanged, removing the rules from P leads to an m-inconsistent logic program, and
adding some rule to P∪Q also leads to a m-inconsistent logic program.

2.4 Other Notions and Notations

We review some notions and notations useful in subsequent sections.

Definition 1 (preorders). Let A be a set.

• A preorder on A is a reflexive and transitive binary relation.

• A total preorder on A, denoted by ≤, is a preorder such that ∀x,y ∈ A either x ≤ y or y ≤ x
holds.

• An equivalence relation, denoted by ', is such that x' y if and only if x≤ y and y≤ x.

• A strict total preorder, denoted by <, is such that x < y if and only if x ≤ y holds but x ' y
does not hold.

• Let M be a subset of A, the set of minimal elements of M with respect to ≤, denoted by
Min(M,≤), is defined as: Min(M,≤) = {x | x ∈M and @y(y ∈M and y < x)}.

Definition 2 (preference relation). Let X and Y be two sets, |X | (resp. |Y |) denotes the cardinality
of X (resp. of Y ) and X ≤ Y if |X | ≤ |Y |. X ≤ Y means that X is preferred to Y .

Definition 3 (selection function). Let A be a finite set, a selection function denoted by f is a function
from 2A \ /0 to A which for any set X ∈ 2A returns an element f (X) such that f (X) ∈ X .

2.5 Revision, Non-Monotony and Inconsistency

Let P and Q be logic programs, possibly inconsistent. Throughout the paper Q is the program
used to revise the initial program P. Revising P by Q amounts to providing a new consistent logic
program containing Q and differing as little as possible from P. Revision is not always possible
(for example, when Q does not admit any classical model since the revision strategy only processes
information from P).

If P∪Q is consistent, no revision is necessary. Note that, in ASP, P∪Q can be consistent even
if P and Q are both inconsistent. This is due to the fact that some information of P can block the
rules responsible for the inconsistency of Q (and vice versa).

When P∪Q is inconsistent, there are several ways to revise P by Q. If we refer to the classical
setting, let P and Q be two belief bases, revising P by Q often consists in removing as few pieces of
information from P as possible. However, in a non-monotonic setting, restoring consistency can be
done by removing some rules responsible for the inconsistency (like in the classical setting) but also
by blocking these rules (by keeping these rules and adding pieces of information blocking them).
Another way to restore consistency is to combine both removal and addition of rules. In view of
these observations, we propose three ASP base revision methods.

3. ASP Base Revision by Removal

This section is dedicated to ASP base revision by removal. This revision strategy stems from the
suppression of rules of P when P∪Q is inconsistent. This strategy is a direct application of the
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one used for revising belief bases in a classical setting, however it differs from it due to the non-
monotonicity of logic programs. Hué et al. (2013) proposed a syntactic characterization of ASP
Revision by removal based on removed sets. We recall here this syntactic proposal and we add its
semantical counterpart.

3.1 Rule-Based Revision by Removal

We review Removed Sets Revision (RSR) extended to ASP (Hué et al., 2013). This strategy focuses
on the minimal number of rules needed to remove from P in order to restore the consistency. We
first review the notion of potential removed set for which the minimality criterion is set inclusion.

Definition 4 (potential removed set, Hué et al., 2013). Let P and Q be two logic programs. A
potential removed set X is a set of rules such that:

• X ⊆ P.

• (P\X)∪Q is consistent.

• For each X ′ ⊂ X , (P\X ′)∪Q is inconsistent.

PR(P,Q) denotes the set of potential removed sets for P and Q.

Example 3. Let P and Q be two logic programs such that

P =


r1 : a← b., r4 : c← not a.,
r2 : a., r5 : d.,
r3 : b., r6 : d← not b.

 and Q = {← a,b., ← not c,d.}.

These two logic programs are consistent since AS(P) = {{a,b,d}} and AS(Q) = { /0} but P∪Q is
inconsistent. PR(P,Q) = {{r3,r5,r6},{r2,r3},{r1,r2}}.

According to the definition, if P∪Q is consistent then PR(P,Q) = { /0}. Since potential re-
moved sets are built by removing only rules from P in order to restore consistency of P∪Q, it may
be possible that the set of potential removed sets for an inconsistent set Q is empty.

Example 4. Let Q = {← not a.}. If P = {a.} then PR(P,Q) = { /0} since P∪Q is consistent. But
if P = {b.} then PR(P,Q) = /0, it is not possible to restore consistency by removal.

Since revision must change the program as little as possible, we have to choose among the po-
tential removed sets those that are minimal. The minimality criterion chosen for RSR is cardinality.
We thus review the notion of removed set by selecting the potential removed sets minimal with
respect to cardinality.

Definition 5 (removed set, Hué et al., 2013). Let P and Q be two logic programs. A removed set X
is a set of rules such that:

• X is a potential removed set.

• There is no potential removed set Y such that Y < X .

R(P,Q) denotes the set of removed sets for P and Q. According to the definition R(P,Q) =
Min(PR(P,Q),≤)2 and if P∪Q is consistent then R(P,Q) = { /0}.

2. We recall that when we write Min(PR(P,Q),≤), the minimality criterion is cardinality, see Definition 2.
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Example 5 (Example 3 continued). R(P,Q) = {{r2,r3},{r1,r2}}.

A revision operator ? defines, for all programs P and Q, the revised program P?Q. In the present
case, for two programs P and Q, there can be several removed sets, thus there can be several revision
operators, as many as removed sets. The role of the selection function is to choose one removed set
among the set R(P,Q). More formally, f is such that f (R(P,Q))) = X , with X ∈R(P,Q). We now
review the Removed Set Revision (RSR) family of operators.

Definition 6 (RSR operators, Hué et al., 2013). Let P and Q be two logic programs, R(P,Q) the set
of removed sets and f a selection function. The revision operator denoted by ?RSR( f ) is a function
from P×P to P such that P?RSR( f )Q = (P\ f (R(P,Q))) ∪ Q.

Note that if R(P,Q) = /0, f (R(P,Q)) is not defined. This means that the program P cannot be
revised by Q.

Example 6 (Example 3 continued). There are two selection functions, f1(R(P,Q)) = {r2,r3} and
f2(R(P,Q)) = {r1,r2}, therefore

P?RSR( f1)Q =


r1 : a← b., r6 : d← not b.,
r4 : c← not a., ← a,b.,
r5 : d., ← not c,d.

 with AS(P?RSR( f1)Q) = {{c,d}} and

P?RSR( f2)Q =


r3 : b., r6 : d← not b.,
r4 : c← not a., ← a,b.,
r5 : d., ← not c,d.

 with AS(P?RSR( f2)Q) = {{b,c,d}}.

3.2 Semantic Characterization of ASP Base Revision by Removal

We now present the semantical counterparts of the potential removed set and removed set notions.
Given P and Q two logic programs, the candidate models to be an answer set of the revised

program must be models of Q, since Q is the smallest set of rules that we have to keep (and, by
Theorem 1, for all R, AS(Q∪R)⊆Mod(Q)). Thus, we are interested in the rules from P that must
be removed so that a model of Q becomes an answer set of the revision. These rules are those that
are falsified by the model of Q. Fal(P,m) denotes the set of the rules of a logic program P that are
falsified with respect to an interpretation m.

Definition 7 (falsified rules). Let P be a logic program and m be an interpretation, the set of falsified
rules of P with respect to m is the set Fal(P,m) = {r ∈ P | body+(r) ⊆ m and body−(r)∩m =
/0 and head(r) 6∈ m}.

We now introduce the notion of canonical removed set: it is a set of rules of P falsified by a
model m of Q with the additional condition that, if these rules are removed, the resulting program
admits m as an answer set. Note that m is not necessarily an answer set of the resulting program
(see Example 7 below).

Definition 8 (canonical removed set). Let P and Q be two logic programs and m a model of Q. A
canonical removed set X is such that:

• X = Fal(P,m)

• m ∈ AS((P\X)∪Q)
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CR(P,Q,m) = {X | X = Fal(P,m) and m ∈ AS((P \X)∪Q)} denotes the set of all canonical
removed sets for m and CR(P,Q) =

⋃
m∈Mod(Q)CR(P,Q,m) denotes the union of sets of all canonical

removed sets for the models of a program Q with respect to a program P. Note that for a given
interpretation m, there is zero or one canonical removed set and if Q has no model then CR(P,Q)= /0.

Example 7 (Example 3 continued). The logic programs P and Q are such that

P =


r1 : a← b., r4 : c← not a.,
r2 : a., r5 : d.,
r3 : b., r6 : d← not b.

 and Q = {← a,b., ← not c,d.}.

Let us consider the model of Q, m = {c,d}. The rules r2 and r3 are falsified by m and, if these
rules are removed, m is an answer set of the resulting revised program. Thus {r2,r3} is a canonical
removed set. On the other hand, if we consider the model of Q, m = {a,c,d}, the only falsified rule
is r3 but, if it is removed, {a,c,d} is not an answer set because c has no support (there is no rule
that can be applied to prove it). Thus {r3} is not a canonical removed set.

The following table gives, for each model of Q (first column), the corresponding set of canonical
removed sets (last column). If this set is not empty, it only contains the set of rules X in bold in the
second column.

m ∈Mod(Q) X = Fal(P,m) AS((P\X)∪Q) CR(P,Q,m)

/0 {r2,r3,r4,r5,r6} { /0} {Fal(P, /0)}
{a} {r3,r5,r6} {{a}} {Fal(P,{a})}
{b} {r1,r2,r4,r5} {{b}} {Fal(P,{b})}
{c} {r2,r3,r5,r6} {{c}} {Fal(P,{c})}
{a,c} {r3,r5,r6} {{a}} /0
{b,c} {r1,r2,r5} {{b,c}} {Fal(P,{b,c})}
{c,d} {r2,r3} {{c,d}} {Fal(P,{c,d})}
{a,c,d} {r3} /0 /0
{b,c,d} {r1,r2} {{b,c,d}} {Fal(P,{b,c,d})}

Hence, if we restrict our attention to minimal canonical removed sets with respect to inclu-
sion, we have Min(CR(P,Q),⊆) = {{r3,r5,r6},{r2,r3},{r1,r2}}which corresponds to potential re-
moved sets and, if we consider minimality with respect to cardinality, we have Min(CR(P,Q),≤) =
{{r2,r3},{r1,r2}} which corresponds to removed sets.

The following theorems give the equivalence between syntactic (potential) removed sets and
semantic canonical removed sets.

Theorem 2. Let P and Q be logic programs. We have PR(P,Q) = Min(CR(P,Q),⊆).

The following theorem is a direct consequence of Definition 5 and Theorem 2.

Theorem 3. Let P and Q be logic programs. We have R(P,Q) = Min(CR(P,Q),≤).

We now define the semantical counterpart of the RSR family of operators. We introduce a
preference relation between interpretations, denoted by <R(P) as follows.
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Definition 9 (preference relation on interpretations). Let m and m′ be two interpretations and P be
a logic program, m<R(P)m′ if |Fal(P,m)|< |Fal(P,m′)|. 3

The following result directly follows from Theorem 3 and Definition 6. It provides a semantic
characterization of the RSR family of operators for logic programs4.

Theorem 4. Let P and Q be logic programs. Let M = {m | m∈Mod(Q) and CR(P,Q,m) 6= /0}. The
following properties hold:

• For each selection function f , if m ∈ AS(P?RSR( f )Q) then m ∈Min(M,≤R(P)).

• If m ∈Min(M,≤R(P)) then there exists a selection function f s.t. m ∈ AS(P?RSR( f )Q).

Example 8 (Example 3 continued). The logic programs P and Q are such that

P =


r1 : a← b., r4 : c← not a.,
r2 : a., r5 : d.,
r3 : b., r6 : d← not b.

 and Q = {← a,b., ← not c,d.}.

From the table in Example 7 we have PR(P,Q) = Min(CR(P,Q),⊆), R(P,Q) =
Min(CR(P,Q),≤) and Min(M,≤R(P)) = {{c,d}, {b,c,d}}. Let f1 and f2 be the functions that
select respectively {r2,r3} and {r1,r2}. The respective revised logic programs are P?RSR( f1)Q =
(P \ {r2,r3}) ∪ Q and P?RSR( f2)Q = (P \ {r1,r2}) ∪ Q with AS(P?RSR( f1)Q) = {{c,d}} and
AS(P?RSR( f2)Q) = {{b,c,d}}.

To conclude, we wonder which are the conditions under which revision by removal is defined.
By Theorem 1, we know that revision by removal is defined only if there exists a model of Q (since
Q is the minimum that we have to keep). Thus m-consistency of Q is a necessary condition but it is
not sufficient. Recall Example 4 where Q = {← not a.} and P = {b.}, it is not possible to restore
consistency by removal even if Q is m-consistent.

4. ASP Base Revision by Addition

This section is dedicated to ASP base revision by addition. Let P and Q be logic programs, this
revision strategy stems from the addition of rules to P when P∪Q is inconsistent. This strategy
relies on the non-monotonicity of the ASP framework. Indeed, adding a new rule may prevent the
application of a rule (block the rule) which contributes to inconsistency.

Note that, with this strategy, revision is not always possible, even if P and Q are consistent (see
Example 10 below). Moreover, since the addition of a new rule must block an existing rule, we
restrict addition to the vocabulary of P∪Q. Revising by addition allows for adding any kind of
rules but adding a set of facts is sufficient and makes the revision process easier.

3. To be in accordance with the corresponding definitions for addition (Def. 15) and modification (Def. 21), the
preference relation can also be defined by m<R(P,Q)m

′ if Min(CR(P,Q,m),≤)< Min(CR(P,Q,m′),≤).
4. Note that, if we define a family of revision operators selecting one potential removed set (where the minimality

criterion is set inclusion instead of cardinality), we can easily provide a semantic characterization of this family of
operators.
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4.1 Rule-Based Revision by Addition

The strategy of Added Set Revision (ASR) focuses on the minimal number of new rules to add
in order to restore consistency. We first introduce the notion of potential added set for which the
minimality criterion is set inclusion.

Definition 10 (potential added set). Let P and Q be two logic programs. A potential added set Y is
a set of rules made from the vocabulary of P∪Q such that:

• (P∪Y )∪Q is consistent.

• For each Y ′ ⊂ Y , (P∪Y ′)∪Q is inconsistent.

PA (P,Q) denotes the set of potential added sets for P and Q. Note that rules from a potential
added set Y cannot already belong to P∪Q. Indeed, if (P∪Y )∪Q is consistent and some rule r from
Y already belongs to P∪Q, then there exists some Y ′ =Y \{r} such that Y ′ ⊂Y and (P∪Y ′)∪Q =
(P∪Y )∪Q is consistent.

According to the definition if P∪Q is consistent then PA (P,Q) = { /0}.

Example 9. Let P and Q be two logic programs such that P= {a← not b.} and Q= {← a,not c.,←
a,not d.}. P has an answer set {a} that violates the two constraints from Q. For restoring consis-
tency, we can add c and d so that the constraints are blocked or, alternatively, we can add b so that
a cannot be deduced any more. Thus, if we restrict ourselves to the addition of facts, the potential
removed sets are PA (P,Q) = {{c., d.},{b.}}.

Note that revision by addition is not always feasible, even if P and Q are consistent.

Example 10. Let P and Q be two logic programs such that P = {a.} and Q = {← a.}. We have
PA (P,Q) = /0. This is because, even if the constraint (← a.) can be read as (h← a,not h.), we
do not allow using the implicit atom h for adding rules and thus the constraint (← a.) cannot be
blocked by addition.

Among these potential added sets, we now select the ones that are minimal with respect to
cardinality to minimize the changes in the initial knowledge. This leads to the notion of added set.

Definition 11 (added set). Let P and Q be two logic programs. An added set Y is a set of rules such
that:

• Y is a potential added set.

• There is no potential added set Z such that Z < Y .

A (P,Q) denotes the set of added sets for P and Q. According to the definition A (P,Q) =
Min(PA (P,Q),≤) and if P∪Q is consistent then A (P,Q) = { /0}.

Example 11 (Example 9 continued). For these programs, A (P,Q) = {{b.}} is reduced to only one
added set.

Example 12. Let P and Q be two logic programs such that

P =


a← b.,
b← a.,
c.

 and Q = {← c,not a.}.

There are two (potential) added sets, PA (P,Q) = A (P,Q) = {{a.},{b.}}.



ASP BASE REVISION

We now define the Added Set Revision family of operators. Since there can be several added sets,
there can be several revision operators for two programs P and Q, one for each selection function
f that chooses an added set among A (P,Q). More formally, f is such that f (A (P,Q))) = Y , with
Y ∈A (P,Q).

Definition 12 (ASR operators). Let P and Q be two logic programs, A (P,Q) the set of added sets
and f a selection function. The revision operator denoted by ?ASR( f ) is a function from P×P to
P such that P?ASR( f ) Q = (P∪ f (A (P,Q))) ∪ Q.

Note that if A (P,Q) = /0, f (A (P,Q)) is not defined. That means that the program cannot be
revised by addition.

Example 13 (Example 12 continued). There are two selection functions f1(A (P,Q)) = {a.} and
f2(A (P,Q)) = {b.}, therefore

P?ASR( f1) Q =


a← b.,
b← a.,
c.,
a.
← c,not a.

 with AS(P?ASR( f1) Q) = {{a,b,c}} and

P?ASR( f2) Q =


a← b.,
b← a.,
c.,
b.
← c,not a.

 with AS(P?ASR( f2) Q) = {{a,b,c}}.

4.2 Semantic Characterization of ASP Base Revision by Addition

We now present the semantic counterparts of the potential added set and added set notions.
Given P and Q two logic programs, the candidate models to be an answer set of the revised

program must be models of P∪Q. Indeed P∪Q is the smallest set of rules that we have to keep and,
by Theorem 1, we know that every answer set of a program containing P∪Q is a model of P∪Q:
for all Y , AS(P∪Q∪Y )⊆Mod(P∪Q). Thus, we are interested in what is missing in P∪Q (the Y
part that we have to add) so that a model of P∪Q becomes an answer set of the result of revision.

If we consider a model m of P∪Q, we know (see Section 2.1) that m is an answer set of
P∪Q iff m = Cn(GR(P∪Q,m)+). Intuitively, Cn(GR(P∪Q,m)+) represents the part of m that
can be deduced from the rules of P∪Q. If it does not match with m, that means that m con-
tains supplementary atoms that cannot be deduced from P∪Q. These supplementary atoms are the
“missing part” Y. If it is added to P∪Q 5, it allows m to become an answer set of P∪Q∪Y , that
is, m = Cn(GR(P∪Q∪Y,m)+) holds. This set of atoms from a model m that cannot be deduced
from the rules of P∪Q is exactly m\Cn(GR(P∪Q,m)+). When atoms are replaced by facts, the
corresponding set is denoted by Nded(m,P∪Q).

Definition 13 (non-deduced atoms). Let P be a logic program and m an interpretation. Nded(m,P)=
f act(m\Cn(GR(P,m)+)).

Then the following theorem holds.

5. in the form of a set of facts Y
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Theorem 5. Let P be a logic program. We have, ∀m ∈Mod(P), m ∈ AS(P∪Nded(m,P)).

We now introduce the notion of canonical added set. Given P and Q two logic programs, a
canonical added set is a set of facts corresponding to the smallest subset (with respect to inclusion)
of atoms to add to P∪Q so that a model of P∪Q becomes an answer set. Note that the non-
deduced atoms (facts) from Nded(m,P∪Q) is a superset of what is needed. Indeed a subset of
Nded(m,P∪Q) can be sufficient for deducing the whole set (see Example 14 below). Then, there
may be several canonical added sets for the same model. Note also that, by Theorem 5, there is at
least one canonical added set for each model of P∪Q.

Definition 14 (canonical added set). Let P and Q be two logic programs and m a model of P∪Q.
A canonical added set Y is such that:

• Y ⊆ Nded(m,P∪Q)

• m ∈ AS(P∪Q∪Y )

• ∀Y ′ ⊂ Y , m /∈ AS(P∪Q∪Y ′)

CA(P,Q,m) denotes the set of all canonical added sets for m and CA(P,Q) =⋃
m∈Mod(P∪Q)CA(P,Q,m). Note that CA(P,Q,m) = Min({Y | Y ⊆ Nded(m,P∪Q) and m ∈ AS(P∪

Q∪Y )},⊆).

Example 14. Let P and Q be two logic programs such that

P =


r1 : a← b,not c., r3 : b← d.,
r2 : c← d,e,not a., r4 : d← b.,

r5 : e.

 and Q =


← not a,not c.,
← a,not b,not c.,
← c,not d,not a.


If we consider the model m = {a,b,d,e} of P∪Q, the generating rules of P∪Q with respect

to m (see Section 2.1) are {r1,r3,r4,r5} (r2 is blocked by a). But, with these rules, only e can be
deduced, {a.,b.,d.} are missing but it is sufficient to add b (or d) so that a and d (resp. a and b)
can be deduced too. So the minimal set to add is {b.} (or, alternatively, {d.}). The set of canonical
added sets for this model m = {a,b,d,e} is then CA(P,Q,m) = {{b.},{d.}}.

The last column of the following table gives the set of canonical added sets corresponding to
each classical model of P∪Q given in the first column of the table.

m ∈
Mod(P∪Q) GR(P∪Q,m) Nded(m,P∪Q) Y AS(P∪Q∪Y ) CA(P,Q,m)

{a,c,e} {r5} {a.,c.} {a.,c.} {{a,c,e}} {{a.,c.}}
{a,b,d,e} {r1,r3,r4,r5} {a.,b.,d.} {b.} {{a,b,d,e},

{b,c,d,e}}
{d.} {{a,b,d,e}, {{b.},{d.}}

{b,c,d,e}}
{b,c,d,e} {r2,r3,r4,r5} {b.,c.,d.} {b.} {{a,b,d,e},

{b,c,d,e}}
{d.} {{a,b,d,e}, {{b.},{d.}}

{b,c,d,e}}
{a,b,c,d,e} {r3,r4,r5} {a.,b.,c.,d.} {a.,b.,c.} {{a,b,c,d,e}} {{a.,b.,c.},

{a.,c.,d.} {{a,b,c,d,e}} {a.,c.,d.}}
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Note that Min(CA(P,Q),⊆) = {{a.,c.},{b.},{d.}} which corresponds to the set of potential
added sets and Min(CA(P,Q),≤) = {{b.},{d.}} which corresponds to the set of added sets.

Note that canonical added sets only consist of facts. Thus the semantic characterization of ASR
operators is limited to ASR operators that require the addition of facts (not the addition of general
rules).

Theorem 6. Let P and Q be logic programs. We have PA (P,Q) = Min(CA(P,Q),⊆).

The following theorem is a direct consequence of Theorem 6 and Definition 11.

Theorem 7. Let P and Q be logic programs. We have A (P,Q) = Min(CA(P,Q),≤).

We introduce a preference relation between interpretations, denoted by <A(P,Q) as follows.

Definition 15 (preference relation on interpretations). Let m and m′ be two interpretations and P
and Q be two logic programs, m<A(P,Q)m′ if Min(CA(P,Q,m),≤)< Min(CA(P,Q,m′),≤).

Note that, for each model m of P∪Q, CA(P,Q,m) 6= /0 thus the preference relation is always
defined on Mod(P∪Q).

The following result directly follows from Theorem 7 and Definition 12. It provides a semantic
characterization of the ASR family of revision operators for logic programs6.

Theorem 8. Let P and Q be two logic programs and M = Mod(P∪Q). The following properties
hold:

• For each selection function f , if m ∈ AS(P?ASR( f ) Q) then m ∈Min(M,≤A(P,Q)).

• If m ∈Min(M,≤A(P,Q)) then there exists a selection function f s.t. m ∈ AS(P?ASR( f ) Q).

Example 15 (Example 14 continued). From the table in Example 14 we have PA (P,Q) =
Min(CA(P,Q),⊆), A (P,Q) = Min(CA(P,Q),≤) = {{b.},{d.}}. Min(M,≤A(P,Q)) =
{{a,b,d,e},{b,c,d,e}}. Let f1 and f2 be the functions that select respectively {b.} and {d.} the
respective revised logic programs are P ?ASR( f1) Q = P∪Q∪{b.} and P ?ASR( f2) Q = P∪Q∪{d.}
with AS(P?ASR( f1) Q) = AS(P?ASR( f2) Q) = {{a,b,d,e},{b,c,d,e}}.

To conclude, we wonder which are the conditions under which revision by addition is defined.
By Theorem 1, we know that revision by addition is defined only if there exists a model of P∪Q.
Thus m-consistency of P∪Q is a necessary condition. It is also a sufficient condition. Indeed,
revision by adding all atoms non-deduced from a model of P∪Q is always possible, it then suffices
to minimize it.

Theorem 9. Let P and Q be logic programs, there exists a selection function f such that P?ASR( f ) Q
is defined if and only if P∪Q is m-consistent.

6. Note that, if we define a family of revision operators selecting one potential added set (where the minimality criterion
is set inclusion instead of cardinality), we can easily provide a semantic characterization of this family of operators.
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5. ASP Base Revision by Modification

This section focuses on ASP base revision by modification. Modification strategy means combining
the removal strategy and the addition one. Let P and Q be logic programs, removing some rules
from P and in the same time adding some new rules to P allows one to construct a new logic program
which is consistent with Q and differs as little as possible from P. Indeed, revision by removal and
revision by addition can be viewed as particular cases of revision by modification.

5.1 Rule-Based Revision by Modification

The strategy of Modified Set Revision (MSR) focuses on the minimal number of rules to remove
and/or to add in order to restore consistency. A (potential) modified set is a pair of sets of rules,
where the first component is the set of rules to remove and the second one is the set of new rules to
add. We first define preference relations between pairs of sets of rules with respect to set inclusion
and with respect to cardinality as follows.

Definition 16. Let X , Y , X ′, Y ′ be sets of rules.

• (X ′,Y ′)⊂ (X ,Y ) if X ′ ⊂ X and Y ′ ⊆ Y , or X ′ ⊆ X and Y ′ ⊂ Y .

• (X ′,Y ′)≤ (X ,Y ) if |X ′∪Y ′| ≤ |X ∪Y |.

We now introduce the notion of potential modified set.

Definition 17 (potential modified set). Let P and Q be two logic programs. A potential modified
set (X ,Y ) is a pair of sets of rules such that:

• X ⊆ P.

• (P\X)∪Y ∪Q is consistent.

• For each (X ′,Y ′) such that (X ′,Y ′)⊂ (X ,Y ), (P\X ′)∪Y ′∪Q is inconsistent.

PM (P,Q) denotes the set of potential modified sets for P and Q. According to the definition
if P∪Q is consistent then PM (P,Q) = {( /0, /0)}.

Example 16. Let P and Q be two logic programs such that

P =


r1 : a← not b.,
r2 : c← not b.,
r3 :← f .

 and Q =


← a.,
← c.,
f ← not g.,
f ← not h.

.

P has an answer set {a,c} and Q has also one, { f}, but a and c violate the constraints from Q
and f violates the constraint from P. There are four ways to restore consistency: (1) to remove all
rules from P, (2) to add {b.,g.,h.} so that a, c and f cannot be deduced any more, or a mix of both:
(3) to remove r3 and to add b or (4) to remove r1 and r2 and to add g and h. We have thus

PM (P,Q) = {({r1,r2,r3}, /0), ( /0,{b.,g.,h.}), ({r3},{b.}), ({r1,r2}, {g.,h.})}.

As for RSR and ASR, the minimality criterion chosen for MSR is cardinality, we introduce the
notion of modified set by selecting the potential modified sets minimal with respect to cardinality.
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Definition 18 (modified set). Let P and Q be two logic programs. A modified set (X ,Y ) is a pair of
sets of rules such that:

• (X ,Y ) is a potential modified set.

• There is no potential modified set (X ′,Y ′) such that (X ′,Y ′)< (X ,Y ).

We denote by M (P,Q) the set of modified sets. According to the definition M (P,Q) =
Min(PM (P,Q),≤) and if P∪Q is consistent then M (P,Q) = {( /0, /0)}.

Example 17 (Example 16 continued). M (P,Q) = {({r3},{b.})}.

We now define the Modified Set Revision family of operators. Since there can be several
modified sets, there can be several revision operators for two programs P and Q, one for each
selection function f that chooses a modify set among M (P,Q). More formally, f is such that
f (M (P,Q))) = (X ,Y ), with (X ,Y ) ∈M (P,Q).

Definition 19 (MSR operators). Let P and Q be two logic programs, M (P,Q) the set of modified
sets and f a selection function. The revision operator denoted by ?MSR( f ) is a function from P×P
to P such that P?MSR( f ) Q = (P\X) ∪ Y ∪ Q where (X ,Y ) = f (M (P,Q)).

Example 18 (Example 16 continued). The logic programs P and Q are such that

P =


r1 : a← not b.,
r2 : c← not b.,
r3 :← f .

 and Q =


← a.,
← c.,
f ← not g.,
f ← not h.

.

There is only one selection function f and f (M (P,Q)) = ({← f .},{b.}), therefore

P?MSR( f ) Q =


r1 : a← not b., ← a.,
r2 : c← not b., ← c.,
b., f ← not g.,

f ← not h.


with AS(P?MSR( f ) Q) = {{b,g,h},{b,g, f},{b,h, f},{b, f}}.

5.2 Semantic Characterization of ASP Base Revision by Modification

We now present the semantic counterparts of potential modified set and modified set notions.
Given P and Q two logic programs, the candidate models to be an answer set of the revised

program must be models of Q, since Q is the smallest set of rules that we have to keep (and,
by Theorem 1, for all R, AS(Q∪R)⊆Mod(Q)). Thus, we are interested in what must be removed
from P (falsified rules X) and what is missing in the resulting program (P\X)∪Q (the non-deduced
atoms) so that a model of Q becomes an answer set of the result of revision. We first introduce the
notion of canonical modified set which captures this notion.

Definition 20 (canonical modified set). Let P and Q be two logic programs and m be a model of Q.
A canonical modified set (X ,Y ) is such that:

• X = Fal(P,m).

• Y ⊆ Nded(m,(P\X)∪Q).
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• m ∈ AS((P\X)∪Q∪Y ).

• ∀Y ′ ⊂ Y , m 6∈ AS((P\X)∪Q∪Y ′).

The set of all canonical modified sets for m is denoted by CM(P,Q,m). According to the
definition 20, CM(P,Q,m) = Min({(X ,Y ) | X = Fal(P,m),Y ⊆ Nded(m,(P \ X) ∪Q) and m ∈
AS((P \X)∪Q∪Y )},⊆). The set of all possible canonical modified sets (for all models of Q)
is denoted by CM(P,Q) =

⋃
m∈Mod(Q)CM(P,Q,m).

Note that there is at least one canonical modified set for each model of Q. Indeed, by definition
of Fal, any interpretation m is a model of P \Fal(P,m). Then, if m ∈ Mod(Q), m ∈ Mod((P \
Fal(P,m))∪Q). Thus, by Theorem 5, m ∈ AS((P\Fal(P,m))∪Q∪Nded(m,(P\Fal(P,m))∪Q)).

Example 19 (Example 16 continued). Let P and Q be two logic programs such that

P =


r1 : a← not b.,
r2 : c← not b.,
r3 :← f .

 and Q =


← a.,
← c.,
f ← not g.,
f ← not h.

.

If we consider the model of Q, m = {b, f ,g}, the only falsified rule is r3. If we remove it, atoms
b and g cannot be deduced from the resulting program. Now, if we remove r3 and add b and g, the
resulting program admits m as an answer set. Thus ({r3},{b.,g.}) is a canonical modified set (since
it is minimal).

The second and the third column of the following table give the first and the second component
respectively of the canonical modified set corresponding to a classical model of Q given in the first
column of the table.

m ∈Mod(Q) X = Fal(P,m) Y ⊆ Nded((P\X)∪Q,m) AS((P\X)∪Q∪Y )
{ f} {r1,r2,r3} /0 {{ f}}
{b, f} {r3} {b.} {{b, f}}
{ f ,g} {r1,r2,r3} {g.} {{ f ,g}}
{ f ,h} {r1,r2,r3} {h.} {{ f ,h}}
{g,h} {r1,r2} {g.,h.} {{g,h}}
{b, f ,g} {r3} {b.,g.} {{b, f ,g}}
{b, f ,h} {r3} {b.,h.} {{b, f ,h}}
{b,g,h} /0 {b.,g.,h.} {{b,g,h}}
{ f ,g,h} {r1,r2,r3} { f .,g.,h.} {{ f ,g,h}}
{b, f ,g,h} /0 {b., f .,g.,h.} {{b, f ,g,h}}

Hence Min(CM(P,Q),⊆) = {({r1,r2,r3}, /0),({r3},{b.}),({r1,r2},{g.,h.}),( /0,{b.,g.,h.})} which
corresponds to the set of potential modified sets and Min(CM(P,Q),≤) = {({r3},{b.})} which
corresponds to the set of modified sets.

The following theorems give the equivalence between syntactic (potential) modified sets and
semantic canonical modified sets.

Theorem 10. Let P and Q be programs. We have PM (P,Q) = Min(CM(P,Q),⊆).

The following theorem is a direct consequence of Theorem 10 and Definition 18.
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Theorem 11. Let P and Q be logic programs. We have M (P,Q) = Min(CM(P,Q),≤).

We introduce a preference relation between interpretations denoted by <M(P,Q).

Definition 21 (preference relation on interpretations). Let m and m′ be two interpretations and P
and Q be two logic programs, m<M(P,Q)m′ if Min(CM(P,Q,m),≤)< Min(CM(P,Q,m′),≤).

Note that, for each model m of Q, CM(P,Q,m) 6= /0 thus the preference relation is always defined
on Mod(Q).

The following result directly follows from Theorem 11 and Definition 19. It provides a semantic
characterization of the MSR family of revision operators7.

Theorem 12. Let P and Q be logic programs and M = Mod(Q). The following properties hold:

• For each selection function f , if m ∈ AS(P?MSR( f ) Q) then m ∈Min(M,≤M(P,Q))

• If m ∈Min(M,≤M(P,Q)) then there exists a selection function f s.t. m ∈ AS(P?MSR( f ) Q).

Example 20 (Example 16 continued). The logic programs P and Q are such that

P =


r1 : a← not b.,
r2 : c← not b.,
r3 :← f .

 and Q =


← a.,
← c.,
f ← not g.,
f ← not h.

.

From the table in Example 19 we have PM (P,Q) = Min(CM(P,Q),⊆), M (P,Q) =
Min(CM(P,Q),≤) = {({r3},{b.})} and Min(M,≤M(P,Q)) = {{b, f}}. There is only one modified
set thus f selects ({r3},{b.}) and P?MSR( f )Q= {r1, r2}∪{b.}∪Q and AS(P?MSR( f )Q) = {{b, f}}.

To conclude, we wonder which are the conditions under which revision by modification is de-
fined. By Theorem 1, we know that revision by modification is defined only if there exists a model
of Q (since Q is the minimum that we have to keep). Thus m-consistency of Q is a necessary con-
dition. It is also a sufficient condition. Indeed, revision by removing all rules from P and adding all
atoms non-deduced from a model of Q is always possible, it then suffices to minimize changes.

Theorem 13. Let P and Q be logic programs, there exists a selection function f such that P?MSR( f )
Q is defined if and only if Q is m-consistent.

5.3 Applying Revision by Modification

We come back to our initial example to illustrate syntactic and semantic aspects of revision. We
only consider revision by modification since it is more general than the two other revisions.

Example 21 (Example 1 continued). Let P and Q be two logic programs such that

P =


r1 : td1← sd1, not td2.,
r2 : sd1.,
r3 :← h.

 and Q =

{
← td1.,
h← not f d.

}

7. Note that, if we define a family of revision operators selecting one potential modified set (where the minimality
criterion is set inclusion instead of cardinality), we can easily provide a semantic characterization of this family of
operators.
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where td1 stands for take drug1(lea), td2 for take drug2(lea), sd1 for suffer disease1(lea), h
for hospitalization(lea) and f d for fever drop(lea).

From a syntactic point of view, there are six ways to restore consistency. The set of
modified sets is M (P,Q) = {({r1,r3}, /0),({r2,r3}, /0),( /0,{ f d., td2.}),({r1},{ f d.}),({r2},{ f d.}),
({r3},{td2.})}. Let us note that, in this example PM (P,Q) = M (P,Q).

Now, from the semantic point of view, we start from the models of Q and compute the canonical
modified sets. The second and the third column of the following table give the first and the second
component respectively of the canonical modified set corresponding to a classical model of Q given
in the first column of the table.

m ∈Mod(Q) X = Fal(P,m) Y ⊆ Nded((P\X)∪Q,m) AS((P\X)∪Q∪Y )
{h} {r2,r3} /0 {{h}}
{h,sd1} {r1,r3} /0 {{h,sd1}}
{h, td2} {r2,r3} {td2.} {{h, td2}}
{h,sd1, td2} {r3} {td2.} {{h,sd1, td2}}
{ f d} {r2} { f d.} {{ f d}}
{ f d,sd1} {r1} { f d.} {{ f d,sd1}}
{ f d, td2} {r2} { f d., td2.} {{ f d, td2}}
{ f d,sd1, td2} /0 { f d., td2.} {{ f d,sd1, td2}}
{h, f d} {r2,r3} {h., f d.} {{h, f d}}
{h, f d,sd1} {r1,r3} {h., f d.} {{h, f d,sd1}}
{h, f d, td2} {r2,r3} {h., f d., td2.} {{h, f d, td2}}
{h, f d,sd1, td2} {r3} {h., f d., td2.} {{h, f d,sd1, td2}}

The set of minimal canonical modified sets is Min(CM(P,Q),⊆) = Min(CM(P,Q),≤)
= {({r1,r3}, /0),({r2,r3}, /0),( /0,{ f d., td2.}),({r1},{ f d.}),({r2},{ f d.}),({r3},{td2.})} and corre-
sponds to the set of modified sets.

6. Logical Properties

We now provide logical properties of the proposed operators through a set of postulates. As men-
tioned in Section 2.3, Hansson and Wassermann (2002) formulated postulates for characterizing
belief base revision in a classical (monotonic) setting. According to Zhuang et al. (2016b) we now
adapt them within the non-monotonic ASP framework.

Let P, Q, R, X , Y be normal logic programs and ? be a revision operator.
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Success Q⊆ P?Q.

Inclusion P?Q⊆ P∪Q.

Inclusion− P∪Q⊆ P?Q.

Consistency If Q is m-consistent then P?Q is consistent.

Vacuity If P∪Q is consistent then P?Q = P∪Q.

R−Relevance If D 6= /0 and D⊆ P\ (P?Q) then
(P?Q)∪D is inconsistent.

A−Relevance If E 6= /0 and E ⊆ (P?Q)\(P∪Q)
then (P?Q)\E is inconsistent.

M−Relevance If (D,E) 6= ( /0, /0), D⊆ P\ (P?Q) and E ⊆ (P?Q)\ (P∪Q)
then ((P?Q)∪D)\E is inconsistent.

Uniformity If for all subsets D of P, D∪Q is consistent if and only
if D∪R is consistent and if for all supersets E of P,
E ∪Q is consistent if and only if E ∪R is consistent then
P\ (P?Q) = P\ (P?R) and (P?Q)\ (P∪Q) = (P?R)\ (P∪R).

The meaning of the postulates is the following. Success gives priority to new information.
Consistency expresses that the result of revision is consistent whenever the input is m-consistent.
This differs from the monotonic setting where postulate Consistency requires the consistency of
new information. Inclusion states that the union of the initial logic programs is the upper bound
of any revision operation. Inclusion−, inverse Inclusion, states that the union of the initial logic
programs is the lower bound of any revision operation. Within a monotonic setting, the only way
to restore consistency is to drop some beliefs and this is expressed by Inclusion, however within an
ASP framework, we can restore consistency by adding rules we thus introduce Inclusion−. Vacuity
establishes that if the input is consistent with the initial logic program then the revised logic pro-
gram equals the union of them. R−Relevance expresses the intuition that nothing is removed from
the original logic program unless its removal contributes in some way to make the result consistent.
A−Relevance expresses the intuition that nothing is added from the original logic program unless
its addition contributes in some way to make the result consistent. M−Relevance expresses the intu-
ition that nothing is removed and nothing is added from the original logic program unless its removal
and addition contributes in some way to make the result consistent. Note that if D = /0, respectively
E = /0, then M−Relevance turns out to be A−Relevance, respectively R−Relevance. Within a
monotonic setting, since the only strategy is to remove beliefs, Postulate Relevance corresponds to
R−Relevance, however within an ASP framework the addition strategy leads to A−Relevance and
the removal and addition strategy leads to M−Relevance. Uniformity determines the condition un-
der which two revising logic program Q and R produce the same changes to the initial logic program
P. More precisely, the rules removed from P and the rules added to P in presence of Q are the same
ones to those in presence of R.
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Theorem 14. For any selection function f ,

• if ?RSR( f ) is defined, ?RSR( f ) satisfies Success, Consistency, Inclusion, Vacuity, R−Relevance
and Uniformity,

• if ?ASR( f ) is defined, ?ASR( f ) satisfies Success, Consistency, Inclusion−, Vacuity, A−Relevance
and Uniformity,

• if ?MSR( f ) is defined, ?MSR( f ) satisfies Success, Consistency, Vacuity, M − Relevance and
Uniformity.

The families of ?RSR( f ) ?ASR( f ), and ?MSR( f ) operators satisfy most of the properties that capture a
good expected behaviour of revision operators, that is, success: the new logic program is accepted,
consistency: the result of revision is consistent and minimal change: the initial logic program is
changed as little as possible according to minimality with respect to set inclusion.

7. Complexity

This section deals with the complexity of the three revision operators.

7.1 Complexity of Rule-Based Revision by Removal

Traditionally, in the field of belief revision, the central problem addressed to assess the complexity
of a revision operator is the model checking problem, who asks, given a belief base K, a formula φ ,
a revision operation ∗, and a model m, whether m |= K ∗φ holds. Translated in our framework, this
problems could be stated as follows: given two normal logic programs P and Q, a revision operator
?RSR( f ) and a set of atoms X , does X belongs to AS(P?RSR( f )Q) ? Unfortunately, this question de-
pends on the complexity of the selection function f , whose goal is to select a removed set among
R(P,Q). So we will study another problem, which is more meaningful in our case, the ASPMOD-
ELCHECKING(RS) problem, which is defined as follows:

Name: ASPMODELCHECKING(RS)
Input: P and Q two logic programs, X a set of atoms.
Question: does there exist R ∈R(P,Q) such that X belongs to AS((P\R)∪Q) ?
And the following result holds.

Theorem 15. ASPMODELCHECKING(RS) is DP-complete.

7.2 Complexity of Rule-Based Revision by Addition

The decision problem we are studying is the ASPMODELCHECKING(AS) problem, which is de-
fined as follows:

Name: ASPMODELCHECKING(AS)
Input: P and Q two logic programs, X a subset of atom(P∪Q).
Question: does there exist Y ∈A (P,Q), such that X belongs to AS((P∪Y ∪Q) ?
And the following result holds.

Theorem 16. ASPMODELCHECKING(AS) is DP-complete.
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7.3 Complexity of Rule-Based Revision by Modification

The decision problem under study is the ASPMODELCHECKING(MS) problem, which is defined
as follows:

Name : ASPMODELCHECKING(MS)
Input : P and Q two logic programs, X a subset of atom(P∪Q).
Question : does there exist (R,Y ) ∈M (P,Q), such that X belongs to AS((P\R)∪Y ∪Q) ?

And the following result holds.

Theorem 17. ASPMODELCHECKING(MS) is DP-complete.

8. Related Works

As mentioned in the introduction, the first approaches dealing with logic programs in a dynamic
setting focused on logic programs update (Zhang & Foo, 1998; Sakama & Inoue, 1999; Alferes
et al., 2000; Eiter et al., 2002).

Logic programs change in the same spirit as belief sets change in a propositional setting has
first been addressed by Eiter et al. (2002). Belief sets for logic programs are defined as sets of
rules satisfied by the interpretations corresponding to answer sets. However the proposed approach
violates most of the AGM postulates for revision and update postulates.

Delgrande et al. (2008, 2009, 2013) generalized classical model-based revision operators to
logic programs. Belief sets are then represented by SE-models and change operations (revision
and merging) based on distance between interpretations have then been extended to logic programs
with SE-model semantics. The proposed change operations stemming from a distance between SE-
models have been implemented in ASP. Schwind and Inoue (2016) provided a constructive charac-
terization of logic programs revision operators in terms of preorders over interpretations with further
conditions specific to SE-models. Belief sets update has also been addressed in the same spirit by
Slota and Leite (2010, 2014). Binnewies, Zhuang, and Wang (2015) generalized partial meet revi-
sion and contraction to logic programs under SE-models semantics. More recently, Zhuang et al.
(2016b) proposed a new revision operator, called llp revision, using a strategy based on the removal
or the addition and/or removal of rules and stemming from the minimization of the symmetric dif-
ference between SE-models. SE-model-based approaches are belief set revision while we address
belief base revision. Moreover, the notion of consistency dealt with SE-model-based approaches is
not the same since it stems from the existence of SE-models.

Krümpelmann and Kern-Isberner (2012) extended belief base revision to ASP with the “Re-
mainder Sets” approach for screened consolidation, stemming from semi-revision proposed by
Hansson (1997). The “Removed Sets” approach for merging and revision has been extended to
ASP (Hué et al., 2009, 2013), called respectively, ΠRSF and ΠRSR. These two approaches only
use a strategy stemming from the removal of rules, but they differ on the minimality criteria, set in-
clusion for the “Remainder Sets” approach and cardinality for ΠRSR. No semantic characterization
was provided for these two approaches, nor computational complexity study.

More recently, another approach called SLP revision (Zhuang, Delgrande, Nayak, & Sattar,
2016a; Zhuang et al., 2016b) has been proposed. The strategy stems from the removal or the
addition and/or removal of rules. Let P be the initial logic program and Q be the new one. The
removal (respectively addition and addition and/or removal) strategies stem from the construction
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of “s-removal” (respectively “s-expansion” and “s-compatible”) logic programs which are subsets
of P consistent with Q maximal with respect to set inclusion (respectively sets of rules containing
P consistent with Q and minimal with respect to set inclusion, and a combination of both for the
third strategy). They are the dual sets of potential removed sets, potential added sets and potential
modified sets respectively.

Note that the families of revision operators proposed in this paper differ from SLP revision op-
erators since the maximality criterion is set inclusion for SLP whereas the minimality criterion for
the RSR, ASR and MSR revision operators is cardinality. Moreover, in this paper we go a step
further since we provide a semantic characterization in terms of answer sets for the RSR, ASR and
MSR revision operators which also covers SLP revision operators. Besides we provide complexity
results for RSR, ASR and MSR revision operators.

9. Concluding Discussion

The paper addresses the problem of base revision in logic programming under Answer Set se-
mantics. It proposes new families of revision operators within the framework of Answer Set Pro-
gramming. ASP Base Revision by removal (RSR) is a direct extension of base revision within the
monotonic classical setting stemming from a removal of rules strategy. ASP base Revision by Ad-
dition (ASR) and ASP base Revision by Modification (MSR) exploit the non-monotony of the ASP
framework allowing addition or removal and/or addition of rules strategies for revision. The paper
provides a semantic characterization for each family of operators in terms of answer sets. This is
an important contribution since it allows one to go from the evolution of a syntactic rule-based re-
vision operator to the evolution of its semantic content. The paper then presents a study of logical
properties of the proposed revision operators in terms of satisfaction of a set of postulates adapted
within the non-monotonic ASP framework from the Hansson’s postulates for base revision in a clas-
sical setting. Finally, the paper gives computational complexity results for each proposed family of
operators. We would have liked to compare these complexity results to the ones pertaining to SLP
revision. We proved that SLP belongs to the DP class. However, deciding if SLP is DP-complete is
still an open question.

There are several issues to address as future work. Providing a representation theorem for RSR,
ASR and MSR is an interesting issue. To this end, we need to investigate for additional postulates
capturing a refined notion of relevance with respect to cardinality for each family of operators.
Future work will also be dedicated to the ASP implementation of the proposed families of revision
operators and to an experimental study.

Another issue is introducing uncertainty and studying belief base revision when beliefs are rep-
resented by possibilistic logic programs under possibilistic answer set semantics (Nicolas, Garcia,
Stéphan, & Lefèvre, 2006; Bauters, Schockaert, Cock, & Vermeir, 2015). Recently, Garcia et al.
(2018) introduced a “RSR possibilistic ASP base revision” which is based on the strategy of re-
moving a minimum number of the least certain possibilistic rules, keeping the possibilistic rules
not involved in inconsistency. A future issue is to investigate how to define ASP revision operators
stemming from the addition or removal and/or addition of rules strategies within the framework of
possibilistic ASP.
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Appendix A. Proofs of Theorems

Proof of Theorem 1. Let m ∈ AS(P∪Q). Then, by definition, Head(GR(P∪Q,m)) = m. If m 6∈
Mod(P) then there exists a rule r ∈ P such that body+(r)⊆m and body−(r)∩m = /0 and head(r) 6∈
m. By definition of GR, r ∈GR(P∪Q,m). Since m = Head(GR(P∪Q,m)), head(r) ∈m and there
is a contradiction. Thus m ∈Mod(P)

Lemma 1. Let P be a logic program and r be a rule. Let m ∈ AS(P). If m satisfies r then m ∈
AS(P∪{r}).

Proof of Lemma 1. Let m ∈ AS(P), then m = Cn(GR(P,m)+). GR(P,m) = {r ∈
P such that body+(r) ⊆ m, body−(r) ∩ m = /0}. If m satisfies r then (i) body+(r) 6⊆ m or
body−(r)∩m 6= /0, or (ii) head(r) ∈ m.

(i) if body+(r) 6⊆m or body−(r)∩m 6= /0, then r 6∈GR(P∪{r},m). Since GR is increasing mono-
tonic when the program increases, GR(P∪{r},m) = GR(P,m) thus Cn(GR(P∪{r},m)+) =
Cn(GR(P,m)+) = m, therefore m ∈ AS(P∪{r}).

(ii) if body+(r)⊆ m, body−(r)∩m = /0 and head(r) ∈ m then r ∈ GR(P∪{r},m). Thus GR(P∪
{r},m) = GR(P,m)∪{r} and Cn(GR(P∪{r},m)+) = m, therefore m ∈ AS(P∪{r}).

Lemma 2. Let P, Q and X be logic programs with X ⊆ P. We have that ∀m ∈ AS((P \X)∪Q), if
X ∈PR(P,Q) then X = Fal(P,m).

Proof of Lemma 2. Let X ∈PR(P,Q) and m ∈ AS((P\X)∪Q). m is an answer set of (P\X)∪Q
thus m = Head(GR((P\X)∪Q,m)). We show that X = Fal(P,m).

• We first show that Fal(P,m)⊆ X .
Let r ∈ Fal(P,m). By definition, r ∈ P, body(r)+ ⊆ m, body(r)−∩m = /0 and head(r) /∈ m.
Since head(r) /∈ m, we have r /∈ GR((P \ X)∪Q,m) = {r ∈ (P \ X)∪Q s.t. body(r)+ ⊆
m and body(r)−∩m = /0}, thus r /∈ (P\X)∪Q thus r /∈ (P\X) but r ∈ P. Therefore r ∈ X .

• We now show that X ⊆ Fal(P,m).
Let us suppose that there exists r ∈ X s.t. r /∈ Fal(P,m), thus m satisfies r. Since m ∈ AS((P\
X)∪Q), by Lemma 1, m ∈ AS((P \ X)∪Q∪ {r}). Thus, there exists X ′ = X \ {r} such
that m ∈ AS((P \X ′)∪Q). This contradicts the minimality with respect to set inclusion of
Definition 4.

Proof of Theorem 2. Let P and Q be two logic programs.
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• We fist show that PR(P,Q)⊆Min(CR(P,Q),⊆).
We first prove that ∀X ∈PR(P,Q), ∃m ∈Mod(Q) s.t. X ∈CR(P,Q,m).
Let X ∈PR(P,Q). By Definition 4, AS((P \X)∪Q) 6= /0. Let m ∈ AS((P \X)∪Q). By
Theorem 1, m ∈Mod(Q) and by Lemma 2, X = Fal(P,m). Therefore X ∈CR(P,Q,m).

∀X ∈PR(P,Q), ∃m ∈Mod(Q) s.t. X ∈CR(P,Q,m), thus ∀X ∈PR(P,Q), X ∈CR(P,Q).
If X /∈Min(CR(P,Q),⊆) then ∃X ′ ⊂ X s. t. X ′ ∈CR(P,Q,m), therefore ∃m′ ∈Mod(Q) s.t.
m′ ∈ AS((P \X ′)∪Q) therefore AS((P \X ′)∪Q) 6= /0 which contradicts the minimality with
respect to set inclusion of Definition 4.

• We now show that Min(CR(P,Q),⊆)⊆PR(P,Q).
∀X ∈Min(CR(P,Q),⊆), since CR(P,Q) =

⋃
m∈Mod(Q)CR(P,Q,m), there exists m ∈Mod(Q)

s.t. X ∈CR(P,Q,m). By Definition 8

– X = Fal(P,m) thus X ⊆ P.

– m ∈ AS((P\X)∪Q) thus AS((P\X)∪Q) 6= /0.

We show by contradiction that for each X ′ ⊂ X , (P \X ′)∪Q is inconsistent. Let us suppose
that there exists some X ′ ⊂ X such that (P \X ′)∪Q is consistent. Let X ′0 be one least (with
respect to inclusion) such X ′. Then (P \X ′0)∪Q is consistent and ∀Y ⊂ X ′0, (P \Y )∪Q is
inconsistent. Therefore by Definition 4, X ′0 ∈PR(P,Q) and, by the first part of the proof of
Theorem 2, X ′0 ∈Min(CR(P,Q),⊆). Now X ′0 ⊂ X , thus X 6∈Min(CR(P,Q),⊆). It contradicts
the hypothesis. We can conclude that for each X ′ ⊂ X , (P\X ′)∪Q is inconsistent.
Therefore X ∈PR(P,Q).

Proof of Theorem 5. Let P be a logic program. Let us suppose that P is m-consistent: ∃m ∈
Mod(P), thus for all r∈P, body+(r) 6⊆m or body−(r)∩m 6= /0 or head(r)∈m. Then, ∀r∈GR(P,m),
head(r) ∈ m, and Head(GR(P,m))⊆ m.
Let Y = m\Cn(GR(P,m)+) (thus f act(Y ) = Nded(m,P)). It follows that m =Cn(GR(P,m)+)∪Y .
Since we have:
(1) Y ⊆ m, thus f act(Y )⊆ GR(P∪ f act(Y ),m) and Y ⊆Cn(GR(P∪ f act(Y ),m)+),
(2) Cn and GR are increasing, thus Cn(GR(P,m)+)⊆Cn(GR(P∪ f act(Y ),m)+),
(3) Head(GR(P,m)) ⊆ m, Y = Head(GR( f act(Y ),m)) ⊆ m and GR(P ∪ f act(Y ),m) =
GR(P,m)∪GR( f act(Y ),m) thus Head(GR(P∪ f act(Y ),m))⊆m and Cn(GR(P∪ f act(Y ),m)+)⊆
Head(GR(P∪ f act(Y ),m)) thus Cn(GR(P∪ f act(Y ),m)+)⊆ m,
we have m = Cn(GR(P,m)+) ∪ Y ⊆ Cn(GR(P ∪ f act(Y ),m)+) ⊆ m and it follows that m =
Cn(GR(P ∪ f act(Y ),m)+). By definition, m is an answer set of P ∪ f act(Y ): m ∈ AS(P ∪
Nded(m,P))

Lemma 3. Let P and Q be logic programs and Y be a set of facts.
∀m ∈ AS(P∪Q∪Y ), if Y ∈PA (P,Q) then Y ⊆ Nded(m,P∪Q).

Proof of Lemma 3. Let Y ∈PA (P,Q) and m ∈ AS(P∪Q∪Y ). Y is a set of facts, so Y ⊆ GR(P∪
Q∪Y,m) and atom(Y )⊆ m.
We show that atom(Y )∩Cn(GR(P∪Q,m)+) = /0 and thus that Y ⊆ Nded(m,P∪Q). Let a be an
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atom such that f act(a) ∈ Y . Let us suppose that a ∈ Cn(GR(P∪Q,m)+). Then a ∈ Cn(GR(P∪
Q∪ (Y \ { f act(a)}),m)+) (since GR and Cn are increasing when the program increases). Thus
Cn(GR(P∪Q∪ (Y \{ f act(a)}),m)+) =Cn(GR(P∪Q∪Y,m)+) = m and ∃Y ′ =Y \{ f act(a)} ⊂Y
such that P∪Y ′∪Q is consistent. It contradicts the hypothesis (Y is a potential added set). Therefore
a 6∈Cn(GR(P∪Q,m)+) and Y ⊆ Nded(m,P∪Q).

Proof of Theorem 6. Let P and Q be two logic programs.

• We first show that PA (P,Q)⊆Min(CA(P,Q),⊆).
Let X ∈PA (P,Q). By Definition 10, P∪X ∪Q is consistent, that is, ∃m ∈ AS(P∪Q∪X),
and, for each X ′ ⊂ X , P∪X ′∪Q is inconsistent.
Let m ∈ AS(P∪Q∪X). We have to show: (1) m ∈Mod(P∪Q), (2) X ∈CA(P,Q,m), and (3)
X ∈Min(CA(P,Q),⊆).
(1) By Theorem 1, since m ∈ AS(P∪Q∪X), m ∈Mod(P∪Q).
(2) By Lemma 3, X ⊆ Nded(m,P∪Q). Now, by hypothesis, m ∈ AS(P∪Q∪X) and for each
X ′ ⊂ X , P∪X ′∪Q is inconsistent. Thus X ∈CA(P,Q,m)⊆CA(P,Q).
(3) Let us show by contradiction that X ∈ Min(CA(P,Q),⊆). Let X ′ ⊆ X such that X ′ ∈
Min(CA(P,Q),⊆). X ′ ∈CA(P,Q) then ∃m′ s.t. X ′ ⊆ Nded(m′,P∪Q) and m′ ∈ AS(P∪Q∪
X ′). So m′ is an answer set of P∪Q∪X ′ and if X ′ ⊂ X , X 6∈PA (P,Q). Therefore X = X ′

and X ∈Min(CA(P,Q),⊆).

• We now show the other direction: Min(CA(P,Q),⊆)⊆PA (P,Q).
Let X ∈Min(CA(P,Q),⊆). By Definition 14, P∪Q∪X is trivially consistent. We show by
contradiction that for each X ′ ⊂ X , P∪Q∪X ′ is inconsistent. Let us suppose that there exists
some X ′ ⊂ X such that P∪Q∪X ′ is consistent. Let X ′0 be one least (with respect to inclusion)
such X ′. Then P∪Q∪X ′0 is consistent and ∀Y ⊂ X ′0, P∪Q∪Y is inconsistent. Therefore
X ′0 ∈PA (P,Q) and, by the first part of the proof of Theorem 6, X ′0 ∈ Min(CA(P,Q),⊆).
Now X ′0 ⊂ X , thus X 6∈Min(CA(P,Q),⊆). It contradicts the hypothesis. We can conclude that
for each X ′ ⊂ X , P∪Q∪X ′ is inconsistent. Therefore X ∈PA (P,Q).

Proof of Theorem 9. Let P and Q be logic programs. By Definition 12, there exists a selection
function f such that P?ASR( f ) Q is defined if and only if A (P,Q) 6= /0.

If A (P,Q) 6= /0 then, by Definitions 10 and 11, there exists some Y such that P∪Q∪Y is
consistent and, by Theorem 1, P∪Q is m-consistent.

For the other direction, let us suppose that P∪Q is m-consistent: ∃m ∈Mod(P∪Q). By Theo-
rem 5, m is an answer set of P∪Q∪Nded(m,P∪Q). Since ∃Y , P∪Q∪Y is consistent, A (P,Q) 6= /0
and P?ASR( f ) Q is defined.

Lemma 4. Let P, Q be two logic programs, and X, Y be two sets of rules. If (X ,Y ) ∈PM (P,Q)
then X ∈PR(P,Q∪Y ) and Y ∈PA (P\X ,Q).

Proof of Lemma 4. Let (X ,Y ) ∈PM (P,Q). By Definition 17, X ⊆ P, (P\X)∪Y ∪Q is consistent
and, for each (X ′,Y ′) such that (X ′,Y ′)⊂ (X ,Y ), (P\X ′)∪Y ′∪Q is inconsistent. By Definition 16,
for each X ′ ⊂ X , (P\X ′)∪Y ∪Q is inconsistent and, for each Y ′ ⊂Y , (P\X)∪Y ′∪Q is inconsistent.
Thus, by Definition 4, X ∈PR(P,Q∪Y ) and, by Definition 10, Y ∈PA (P\X ,Q).
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Proof of Theorem 10. Let P and Q be two logic programs.

• We first prove PM (P,Q)⊆Min(CM(P,Q),⊆).
Let (X ,Y ) ∈PM (P,Q). By Lemma 4, X ∈PR(P,Q∪Y ) and Y ∈PA (P \X ,Q). And
by Definition 17, (P \X)∪Q∪Y is consistent. Let m ∈ AS((P \X)∪Q∪Y ). By Lemma
2, X = Fal(P,m). And by Lemma 3, Y ⊆ Nded(m,(P \X)∪Q). For the minimality, we
have (X ,Y ) ∈PM (P,Q) thus, by Definition 17, for each (X ′,Y ′) such that (X ′,Y ′)⊂ (X ,Y ),
(P\X ′)∪Y ′∪Q is inconsistent.Thus (X ′,Y ′) 6∈CM(P,Q). And (X ,Y ) ∈Min(CM(P,Q),⊆).

• We now prove that Min(CM(P,Q),⊆)⊆PM (P,Q).
Let (X ,Y )∈Min(CM(P,Q),⊆). By Definition 20, there exists m∈Mod(Q) s.t. X =Fal(P,m).
By definition, Fal(P,m)⊆ P, thus X ⊆ P.
By Definition 20, (P\X)∪Q∪Y is consistent. We show by the absurd that for each (X ′,Y ′)⊂
(X ,Y ), (P\X ′)∪Q∪Y ′ is inconsistent. Let us suppose that there exists (X ′,Y ′)⊂ (X ,Y ) s.t.
(P \ X ′)∪Q∪Y ′ is consistent. Let (X ′0,Y

′
0) be one least (with respect to inclusion) such

(X ′,Y ′). Then (P\X ′0)∪Q∪Y ′0 is consistent and for each (A,B)⊂ (X ′0,Y
′
0), (P\A)∪Q∪B is

inconsistent. Therefore (X ′0,Y
′
0) ∈PM (P,Q) and, by the first part of the proof of Theorem

10, (X ′0,Y
′
0) ∈Min(CM(P,Q),⊆). Now (X ′0,Y

′
0)⊂ (X ,Y ), thus (X ,Y ) 6∈Min(CM(P,Q),⊆). It

contradicts the hypothesis. We can conclude that for each (X ′,Y ′)⊂ (X ,Y ), (P\X ′)∪Q∪Y ′

is inconsistent.
Therefore (X ,Y ) ∈PM (P,Q).

Proof of Theorem 13. Let P and Q be logic programs. By Definition 19, there exists a selection
function f such that P?MSR( f ) Q is defined if and only if M (P,Q) 6= /0.

If M (P,Q) 6= /0 then, by Definitions 17 and 18, there exists some (X ,Y ) such that (P\X)∪Q∪Y
is consistent and, by Theorem 1, Q is m-consistent.

For the other direction, let us suppose that Q is m-consistent: ∃m ∈ Mod(Q). By Theorem 5,
m is an answer set of Q∪Nded(m,Q) = (P\P)∪Q∪Nded(m,Q). Since ∃(X ,Y ) with X = P and
Y =Nded(m,Q) such that (P\X)∪Q∪Y is consistent, M (P,Q) 6= /0 and P?MSR( f )Q is defined.

Proof of Theorem 14. We consider the three revision operators:

• We first show that for any selection function f , if ?RSR( f ) is defined, ?RSR( f ) satisfies Success,
Consistency, Inclusion, Vacuity, R−Relevance and Uni f ormity.

By definition, ?RSR( f ) satisfies, Success, m−Consistency, Inclusion, and Vacuity.
R−Relevance: for any selection function f , ∀D⊆ P\ (P?RSR( f )Q) we have D⊆ f (R(P,Q)),
since f (R(P,Q)) is a removed set, by Definition 5 we have (P?RSR( f )Q)∪D is inconsistent.
Uni f ormity: In case of ?RSR( f ) we only consider the removed rules, thus E = /0 and this
postulate may be reformulated as follows:
If for all subsets D of P, D∪Q is consistent if and only if D∪R is consistent then P\(P?Q) =
P\ (P?R).

We first prove that if for all subsets of D of P, D ∪ Q is consistent if and only if
D∪ R is consistent, then R(P,Q) = R(P,R). We have PR(P,Q) = {S | S ⊆ P,(P \ S)∪
Q is consistent,and for each S′ ⊂ S,(P \ S′)∪Q is inconsistent} and PR(P,R) = {S | S ⊆
P,(P \ S)∪R is consistent and for each S′ ⊂ S,(P \ S′)∪R is inconsistent}. If PR(P,Q) 6=
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PR(P,R) by Definition 4 there is a contradiction thus PR(P,Q) = PR(P,R) there-
fore R(P,Q) = R(P,R). Hence for any selection function f we have P \ (P?RSR( f )Q) =
P\ (P?RSR( f )R).

• We then show that for any selection function f , if ?ASR( f ) is defined, ?ASR( f ) satisfies Success,
Consistency, Inclusion−, Vacuity, A−Relevance and Uni f ormity.

By definition, ?ASR( f ) satisfies Success, Consistency, Inclusion− and Vacuity.
A− Relevance: for any selection function f , ∀E ⊆ P ?ASR( f ) Q) \ (P ∪Q) we have E ⊆
f (A (P,Q)), since f (A (P,Q)) is an added set, by Definition 11 we have (P ?ASR( f ) R) \E
is inconsistent.
Uni f ormity: in case of ?ASR( f ) we only consider the added rules, thus D= /0 and this postulate
may be reformulated as follows:
If for all supersets E of P, E ∪Q is consistent if and only if E ∪R is consistent then (P?Q)\
(P∪Q) = (P?R)\ (P∪R).

We first prove that if for all supersets E of P, E ∪Q is consistent if and only if E ∪ R
is consistent then A (P,Q) = A (P,R). Let U and V be sets of rules made from the
vocabulary of P and Q and P and R respectively, we have PA (P,Q) = {U | (P ∪
U)∪Q is consistent,and for each U ′ ⊂ U,(P ∪U ′)∪Q is inconsistent.} PA (P,R) = {V |
(P∪V )∪R is consistent,and for each V ′ ⊂ V,(P∪V ′)∪R is inconsistent.} If PA (P,Q) 6=
PA (P,R) by Definition 10 there is a contradiction, thus PA (P,Q) = PA (P,R) therefore
A (P,Q) = A (P,R). Hence for any selection function f we have (P ?ASR( f ) Q) \ (P∪Q) =
(P?ASR( f ) R)\ (P∪R).

• Finally, we show that for any selection function f , if ?MSR( f ) is defined, ?MSR( f ) satisfies
Success, Consistency, Vacuity, M−Relevance and Uni f ormity.

By definition ?MSR( f ) satisfies Success, Consistency and Vacuity.
M−Relevance: for any selection function f , for all (D,E) 6=( /0, /0) such that D⊆P\(P?MSR( f )
Q) and E ⊆ (P ?MSR( f ) Q) \ (P∪Q) we have (D,E) ⊆ f (M (P,Q)), since f (M (P,Q)) is a
modified set, by Definition 18 we have then ((P?MSR( f ) Q)∪E)\D is inconsistent.
Uni f ormity: we first prove that if for all subsets of D of P, D∪Q is consistent if and only
if D ∪ R is consistent and if for all supersets E of P, E ∪Q is consistent if and only if
E ∪R is consistent then M (P,Q) = M (P,R). If M (P,Q) 6= M (P,R) by Definition 17 there
is a contradiction thus M (P,Q) = M (P,R). Hence for any selection function f we have
P\ (P?MSR( f ) Q) = P\ (P?MSR( f ) R) and (P?MSR( f ) Q)\ (P∪Q) = (P?MSR( f ) R)\ (P∪R).

Lemma 5. ASPMODELCHECKING(RS) is in DP.

Proof of Lemma 5. We recall that a language L is in the class DP if and only if there are two lan-
guages L1 ∈ NP and L2 ∈ coNP such that L = L1∩L2 (Papadimitriou, 1994).

Finding such a set R can be broken down as follows:

1. Is there a set R⊆ P such that X ∈ AS((P\R)∪Q) ?

(a) Guess a set of rules R

(b) Check that R⊆ P
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(c) Check that X ∈ AS((P\R)∪Q)

2. Compute kR = |R|

3. Check that R ∈R(P,Q):

(a) Guess a set of rules R0 and a set of atoms X0

(b) Check that R0 ⊆ P

(c) Check that |R0|< kR

(d) Check that X0 ∈ AS((P\R0)∪Q)

The algorithmic difficulty concentrates in points 1 and 3. The algorithm described in point 1 can
be solved in polynomial time on a non-deterministic Turing machine, and R is a certificate, because
it succinctly proves that X ∈ AS((P \R)∪Q). Thus, this subproblem is in NP. In the algorithm
described in point 3, (R0,X0) is a succinct disqualification, that is, it proves that X /∈ R(P,Q).
This algorithm can run in polynomial time on a non deterministic Turing machine. Thus, it is in
coNP.

Lemma 6. ASPMODELCHECKING(RS) is DP-complete.

Proof of Lemma 6. The first step consists in building a transformation of the problem EXACTIN-
DEPENDENTSET into ASPMODELCHECKING(RS). The problem EXACTINDEPENDENTSET is
known to be DP-complete (Papadimitriou, 1994). It is defined as follows :

Name : EXACTINDEPENDENTSET

Input : a graph G = (V,E), a positive integer k ≤ |V |.
Question : Does G contain an independent set of size k, that is a subset
V ′ ⊆V such that |V ′|= k and such that no two vertices in V ′ are joined by
an edge in E, such that there is no other independent set with a size k′ > k.
From a given graph G = (V,E) with V = {x1, . . . ,xn} we define a transformation τ(G) = (P,Q),

which builds two logic programs P and Q as follows. We define Q = Q1∪Q2∪Q3∪Q4 with:

Q1 = {e(x,y). | (x,y) ∈ E} (1)

This describes the edges of G.
Atoms is(x) reflects the presence of a vertex x in an independent set.

Q2 = {← is(x), is(y),e(x,y). | ∀(x,y) ∈ E} (2)

This eliminates candidate vertices which are joined by an edge in E.

Q3 = {← not is(x1), . . . ,not is(xn).} (3)

This eliminates the empty set of vertices as a solution.
The program P contains the following rules:

P = {is(x). | x ∈V} (4)

The rules of P states that V is an independent set.
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Now we define a transformation γ of a set of vertices V ′⊆V into a set of atoms γ(V ′) as follows:

X1 = {is(x) | x ∈V ′}
X2 = {e(x,y) | (x,y) ∈ E}

γ(V ′) = X1∪X2

Then, given a graph G, and its transformation τ(G) = (P,Q), we show that G contains a maximum
independent set S of size k, if and only if S corresponds to a set of atoms X = γ(S) such that there
exists a set R ∈R(P,Q) such that X ∈ AS((P\R)∪Q).

We first prove that if G contains a maximum independent set S of size k, then S corresponds to
a set of atoms X = γ(S) such that there exists a set R ∈R(P,Q) such that X ∈ AS((P\R)∪Q).

We suppose that G contains a maximum independent set of size k. Let us denote this set by S.
Consider the transformations τ(G) = (P,Q) and γ(S) = X , and consider the algorithm given

in the proof of Lemma 5. Suppose, without loss of generality, that the set of rules R guessed in
step 1(a) is such that R = {r | r ∈ P,head(r) /∈ X1}. R⊆ P by construction, so step 1(b) is verified.
In order to check that X ∈ AS((P \R)∪Q) (step 1(c)), we first compute ((P \R)∪Q)X . This set
contains:

• all rules of Q1 and Q2 because they have an empty negative body.

• no rule of Q3 because S is not empty, so there exists at least one atom is(x),x ∈ S in X = γ(S).

• {r | r ∈ P\R}

Thus, Cn(((P\R)∪Q)X) contains:

• all atoms e(x,y) such that (x,y) ∈ E, that is X2

• all atoms is(x) such that is(x) ∈ X1, that is X1.

By construction of X1 and X2, none of the constraints in Q2 is satisfied, because by construction, all
atoms is(x) ∈ X1 correspond to vertices of an independent set of G, so, given any (is(x), is(y)) ∈ X2

1 ,
there is no corresponding e(x,y) ∈ X2.

Thus Cn(((P\R)∪Q)X) = X1∪X2 = X . This proves that X ∈ AS((P\R)∪Q).
The second step of our algorithm computes the size kR of the set R. Note that at this time we

can conclude that S is an independent set of G, and thus G admits an independent set of size at least
k = |P|− kR.

Then, the third step looks for a pair (R0,X0), R0 ⊆ P being a set of rules and X0 a set of atoms,
such that |R0|< kR.

We examine the two cases: either we find such a pair, either we do not find it:

• Suppose that we find such a pair (R0,X0). This means R is not minimal with respect to
cardinality, and consequently the number of atoms is(x) ∈ X0 will be larger. If X0 ∈ AS((P\
R0)∪Q), then X0 corresponds to an independent set S0 such that |S0|> k, because this means
that none of the constraints in Q2 are satisfied, that is, given any (is(x), is(y)) ∈ X0, there is no
corresponding e(x,y) ∈ X0. Moreover, as |R0| < kR, we have |{is(x)|is(x) ∈ X0}| > k, which
contradicts the hypothesis.

• If we do not find such a pair, this means that there is no independent set which is larger than
k = |P\R|, and R is a removed set.
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We can conclude that if S is a maximal independent set of size k, then there exists R ∈R(P,Q),
with τ(G) = (P,Q), such that γ(S) ∈ AS((P\R)∪Q).

We now show that, if S ⊆V with X = γ(S) is such that there exists a set R ∈R(P,Q) such that
X ∈ AS((P\R)∪Q), then S is a maximum independent set of G of size k.

Let τ(G) = (P,Q). We suppose that there is a S⊆V such that there exists R ∈R(P,Q) such that
γ(S) ∈ AS((P\R)∪Q). We prove that S is a maximum independent set of size k = |P\R|.

Let us compute ((P\R)∪Q)γ(S). This program contains the following rules:

• all rules of Q1 and Q2, since they do not have a negative body.

• no rule from Q3, as γ(S) contains at least one atom is(x),x ∈ S.

• all rules of P \R, that is, all rules (is(x).) such that (is(x).) /∈ R. But note that, as γ(S) ∈
AS((P\R)∪Q), these rules (is(x).) are such that is(x) ∈ γ(S), and thus x ∈ S.

As γ(S)∈AS((P\R)∪Q) by hypothesis, then ∀is(x)., is(y).∈ (P\R) there is no rule (e(x,y).)∈
Q1, because if it was the case, there would exist a constraint (← is(x), is(y),e(x,y).) in Q2 which
would prohibit γ(S) to be an answer set of (P\R)∪Q.

This proves that ∀x,y ∈ S, (x,y) /∈ E, as no constraint of Q2 is satisfied. So S is an independent
set of G of size k = |P\R|.

Moreover, as R is a removed set, there is no R0 ⊆ P with |R0|< |R| such that AS((P\R0)∪Q) 6=
/0. This means that for any such set R0, there exists a pair of rules (is(x)., is(y).) in P\R0 such that
there exist a rule (e(x,y).) ∈ Q1, which means that {x | (is(x).) ∈ P\R0} is not an independent set
of G, and thus there is no independent set of G with a size larger than k = |P\R|.

Thus S is a cardinality-maximal independent set of G of size k = |P\R|.
Finally, note that the transformation τ is linear in the size of G, and γ is linear in the size of S.
We can conclude that ASPMODELCHECKING(RS) is DP-complete.

Proof of Theorem 15. Directly from Lemmas 5 and 6.

Lemma 7. ASPMODELCHECKING(AS) is in DP.

Proof of Lemma 7. Finding such a set Y can be done with the following algorithm:

1. Is there a set of facts Y , atom(Y )⊆ atom(P∪Q) such that X ∈ AS(P∪Y ∪Q):

(a) Guess a set of facts Y

(b) Check that atom(Y )⊆ atom(P∪Q)

(c) Check that X ∈ AS(P∪Y ∪Q)

2. Compute kY = |Y |

3. Check that Y ∈A (P,Q):

(a) Guess a set of facts Y0 and a set of atoms X0

(b) Check that atom(Y0)⊆ atom(P∪Q)

(c) Check that |Y0|< kY

(d) Check that X0 ∈ AS(P∪Y0∪Q)
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The algorithmic difficulty concentrates in items 1 and 3. Item 1 can be solved in polynomial time
using a non deterministic Turing machine, and Y is a certificate, because it succinctly proves that
X ∈AS(P∪Y ∪Q). Thus, this subproblem is in NP. For item 3, (Y0,X0) is a succinct disqualification,
as it proves that Y /∈A (P,Q). This algorithm runs in polynomial time on a non deterministic Turing
machine. Thus, it is in coNP, and the whole problem is in DP.

Lemma 8. ASPMODELCHECKING(AS) is DP-complete.

Proof of Lemma 8. The first step consists in building a transformation of the problem EXACTIN-
DEPENDENTSET into ASPMODELCHECKING(AS). From a given graph G = (V,E) with V =
{x1, . . . ,xn} we define a transformation τ(G) = (P,Q) as follows. We define Q = Q1 ∪Q2 ∪Q3
with:

Q1 = {e(x,y). | (x,y) ∈ E} (5)

This set describes the edges of G.

Q2 = {← is(x), is(y),e(x,y). | (x,y) ∈ E} (6)

Atoms is(x) reflect the presence of a vertex x in an independent set. These rules eliminate the
candidate vertices which are joined by an edge in E.

Q3 = {← is′(x1), . . . , is′(xn). |V = {x1, . . . ,xn}} (7)

Atoms is′(x) reflect the absence of a vertex x in an independent set. This rule eliminates the empty
set of vertices as a solution.

The program P contains the following rules:

P = {is(x)← not is′(x). | x ∈V} (8)

The meaning of these rules is that a vertex x is candidate in an independent set if its absence is not
stated.

Now we define a transformation γ of a set of vertices V ′⊆V into a set of atoms γ(V ′) as follows:

X1 = {is(x) | x ∈V ′},
X2 = {is′(x) | x ∈V \V ′},
X3 = {e(x,y) | (x,y) ∈ E},

γ(V ′) = X1∪X2∪X3.

As for the proof of Lemma 6, X1 represents the vertices of G contained in V ′, while X2 represents
the vertices of G not contained in V ′, and X1∩{is(x) | is′(x) ∈ X2}= /0.

Then, given a graph G = (V,E) and its transformation τ(G) = (P,Q), we show that G contains
a maximum independent set S of size k if and only if S corresponds to a set of atoms X = γ(S) such
that there exists a set of facts Y ∈A (P,Q) such that X ∈ AS(P∪Y ∪Q).

We show first that if G contains a maximum independent set S of size k then S corresponds to a
set of atoms X = γ(S) such that there exists a set of facts Y ∈A (P,Q) such that X ∈ AS(P∪Y ∪Q).

Suppose that G contains a maximum independent set of size k. Let us denote this set by S.
Consider the transformations τ(G) = (P,Q) and γ(S) = X , and consider the algorithm given in the
proof of Lemma 7. Suppose, without loss of generality, that the set of facts Y guessed in step 1(a) is
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such that Y = {is′(x). | is′(x) ∈ X2}. By construction we have atom(Y )⊆ atom(P∪Q), so step 1(b)
is verified. In order to check that X ∈ AS(P∪Y ∪Q) (step 1(c)), we first compute (P∪Y ∪Q)X . This
set contains :

• All rules in Q, because they have an empty negative body.

• {head(r). | r ∈ P, is′(x) /∈ X2}

• All rules in Y , because they have an empty negative body.

Thus, Cn((P∪Y ∪Q)X) contains :

• all atoms e(x,y) such that (x,y) ∈ E, that is X3 ;

• all atoms is′(x) such that is′(x) ∈ X2 ;

• all atoms is(x) such that is′(x) /∈ X2, that is X1.

Moreover, by construction of X1, X2 and X3, none of the constraints in Q2 are verified, because by
construction all atoms is(x)∈ X1 correspond to the independent set S, thus, given any (is(x), is(y))∈
X2

1 , there is no corresponding e(x,y) ∈ X3.
Finally, the constraint in Q3 is not satisfied as soon as Y 6= /0. Thus Cn((P∪Y ∪Q)X) = X1 ∪

X2∪X3 = X . This proves that X ∈ AS(P∪Y ∪Q).
The second step of the algorithm computes the size kY of the set Y . After this step, we can

conclude that S is an independent set of G, and so G have an independent set of size at least k =
|V |− kY .

Then, step 3 looks for a pair (Y0,X0), Y0 being a set of facts, atom(Y0) ⊆ atom(P∪Q), and X0
being a set of atoms such that |Y0| < kY . We consider two cases: either we find such a pair, either
we do not find it :

• Suppose that we find such a pair (Y0,X0). This means that Y is not minimal with respect to
cardinality, and consequently the number of atoms is(x)∈X0 will be larger than the number of
atoms is(x)∈X . If X0 ∈AS(P∪Y0∪Q), then X0 corresponds to an independent set S0 such that
|S0|> k, because none of the constraints in Q2 are satisfied, that is, ∀(is(x), is(y)) ∈ X2

0 , there
is no corresponding e(x,y) ∈ X0. Moreover, as |Y0| < kY , we have |{is(x) | is(x) ∈ X0}| > k,
which contradicts the hypothesis.

• If we do not find such a pair, this means that there is no independent set which is larger than
k = |V |− kY , and then Y ∈A (P,Q).

We can conclude that if S is a maximal independent set of size k, then there exists a set of facts
Y ∈A (P,Q), with τ(G) = (P,Q), such that γ(S) ∈ AS(P∪Y ∪Q).

Now we show that if S ⊆V and X = γ(S) such that there exists a set of facts Y ∈A (P,Q) such
that X ∈ AS(P∪Y ∪Q), then S is a maximum independent set of G with size k.

Let τ(G) = (P,Q). We suppose that there is a set S⊆V such that there exists Y ∈A (P,Q) such
that γ(S) ∈ AS(P∪Y ∪Q). We prove that S is a maximum independent set of size k = |V |− |Y |.

Let us compute (P∪Y ∪Q)γ(S). This program contains the following rules :

• All rules of Q, since they do not have a negative body,
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• all rules (is(x).) of P such that is′(x) /∈ γ(S), that is, such that x /∈ S,

• all rules of Y , whose content is Y = {is′(x). | is′(x) ∈ γ(S)}, because γ(S) ∈ AS(P∪Y ∪Q).

As γ(S) ∈ AS(P∪Y ∪Q), ∀(is(x), is(y)) ∈ γ(S) there is no fact (e(x,y).) in Q1, because if that
was the case, there would exist a constraint (← is(x), is(y),e(x,y).) in Q2, prohibiting γ(S) from
being an answer set.

Additionally, the constraint in Q3 is never satisfied because Y is not empty. This proves that
∀x,y ∈ S, (x,y) /∈ E. So S is an independent set of G of size k = |V |− |Y |.

Moreover, as Y is an added set, there is no set of facts Y0 with atom(Y ) ⊆ atom(P∪Q) and
|Y0| < |Y | such that AS(P∪Y0 ∪Q) 6= /0. This means that for any such set Y0, there exist a pair of
rules (is(x)← not is′(x).), (is(y)← not is′(y).), with (is′(x).),(is′(y).) /∈ Y0 such that there exists a
rule (e(x,y).) ∈ Q. This means in turn that {x | (is′(x).) /∈ Y} is not an independent set of G, and
thus there is no independent set of G with a size larger than k = |V |− |Y |.

Consequently S is a cardinality-maximal independent set of G of size k = |V |− |Y |.
Finally, note that the transformation τ is linear in the size of G, and γ is linear in the size of S.
From what precedes we can conclude that ASPMODELCHECKING(AS) is DP-complete.

Proof of Theorem 16. Directly from Lemmas 7 and 8.

Lemma 9. ASPMODELCHECKING(MS) is in DP.

Proof of Lemma 9. Finding such a pair (R,Y ) can be performed by the following algorithm:

1. Is there a set of rules R⊆ P and a set of facts Y such that atom(Y )⊆ atom(P∪Q), such that
X ∈ AS((P\R)∪Y ∪Q):

(a) Guess a set of facts Y and a set of rules R

(b) Check that R⊆ P

(c) Check that atom(Y )⊆ atom(P∪Q)

(d) Check that X ∈ AS((P\R)∪Y ∪Q)

2. Compute kRY = |R∪Y |

3. Check that (R,Y ) ∈M (P,Q):

(a) Guess a set of facts Y0, a set of rules R0 and a set of atoms X0

(b) Check that R0 ⊆ P

(c) Check that atom(Y0)⊆ atom(P∪Q)

(d) Check that |R0∪Y0|< kRY

(e) Check that X0 ∈ AS((P\R0)∪Y0∪Q)

The algorithmic difficulty concentrates in items 1 and 3. Item 1 can be solved in polynomial time
using a non deterministic Turing Machine, and (R,Y ) is a certificate, because it succinctly proves
that X ∈ AS((P \R)∪Y ∪Q). Thus this subproblem is NP. For item 3, (R0,Y0,X0) is a succinct
disqualification, as it proves that (R,Y ) /∈M (P,Q). This algorithm runs in polynomial time on a
non deterministic Turing machine. Thus, it is in coNP, and the whole problem is in DP.
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Lemma 10. ASPMODELCHECKING(MS) is DP-complete.

Proof of Lemma 10. Let us define a transformation of the problem EXACTINDEPENDENTSET into
ASPMODELCHECKING(MS). Let G = (V,E) be a graph with V = {x1, . . . ,xn}. We define the
transformation τ(G) = (P,Q) as follows. Let Q = Q1∪Q2∪Q3∪Q4∪Q5∪Q6 with :

Q1 = {e(x,y). | (x,y) ∈ E} (9)

Q1 describes the edges of G.

Q2 = {← is1(x), is1(y),e(x,y).,← is2(x), is2(y),e(x,y). | (x,y) ∈ E} (10)

the intuitive meaning of is1(x) and is2(x) is as follows. is1(x) represents the presence of a vertex x
in an independent set built by removal. is2(x) represent the presence of a vertex x in an independent
set built by addition. The rules in Q2 state that two vertices cannot be in an independent set if they
are linked by an edge.

Q3 = {← not is1(x1), . . . ,not is1(xn),not is2(x1), . . . ,not is2(xn).} (11)

Q3 states that the empty set is not an independent set.

Q4 = {is2(x)← not is′2(x). | x ∈V} (12)

Q4 states that if a vertex is not discarded (is′2(x)) it must be in an independent set.

Q5 = {is(x)← is1(x)., is(x)← is2(x). | x ∈V} (13)

Each atom is(x) represents the situation where x is in an independent set generated by removal
(is1(x)) or by addition (is2(x)).

Q6 = {← is1(x),not is2(x).,← is2(x),not is1(x). | x ∈V} (14)

Q6 eliminates independent sets which are not generated both by addition and by removal.
The program P contains the following rules :

P = {is1(x). | x ∈V} (15)

These rules state that V is an independent set.
Now we define a transformation γ of a set of vertices V ′⊆V into a set of atoms γ(V ′) as follows:

X1 = {is1(x) | x ∈V ′}
X2 = {is2(x) | x ∈V ′}
X3 = {is(x) | x ∈V ′}
X4 = {is′2(x) | x /∈V ′}
X5 = {e(x,y) | (x,y) ∈ E}

γ(V ′) = X1∪X2∪X3∪X4∪X5∪X6

X1, X2 and X3 represent together the vertices of G contained in V ′, while X4 represent the vertices
not contained in V ′. Note that X2∩X4 = /0.
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Then, given a graph G = (V,E) and its transformation τ(G) = (P,Q) we show that G contains a
maximum independent set S of size k if and only if the set of atoms X = γ(S) is such that there exist
a set of facts Y and a set of rules R, (Y,R) ∈M (P,Q), such that X ∈ AS((P\R)∪Y ∪Q).

We first show that if G contains a maximum independent set S of size k then the set of atoms
X = γ(S) is such that there exist a set of facts Y and a set of rules R, (Y,R) ∈M (P,Q), such that
X ∈ AS((P\R)∪Y ∪Q).

Suppose that G contains a maximum independent set S of size k. Let τ(G) = (P,Q) and γ(S) =
X , and consider the algorithm given in the proof of Lemma 9. Suppose, without loss of generality,
that the set of facts Y and the set of rules R guessed in step 1(a) are such that Y = {(is′2(x).) | is′2(x)∈
X4, and R = {r | r ∈ P,head(r) /∈ X1}. We have : R ⊆ P by construction, thus step 1(b) is verified,
and atom(Y )⊆ atom(P∪Q), thus step 1(c) is verified. In order to check that X ∈AS((P\R)∪Y ∪Q)
(step 1(d)), we compute ((P\R)∪Y ∪Q)X . This set contains :

• All rules in Q1, Q2 and Q5, because they have an empty negative body.

• no rule of Q3, because S 6= /0, so X1 6= /0 and X2 6= /0.

• {head(r). | r ∈ Q4, is′2(x) /∈ X4}, that is, facts is2(x) such that x ∈ S.

• no rule in Q6, because ∀x ∈ S, is1(x) ∈ X and is2(x) ∈ X .

• all rules in P\R, that is, {(is1(x).) | x ∈ S}.

• all rules in Y .

Thus Cn(((P\R)∪Y ∪Q)X) contains :

• all atoms e(x,y) such that (x,y) ∈ E, that is, X5.

• all atoms is2(x) such that is′2(x) /∈ X4 (that is, such that x ∈ S), that is, X2.

• all atoms is1(x) such that x ∈ S, that is, X1.

• all atoms is(x) such that x ∈ S, because of rules in Q5, that is, X3,

• all atoms is′2(x) such that (is′2(x).) ∈ Y , that is, such that x /∈ S, that is, X4.

Moreover, by construction of X1, X2 and X5, none of the constraints in Q2 are satisfied, because by
construction all atoms is1(x)∈ X1 and is2(x)∈ X2 correspond to the independent set S, so, given any
(is1(x), is1(y)) ∈ X2

1 (resp. (is2(x), is2(y)) ∈ X2
2 ), there is no corresponding e(x,y) ∈ X5.

Thus Cn(((P\R)∪Y ∪Q)X) = X1∪X2∪X3∪X4∪X5 = X . This proves that X ∈ AS((P\R)∪
Y ∪Q).

The second step of the algorithm computes kRY = |R∪Y |. By construction, |R| is the number of
vertices not in S. The same applies for |Y |. After this step, we can conclude that S is an independent
set of G, and thus G have an independent set of size at least k = |P|− (kRY/2).

Then, the third step looks for a triplet (Y0,R0,X0), R0 being a subset of rules of P, Y0 being a
set of facts such that atom(Y0) ⊆ atom(P∪Q), and |R0 ∪Y0| < kRY . X0 is a set of atoms such that
X0 ∈ AS((P \R0)∪Y0∪Q). We consider two cases: either we find such a triplet, either we do not
find it.
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• Suppose that we find such a triplet (Y0,R0,X0). This means that |R∪Y | is not minimal, and
consequently the number of atoms is(x) ∈ X0 will be larger than the number of atoms is(x) ∈
X . If XO ∈AS((P\R0)∪Y0∪Q), then X0 corresponds to an independent set S0 such that |S0|>
|P|−(kRY/2), because none of the constraints in Q2 are satisfied, that is, ∀(is1(x), is1(y))∈X2

0 ,
∀(is2(x), is2(y)) ∈ X2

0 , there is no corresponding e(x,y) ∈ X0. Moreover, as |R0 ∪Y0| < kRY ,
we have |{is(x) | is(x) ∈ X0}|> k, which contradicts the hypothesis.

• If we do not find such a triplet, this means that there is no independent set which is larger than
k = |P|− (kRY/2), and then (Y,R) ∈M (P,Q).

We can conclude that if S is a maximal independent set of size k, then there exist (Y,R) ∈
M (P,Q), with τ(G) = (P,Q), such that γ(S) ∈ AS((P\R)∪Y ∪Q).

We now show that G contains a maximum independent set S of size k only if the set of atoms
X = γ(S) is such that there exist a set of facts Y and a set of rules R, (Y,R) ∈M (P,Q), such that
X ∈ AS((P\R)∪Y ∪Q).

Let τ(G) = (P,Q). We suppose that there is a set S⊆V such that there exists (Y,R) ∈M (P,Q)
such that γ(S) ∈ AS((P \R)∪Y ∪Q). We prove that S is a maximal independent set of size k =
|V |− (kRY/2).

Let us compute ((P\R)∪Y ∪Q)γ(S). This program contains the following rules :

• All rules in Q1, Q2, Q5 since they do not have any negative body ;

• no rule from Q3, as there exist at least one is1(x) ∈ γ(S) ;

• {(head(r).) | r ∈ Q4, is′2(x) ∈ body−(r), is′2(x) /∈ γ(S)} ;

• {← body+(r) | r ∈ Q6, is2(x) ∈ body−(r), is2(x) /∈ γ(S)} ;

• {← body+(r) | r ∈ Q6, is1(x) ∈ body−(r), is1(x) /∈ γ(S)} ;

• All rules in P\R. Note that, as γ(S) ∈ AS((P\R)∪Y ∪Q), these rules are such that is1(x) ∈
γ(S), and thus x ∈ S.

• all rules in Y , whose content is Y = {(is′2(x).) | is′2(x) ∈ γ(S)}, because γ(S) ∈ AS((P \R)∪
Y ∪Q).

As γ(S) ∈ AS((P \ R) ∪Y ∪Q) by hypothesis, ∀(is1(x), is1(y)) ∈ (P \ R)2, there is no fact
(e(x,y).) ∈ Q1 because if it was the case, there would exist a constraint (← is1(x), is1(y),e(x,y).) ∈
Q2 which would prohibit γ(S) to be an answer set of (P\R)∪Y ∪Q. Similarly, ∀(is2(x), is2(y)) ∈
γ(S)2, there is no fact (e(x,y).) ∈ Q1 because if it was the case, there would exist a constraint (←
is2(x), is2(y),e(x,y).) ∈ Q2 which would prohibit γ(S) to be an answer set of (P\R)∪Y ∪Q. This
proves that for all (x,y) ∈ S2, (x,y) /∈ E. Thus S is an independent set of size k = |V |− |Y |= |P\R|.

Moreover, as (Y,R) ∈M (P,Q), there is no (Y0,R0), with R0 ⊆ P, atom(Y0) ⊆ atom(P∪Q),
|R0∪Y0|< |R∪Y | such that AS((P\R0)∪Y0∪Q) 6= /0. This means that:

• for any such set Y0 there exists a pair of rules (is2(x)← not is′2(x)., is2(y)← not is′2(y)). with
(is′2(x).),(is

′
2(y).) /∈ Y0 such that there exist a rule (e(x,y).) ∈ Q, which means in turn that

{x | is′2(x) ∈ Y0} is not an independent set of G, or,
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• for any such set R0, there exists a pair of rules (is1(x)., is1(y).) in P \R0 such that there is a
rule (e(x,y).) ∈ Q, which means in turn that {x | (is1(x).) ∈ P\R0} is not an independent set
of G.

Thus S is a cardinality-maximal independent set of G of size k = |V |− |Y |= |P\R|.
Finally, note that the transformation τ is linear in the size of G, and γ is linear in the size of S.

This allows us to conclude that ASPMODELCHECKING(MS) is DP-complete.

Proof of Theorem 17. Directly from Lemmas 9 and 10. ASPMODELCHECKING(MS) is DP-com-
plete.
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