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Abstract

Desorption of Sb from Si1�xGex layers (x ¼ 0, 0.05, 0.1, 0.2, 1) grown by molecular beam epitaxy (MBE) on Si(1 0 0)

substrates is investigated using Auger electron spectroscopy thermodesorption (TD-AES). Sb desorption process on

Si1�xGex is well described by a first-order reaction. No extra TD-AES peaks are observed on Si1�xGex compared to Si.

For 1 ML of Sb coverage the TD-AES peak shifts to lower temperature when Ge bulk concentration increases. The Sb

monolayer desorbs at 801, 752, 740, 715, and 706 �C for x ¼ 0, 0.05, 0.1, 0.2 and 1, respectively. We explain the non-

linear decrease of the Sb desorption energy when x increases by the strong Ge surface segregation during the MBE

growth of Si1�xGex layers, resulting in an almost pure Ge surface even for low x.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Understanding of group-V elements adsorption
on IV–IV heterostructures is of potential interest

for doping and for surfactant-mediated epitaxial

growth of these structures. In particular, antimony

(Sb) is the usual n-type dopant used in silicon (Si)

molecular beam epitaxy (MBE). To improve the

control of its doping profile in Si-based het-

erostructures, studies on Sb diffusion, surface

segregation and desorption have to be performed.
Despite the numerous works describing and study-

ing these phenomena for Si [1–4], very few studies

have been realized for SiGe although the fabrica-

tion of abrupt junctions is of great interest for
possible electronic and optoelectronic device ap-

plications. In the latter case, the existing studies

mainly concern Sb bulk diffusion [5] and surface

segregation [6] in SiGe, but to our knowledge there

has not been a report on Sb desorption from SiGe

surfaces up to now. In addition, such studies could

be also important in clarifying the Sb surfactant

effect on the growth of SiGe layers. Indeed Sb was
found to modify the growth mode of Ge on Si by

delaying the onset of three-dimensional clustering

in Stranski–Krastanov growth [7]. In addition,

people have recently used Sb to increase the den-

sity and reduce the size of Ge islands [8,9].
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Regarding Sb desorption, Metzger and Allen

[10] have evidenced that its order is unity on Si and

that Si(1 1 1) and Si(1 0 0) orientations exhibit

identical behaviour. Two distinct peaks of Sb de-

sorption are observed: one at low temperature

corresponding to high Sb coverage and one at high
temperature corresponding to a coverage lower

than 0.5 or 1 ML for Si(1 0 0) and Si(1 1 1), re-

spectively. The high temperature peak results from

the Sb–Si interaction while the low temperature

peak is attributed to the Sb–Sb interaction. A

similar situation is encountered for the Ge(1 0 0)

surface, for which Chan and Altman [11] have

recently observed three Sb desorption peaks: a
high temperature peak at 707 �C attributed to the

Sb–Ge bond breaking, a low temperature peak at

277 �C corresponding to Sb–Sb bonding, and a

third peak observed at 817 �C being probably due

to desorption of incorporated Sb atoms which

need to diffuse to the surface before desorbing.

In this paper, we report new results concerning

the Sb surface desorption from Si1�xGex layers
grown by MBE on Si(1 0 0) substrates using Auger

electron spectroscopy thermodesorption (TD-

AES). We study the evolution of the high tem-

perature desorption peak (desorption of 1 ML of

Sb) with the Ge concentration of several SiGe

layers. Sb monolayer (ML) desorption tempera-

ture is found to decrease when Ge bulk con-

centration (x) increases and the corresponding
desorption energies decrease exponentially up to

the value for a pure Ge surface. This behaviour is

explained by the strong surface segregation of Ge

during the growth, leading to a pure Ge surface

even for low Ge bulk concentration.

2. Experimental

Samples were grown in a Riber MBE chamber

with a base vacuum in the 10�11 Torr range and a

pressure during deposition in the 10�10 Torr range.

Si and Ge were evaporated by means of an elec-

tron gun evaporator monitored by an INFICON

Sentinel III deposition controller and an effusion

cell with a pyrolitic boron nitride crucible, re-
spectively. Sb was sublimated using a standard

effusion cell. Si and Si1�xGex growth rates for dif-

ferent composition of Ge were calibrated by re-

flection high-energy electron diffraction (RHEED)

oscillations observed at low temperature on

Si(1 1 1) substrates. Typical Si and Ge growth rates

were 0.375 �AA/s and varied from 0.02 to 0.094 �AA/s,
respectively. Sb calibration was done using the
surface reconstruction change from the Si(1 0 0)-

(2� 1) pattern to the (1� 1) pattern at a Sb

coverage of 1 ML [12]. Nominal Sb flux rate was

estimated to be 2:2� 1013 molecules cm�2 s�1.

Substrate temperatures were measured with a

thermocouple fixed on the backside of the sample

holder and complimented by infrared pyrometry.

Various eutectic points in the investigated tem-
perature range were used to calibrate the temper-

ature given by the thermocouple. The Si substrate

cleaning procedure consisted of an in situ thermal

annealing at 1200 �C for 1.5 min to desorb the

native oxide, followed by a 34 nm thick Si layer

grown at 750 �C. Sample surface quality was

checked by RHEED: all sample surfaces were flat

and reconstructed ((2� 1) on Si(1 0 0) and (7� 7)
on Si(1 1 1)). Subsequently Si1�xGex layers with

x ¼ 0:05, 0.1, 0.2, and 1 were grown at 630 �C and

finally capped with 1 ML of Sb at 400 �C.
Five layers were epitaxially grown on Si(1 0 0)

substrates: a Si layer, three 28 nm thick Si1�xGex
layers with x ¼ 0:05, 0.1 and 0.2 respectively and a
3 ML thick Ge layer. Note that the thickness of the

Ge layer is strongly reduced in order to avoid 3D
growth or nucleation of dislocations. A Si layer

was also grown on a Si(1 1 1) substrate. After the

deposition of 1 ML of Sb, samples were trans-

ferred into the analysis chamber equipped with

Auger electron spectroscopy (AES). Auger spectra

were systematically performed before heating the

sample. As can be seen on Fig. 1, no observable

contamination of the surface by either C or O was
detected. Si (92 eV) and Ge (1147 eV) Auger in-

tensities (peak-to-peak height) for each sample are

reported in Table 1. These values will be used later

in order to estimate the Ge surface segregation.

Then a linear temperature ramp with a heating

coefficient b ¼ 0:5 �C/s was applied to the samples
starting from T0 ¼ 240 �C. During this procedure,
adsorbed Sb atoms can desorb at temperatures
which depend on their surface binding energy.

Here, determination of the amount of Sb desorbed



is made by analysing the Sb quantity remaining on

the surface ðNðtÞÞ using AES [13]. More precisely,
NðtÞ is measured from the (peak-to-peak) height of

the derivative of the Sb M5N4;5N4;5 peak. During

Sb desorption, the corresponding signal decreases
whereas the Si and Ge signals increase, since they

are less screened by Sb. This desorption experi-

ment can be expressed by the well-known equa-

tions [14]:

dNðtÞ
dt

¼ �Kd � NðtÞn ð1Þ

Kd ¼ K0 � exp

�
� Ed
kT

�
ð2Þ

T ¼ T0 þ b � t ð3Þ
where NðtÞ, Kd, K0, Ed and n are defined as the Sb
surface coverage measured by AES, the rate con-

stant of desorption, the frequency factor, the de-

sorption energy and the order of the reaction,

respectively. At the temperature of the Sb mono-

layer desorption maximum ðTpÞ the second deriv-
ative of NðtÞ vanishes, which leads to:

Ed
kT 2p

¼ n� NðtÞn�1 � K0

b
� exp

�
� Ed
kTp

�
ð4Þ

This last equation allows us to calculate Ed when
K0 and Tp are known.

3. Results

First, we confirm that Sb is more strongly

bound to the Si(1 0 0) surface than to the Si(1 1 1)

surface [10]. Indeed, the Sb monolayer was found

to desorb at 801 �C on Si(1 0 0) and at 752 �C on

Si(1 1 1). Moreover the asymmetric TD-AES signal

found on both surfaces reveals a first-order reac-

tion (n ¼ 1). Using Eq. (4) and taking K0 from the

literature, activation energies (Ed) were calculated.
Concerning the Sb interaction with the Si(1 1 1)

surface, using K0 ¼ 4� 1011 s�1, one finds Ed ¼
2:73 eV, in better agreement with the values found
by Andrieu and Arnaud d�Avitaya [15] (Ed ¼
2:65� 0:15) and Ladeveze et al. [13] (Ed ¼ 2:70�
0:05 eV) than that of Metzger and Allen [10,16]

(Ed ¼ 2:46 eV). On Si(1 0 0) Metzger and Allen [10]
measured K0 ¼ 2:0� 1012 s� 1 and Ed ¼ 3:05 eV.
Taking the same value of K0 and Tp ¼ 801 �C
Eq. (4) gives Ed ¼ 3:01 eV which is in good agree-

ment with their result.

Fig. 2 shows the Sb TD-AES spectra obtained

after derivation of the AES signal of four Si1�xGex
layers (x ¼ 0, 0.05, 0.2 and 1) grown on Si(1 0 0)

substrates subsequently covered by 1 ML of Sb.

For sake of clarity, the spectrum for x ¼ 0:1 is not
presented in this figure. Note first that whatever

the Ge composition of the layers, there is only one

desorption peak observed, which evidences the

existence of a single type of Sb adsorption state.

This can be achieved by assuming a homogeneous

Ge composition in the surface layer. In this case a

linear variation of the adsorption energy can be

expected, defined as:

EdðSÞ ¼ xEGed ðSÞ þ ð1� xÞESid ðSÞ ð5Þ

Fig. 1. Auger electron spectroscopy spectrum of a 28 nm thick

Si0:8Ge0:2 layer grown on Si(1 0 0) substrate and capped with 1

ML of Sb.

Table 1

Auger intensity (peak-to-peak height) of the Si (92 eV) and Ge

(1147 eV) peaks for Si1�xGex layers
a

Si1�xGex x ¼ 0 x ¼ 0:05 x ¼ 0:1 x ¼ 0:2 x ¼ 1

Si

intensity

1.15 0.904 0.791 0.601 0.548

Ge

intensity

0 0.00559 0.0351 0.1 0.0871

a The incident electron energy was equal to 3.2 keV.



where EdðSÞ is the adsorption energy of Sb in the
state S (a given adsorption configuration). All
spectra exhibited the same asymmetric shape in-

dicating a first order reaction. The Sb desorption

for the 3 ML thick Ge sample is found to occur at

706 �C, which is very close to the value found by
Chan and Altman (707 �C) for a Ge(1 0 0) sub-
strate. The latter result suggests that the stress

induced by the epitaxy of Ge on Si(1 0 0) does not

influence significantly the Sb desorption. More-
over, the TD-AES peak is found to shift to lower

temperature when the Ge bulk content increases,

which confirms that the binding energy of Sb de-

creases when the Ge composition increases. The

difference between Sb ML desorption tempera-

tures from Si and from Ge (DT ¼ T Sip � TGep ¼ 95

�C) is in good agreement with previous theoretical

calculations performed by Jenkins and Srivastava

[17], indicating that adsorbed Sb atoms are more

strongly bound to the Si surface than to the Ge

surface (Sb–Si bonds are 0.1 eV stronger than Sb–

Ge bonds). Fig. 2 also shows that the TD-AES
peak does not shift linearly with the Ge layer

composition and for samples with x ¼ 0:2 and 1,
the peaks are almost superimposable. Assuming a

constant value K0 ¼ 2:0� 1012 s�1, Sb desorption

energies for the five samples were calculated. K0,

which is the entropic term of the desorption, is

assumed to be constant since only one peak of

desorption is observed for all the spectra, corre-
sponding to one configuration of adsorption. The

variation of the desorption energy is interpreted as

a bonding energy variation for a given configura-

tion of adsorbed Sb atoms. The obtained values of

Ed and the corresponding desorption lifetime

(s ¼ 1=Kd) for two temperatures, 550 and 750 �C
demarcating the usual MBE growth temperature

domain, are reported in Table 2. Fig. 3 shows the
Sb desorption rate constant at 750 �C and corre-

sponding activation energies versus the Ge bulk

concentration for the investigated samples. Kd and
Ed logarithmically increases and decreases respec-
tively when x increases. This behaviour can be

explained by considering the surface segregation of

Ge which occurs during the growth of SiGe layers

[18,19], before the deposition of Sb. The three
main driving forces of the segregation phenome-

non are the difference in surface energy (cSi=cGe ¼
1:25), the difference in size (rGe � rSi ¼ 0:0269 �AA)
between the components, and their ability to in-

termix in the bulk (mixing energy) [20]. The two

first driving forces promote a strong surface seg-

regation of Ge in Si.

Fig. 2. TD-AES spectra of 1 ML of Sb deposited on four

Si1�xGex layers (x ¼ ðaÞ 0, (b) 0.05, (c) 0.2, (d) 1) grown by

MBE on Si(1 0 0) substrates. All the spectra are recorded under

same experimental conditions and obtained after the derivation

of the AES signal.

Table 2

TD-AES peak temperature (Tp) and corresponding desorption energies (Ed) of Sb from Si1�xGex layers having various Ge composition

(x) grown by MBE on Si(1 0 0) substrates

x xs Tp (�C) Ed (eV)
K0 ¼ 2� 1012 s�1

Kd (s�1)
T ¼ 550 �C

Kd (s
�1)

T ¼ 750 �C
sðsÞ
T ¼ 550 �C

sðsÞ
T ¼ 750 �C

0 0 801 3.01 7:54� 10�7 3:01� 10�3 1:33� 106 332

0.05 0.18 752 2.87 5:43� 10�6 1:49� 10�2 1:84� 105 67.1

0.1 0.37 740 2.83 9:54� 10�6 2:32� 10�2 1:05� 105 43.1

0.2 0.81 715 2.76 2:56� 10�5 5:13� 10�2 3:91� 104 19.5

1 1 706 2.74 3:39� 10�5 6:44� 10�2 2:95� 104 15.5

Values of the Sb desorption rate constant (Kd) and the Sb residence lifetime (s) are given for two different temperatures. xs is the Ge
composition of the surface of the Si1�xGex layers measured by AES.



The Ge surface segregation has been estimated

for each sample using Auger intensity of Si (92 eV)

and Ge (1147 eV) transitions obtained before the

temperature ramp. For an homogeneous film
containing n atomic layers (for the surface n ¼ 1),

the measured Auger intensity (In) can be given by
the following formula [21]:

In ¼ I1 þ aI1 þ a2I1 þ � � � þ an�1I1 ¼
1� an

1� a
I1 ð6Þ

with a ¼ exp
�1

k cosðxÞ

� �
ð7Þ

where a is the attenuation parameter, k is the in-
elastic mean free path (IMFP) of electrons (in

monolayer units) and x is the emission angle of

Auger electrons. The IMFP of Si (92 eV) and Ge

(1147 eV) transitions are 0.47 and 1.68 nm re-

spectively [22], which gives aSi ¼ 0:65 and aGe ¼
0:88 in our experimental conditions (x ¼ 48�).
The Ge segregation is assumed to take place

only in the surface monolayer, and the sub-surface
layer probed by AES is assumed to be a homo-

geneous Si1�xGex layer (IMFP	 Si1�xGex layer

thickness). Then the ratio between the AES in-

tensity of Ge (IGe) and Si (ISi) peaks measured on a
same sample can be expressed as:

IGe

ISi
¼

IGesegð2Þ þ IGeSiGeð3! kGex Þ
ISisegð2Þ þ ISiSiGeð3! kSix Þ

ð8Þ

IGesegð2Þ and ISisegð2Þ are the respective AES intensities
of Ge and Si coming from the surface monolayer,

covered by 1 ML of Sb, in which Ge atoms have

segregated. IGeSiGeð3! kGex Þ and ISiSiGeð3! kSix Þ are

the respective AES intensities of Ge and Si coming
from the Si1�xGex sub-surface layer delimited by

the atomic plan number 3 and the last plan probed

(kGex and kSix are the IMFP of electrons emitted by
Ge and Si respectively in a homogeneous Si1�xGex
film). The atomic fraction of an element in an

homogeneous alloy can be measured by compar-

ing AES signals emitted by the alloy and by a pure

layer of this element with same thickness. Then if
one defines xs and x as the Ge concentration in the
surface monolayer (covered by 1 Sb ML) and in

the sub-surface layer, it comes:

IGesegð2Þ
IGeGe ð2Þ

¼ xs;
ISisegð2Þ
ISiSi ð2Þ

¼ 1� xs

IGeSiGeð3! kGex Þ
IGeGe ð3! kGex Þ

¼ x;
ISiSiGeð3! kSix Þ
ISiSi ð3! kSix Þ

¼ 1� x

ð9Þ

with IGeGe ð2Þ and ISiSi ð2Þ the AES intensity emitted

by pure Ge and Si surface monolayers covered

by 1 ML Sb respectively and IGeGe ð3! kGex Þ and
ISiSi ð3! kSix Þ the respective AES intensity emitted

by a pure Ge layer and a pure Si layer located

between the atomic plane number 3 and kx. Then

Eqs. (8) and (9) give:

IGe

ISi
¼ xsIGeGe ð2Þ þ xIGeGe ð3! kGex Þ

ð1� xsÞISiSi ð2Þ þ ð1� xÞISiSi ð3! kSix Þ
ð10Þ

xs ¼
IGe

ISi ISiSi ð2Þ þ ð1� xÞISiSi ð3! kSix Þ
� �

� xIGeGe ð3! kGex Þ
IGe
ISi I

Si
Si ð2Þ þ IGeGe ð2Þ

� �
ð11Þ

For the calculation of the IMFP of electrons

having an energy E in Si1�xGex (k
E
x ) a linear rela-

tion between Si and Ge is used:

kE
x ¼ ð1� xÞ kSi

ESi
E þ x

kGe

EGe
E ð12Þ

with kSi ¼ 3:46 ML and kGe ¼ 12 ML. Using Eq.

(6), the AES signals measured for the pure Si

sample and the 3 ML thick pure Ge layer allow the

calculation of ISiSi ð2Þ and IGeGe ð2Þ, which permit the
calculation of ISiSi ð3! kSix Þ and IGeGe ð3! kGex Þ for

Fig. 3. Desorption rate constant (Kd) as a function of the Ge

content (x) for the investigated samples. Inset shows the vari-

ation of the corresponding Sb desorption energy (Ed).



each sample (x ¼ 0:05, 0.1, 0.2). Then using Eq.

(11), the Ge concentration located at the surface of

the samples was measured and reported in Table 2.

The Ge LMM AES cross-section is 2–3 times less

intense (with a 3 keV incident energy electron)
than the Si LMM signal, reducing the intensity

ratio to �1% for the bulk signals. A Ge concen-

tration of 5% in Si is close to the limit of sensitivity

of AES, so we have neglected the signal coming

from the sub-surface (n > 2) with respect to the

signal coming from the surface (n ¼ 2) for the

sample with x ¼ 0:05:

x0:05s �
IGe

ISi ISiSi ð2Þ þ ð0:95ÞISiSi ð3! kSi0:05Þ
� �

IGe
ISi I

Si
Si ð2Þ þ IGeGe ð2Þ

� � ð13Þ

The results indicate that, due to Ge surface

segregation during growth, samples with Ge sur-

face concentration (xs) higher than the bulk Ge

concentration were obtained. Note that our ex-

periments exhibit a lower Ge surface segregation

than the one measured by Jernigan et al. [23] or
predicted by Zheng et al. [24] who found 1 ML of

Ge at the surface even for x ¼ 0:05. The Ge surface
concentration depends on the growth temperature,

the growth rate, the thickness and the Ge bulk

concentration of the SiGe layers. In our growth

conditions about 1 ML of Ge has been segregated

during the growth of the 28 nm thick Si0:8Ge0:2
layer (xs ¼ 0:81). This explains the quasi superim-
position of the TD-AES peaks of the two Si1�xGex
layers with x ¼ 0:2 and 1 and their close activation
energies of desorption.

Fig. 4 shows the variation of the Sb desorption

energy (Ed) versus the Ge surface concentration
(xs) measured by AES. From xs � 0:2 to 1, Ed
varies linearly with xs displaying the direct rela-
tionship between the Sb monolayer desorption
temperature and the concentration of Ge atoms

segregated to the surface. As previously stated,

surface segregation being a homogeneous process

for two completely miscible elements, a homoge-

neous Ge distribution is expected at the surface

which can explain the observation of only one

desorption peak, and the linear variation of the Sb

desorption energy versus xs for a given adsorption
state. This is the case in the range of 0:26 xs6 1,
which illustrates a variation related to a change of

bonding energy but not of adsorption site or ad-

sorption configuration. On the contrary, Fig. 4

shows that in the range of 06 xs6 0:2 the change
of Ed as a function of xs is abrupt, which can be
more easily attributed to a phase transition of the

Sb adsorption state (change of adsorption site or

adsorption configuration) due to a critical Ge

surface concentration (xcs). One can notice that this
critical Ge surface concentration is close to the

percolation threshold (Ge atoms homogeneously

distributed on the surface having another Ge atom
as a nearest neighbour). xcs can be interpreted as
the limit between a surface behaviour driven by Si

(06 xs6 0:2) and a surface behaviour driven by Ge
(0:26 xs6 1), within each regime a linear variation
of the Sb adsorption energy versus the Ge surface

concentration. This interpretation is in agreement

with the experimental results of Barnett et al. [3]

and Chan and Altman [11] who found that
the monolayer of Sb desorbs from the Si surface as

monomers (Sb1), and from the Ge surface as

dimers (Sb2). It has been shown that, at low tem-

perature (T < 600 �C), the Sb adsorption config-
uration on both Si(0 0 1) [25,26] and Ge(0 0 1)

surfaces [27–31] is dimers. But calculations [32]

evidenced that the Sb–Sb bonding energy of the Sb

dimer is lower than the four other Sb–Si bonds
which explains the dissociation of the Sb dimers on

the Si(0 0 1) surface at a lower temperature than

the desorption temperature. It was also shown that

Sb–Ge bonds are weaker than the Sb–Si bonds,

Fig. 4. Sb desorption energy versus the Ge surface composition

(xs) of the SiGe layers measured by AES.



and that the energy barrier for the dissociation of

Sb dimers is lower on Si (0.39 eV/dimer) than on

Ge (0.53 eV/dimer) [33]. In consequence, we can

expect that the Sb–Sb bond of the Sb dimer on

Ge(0 0 1) is stronger than the Sb–Ge bonds. This

explains why Sb desorbs from the Ge surface as
dimers. One can notice that if we extrapolate to

xs ¼ 0 the data of Fig. 4 using Eq. (5) for

0:26 xs6 1, we obtain a Sb dimer adsorption en-
ergy equal to 2.89 eV on Si(0 0 1), and thus a dif-

ference of Sb adsorption energy between Si and

Ge, for the dimer configuration, equal to 0.15 eV.

This result is in agreement with calculations made

by Jenkins and Srivastava [17] who predict that,
for the dimer configuration, the Sb–Si bonds are

0.1 eV stronger than the Sb–Ge bonds.

4. Conclusion

AES technique was used to study the Sb ther-

mo-desorption from Si1�xGex layers (with x ¼ 0,
0.05, 0.1, 0.2 and 1) grown by MBE on Si(1 0 0)

substrates. We have shown that Sb desorption

kinetic from Si1�xGex is well described using a first-

order reaction and that Sb is less bound to the Ge

surface than to the Si one. We quantified by AES

the Ge surface segregation which takes place dur-

ing the growth of the SiGe layers. We have ob-

served two regimes: the first one (06 xs6 0:2)
where Ed as a function of Ge surface coverage

varies rapidly and the second one (0:26 xs6 1)
where Ed decreases linearly.
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