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Abstract. Book embeddings generalize planar embeddings to a space
formed by several half-planes sharing their boundary. While several mea-
sures on planar graphs allow to define treewidth-bounded classes of pla-
nar graphs, no such results exist for book embeddings. Indeed, many
of these measures rely on the notion of exteriority that cannot be sim-
ply generalized to books due to their complex topology. In this paper,
we first propose a notion of exteriority for book embeddings, and then,
define an outerplanar-like measure: a book embedding is k-outeredge if
the distance from its edges to the outside is at most k. We exhibit a
large class of k-outeredge book embeddings that is treewidth-bounded
by Ω(2k) and O(pk), for a fixed number p of half-planes. The lower bound
comes from a nice connection with formal verification results.

1 Introduction

1.1 Context

Book embeddings [1,2] (also called stack layouts) generalize planar graphs to
more than one plane. A p-book is a topological space that consists of p half-
planes, called pages, glued together along their boundary, called spine. A graph
is embedded in a book if every vertex is drawn on the spine and every edge
is wholly drawn on a single page without crossing another edge. The study of
book embeddings has been motivated by several areas of computer science as
VLSI theory, multilayer printed circuit boards and sortings with parallel stacks.
In these contexts, a well-studied problem consists in embedding a graph into a
book using a minimum number of pages [1,3,4,5].

Another typical problem in graph theory is to determine an upper bound on
the treewidth of a class of graphs [6,7]. Loosely speaking, the treewidth measures
how far a graph is from a tree. It is often used as a parameter in the parametrized
complexity analysis of graph algorithms. Also, it plays an impo,rtant part in for-
mal verification for the model checking of monadic-second-order (MSO) formulas
on graphs through Courcelle’s classic theorem [8]. Several classes of planar graphs
are known to have bounded treewidth when they have a bounded radius, width
(or gauge), depth or outerplanarity (see [9,6]). All these measures describe in a
different way the maximum distance from vertices (or faces) of a planar graph
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to the outer face. Such an important result states that k-outerplanar graphs are
treewidth-bounded by 3k − 1 [6].

In this paper, we aim to give a similar result for classes of book embeddings.

1.2 Motivation and application

Identifying classes of book embedding with bounded treewidth (or other related
parameters such as the bandwidth or the size of a separator of a graph [10,11])
is of great interest in computational theory. We give here some examples.

Classes of book embeddings, called p-page graphs and p-pushdown graphs
[12], naturally arise as computation graphs of Turing machines. This observation
was used as early as 1986 for proving that 3-pushdown graphs (or k-page graphs)
have sublinear separators if, and only if, a one-tape nondeterministic Turing
machine can simulate a two-tape machine in subquadratic time [13]. This result
constitutes the first example where a graph problem is shown to be equivalent
to a problem in computational complexity. Other results in the same spirit can
be found in [14,15].

Another interesting line of research concerns the identification of restricted
classes of multi-pushdown automata with a decidable emptiness problem [16,17,18]
and [19,20,21,22]. Proving that the computation graphs of these machines are
treewidth-bounded classes of multi-nested words [23] (multi-nested words are
close to multi-pushdown graphs of degree 3 in [14]), the authors of [24] give a
general proof for most of these decidability results through Courcelle’s classic
theorem.

A substantial and tedious part of the proof of [24] consists in determining an
upper bound on the treewidth of each subclass of multi-nested words involved by
each considered restriction on multi-pushdown machines. Interestingly, several
of these subclasses are multi-outeredge covered-spine book embeddings that we
define in this paper, and for which we bound the treewidth. This suggests that
our result can be helpful as it turns a treewidth calculation problem into an
inclusion problem that we believe easier. As a concrete example, we prove that k-
phases nested words are particular k-outeredge covered-spine book embeddings.

1.3 Overview and main results

In Sec. 2 we recall basic notions on graphs and book embeddings. The three next
sections present the two main contributions of this paper:

A notion of exteriority for the book topology Outerplanarity-like measures gen-
erally rely on a notion of exteriority in the considered topology. For books, this
notion cannot be easily extended from that of the planar case. For instance,
contrary to the planar case, we cannot define the exterior (or the outer face) as
the unbounded connected component of the complement of the book embedding,
since there is often only one connected component.

In Sec. 3, we introduce a face-like notion for book embeddings called regions.
A cycle ρ of an embedding splits each half-plane of the book into connected
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components that we call facets. The regionR enclosed by ρ is a suitable collection
of facets that defines a bounded and connected space ”delimited” by ρ. A point
of the book is internal if it belongs to a region of the book embedding. A vertex
or an edge of the embedding is internal if it consists of internal points. At the
end of Sec. 3, we define the k-outeredge measure, which is a variant of the k-
outerplanarity based on the external edges of a book embedding. This constitutes
the first important contribution of this paper.

A treewidth-bounded subclass of k-outeredge book embeddings Contrary to the
class of k-outerplanar graphs, the class of k-outeredge book embeddings is not
treewidth-bounded. In Sec. 4, we define the covered-spine property, which re-
quires that all internal spine points of a book embedding G are vertices or be-
long to edges of G. We prove that any graph G with degree d that admits a
k-outeredge covered-spine p-book embedding has a treewidth at most 3

2d(p−1)k

(Theorem 17). The computation of this upper bound follows a technical and
non trivial adaptation of the method used in [6] for planar graphs. This result is
the second main contribution of this paper. We improve it in Sec. 5 by proving
that any graph that admits a k-outeredge covered-spine p-book embedding is the
minor of a graph with degree 3 that admits a (k + 1)-outeredge covered-spine
p-book embedding . Thereby, we get a new bound that no longer depends on the
degree (Theorem 35).

As mentioned above, the class of multi-outeredge covered-spine book-embeddings
is large enough to include several known restrictions of multi-nested words.
In particular, we show in Sec. 6 that k-phase nested words are particular k-
outeredge covered-spine book-embeddings. From this connection, a lower bound
on the treewidth in Ω(2k) (Theorem 45) is established. It is noteworthy that our
lower bound comes from a decidability result on multi-pushdown automata [17].
This way, this paper sets another bridge between book embeddings and com-
putational theory. Finally, in the discussion of Sec. 7, we show why our outer
measure relies on external edges rather than on external vertices.

2 Preliminary definitions

2.1 Graph, minor, planarity and treewidth

As usual, a graph G is a structure (V,E) where V is a finite set of vertices and
E ⊆ V ×V is a set of edges. Throughout this paper, we consider undirected and
simple graphs only, i.e. E is symmetric and irreflexive. The degree of a vertex v
of G is the number of edges incident to v. The degree of G, denoted by deg(G),
is the maximum degree of its vertices. A (simple) path in G is a finite sequence
α = (v0, v1, . . . , vn) of pairwise distinct vertices of G such that (vi, vi+1) ∈ E
for all 0 ≤ i ≤ r − 1. If v0 = vr, then α is called a (simple) cycle. A forest is
a simple cycle-free graph and a tree is a connected forest. A subgraph of G is a
graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. A forest T = (V,E′) is a maximal
spanning forest of G if T is a subgraph of G such that, for all e ∈ E − E′, the
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graph (V,E′ ∪ {e}) is no longer a forest. A graph G is a minor of a graph G′

if G is obtained from G′ by a series of vertex deletions, edge deletions or edge
contractions, where an edge contraction means merging two adjacent vertices
v and w (so, all vertices adjacent to v and w become adjacent to the merged
vertex). Clearly, any subgraph of G is also a minor of G.

A tree decomposition of a graph G is a tree T with a family (Vw)w∈W of
subsets of vertices of G satisfying the following properties: (i) Every node of G
belongs to at least one Vw; (ii) For every edge e = (v, v′) of G, there is a subset
Vw containing both v and v′; (iii) If Vw and Vw′ contain a vertex v of G, then
for all nodes w′′ on the (unique) path from w to w′ in T , Vw′′ contains v as well.
The width of a tree decomposition is the size of its largest set Vw minus one. The
treewidth tw(G) is the minimum width among all possible tree decompositions
of G. The treewidth of a class C of graphs is tw(C) = max{tw(G) | G ∈ C}. Note
that the treewidth of a tree is 1.

The following well-known result gives a connection between the notions of
minor and treewidth.

Proposition 1 (see e.g. [6]). If a graph G is a minor of a graph G′, then
tw(G) ≤ tw(G′).

A planar embedding of a graph G is a drawing of G in the plane such that
its edges intersect at their endpoints only. A face is a (topological) connected
component of the complement of (the drawing of) G. The outer face is the
unique unbounded face of the embedding. A vertex or an edge is external if it is
on the boundary of the outer face. Otherwise it is internal. A planar embedding
is (1-)outerplanar if all its vertices are external; it is k-outerplanar if deleting
all the external vertices gives a (k − 1)-outerplanar embedding. Outerplanar
embeddings have been widely studied in the literature. In particular, it is proved
in [6, Theorem 83] that every graph that admits a k-outerplanar embedding has
treewidth at most 3k−1. The reader can refer to [25] for a complete introduction
to graph theory.

2.2 Book embedding

Book embeddings were introduced by Kainen and Ollmann [1,2]. We slightly
generalize their definition, allowing edges to be drawn on the spine. This gen-
eralization preserves the major existing results, in particular those dealing with
the minimal number of pages (called book thickness) required to embed a graph
in a book [3,4,5].

Definition 2. An embedding of a graph G in a book B is a representation
(drawing) of G in B, in which vertices are associated to points of B and edges
are associated to simple arcs in such a way that:

1. all its vertices are drawn on the spine at distinct points;
2. the endpoints of the arc associated to an edge (v, v′) are the points associated

to v and v′;
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3. an arc is either wholly drawn on the spine (such an edge is called a spine
edge), or else wholly drawn on a single page (such an edge is called a page
edge). In the latter case only the endpoints belong to the spine;

4. an arc includes no point associated with vertices, except at its endpoints;
5. two arcs in the same page can intersect only at their endpoints.

A subembedding of an embedding of a graph G is the embedding of a subgraph
G′ of G obtained by erasing from the embedding of G all the vertices and all the
arcs that are not in the subgraph G′.

Throughout this paper, we consider embeddings with at least two pages. We
suppose that the spine, denoted by `, is endowed with a natural linear order <
on the points of `. When an embedding of a graph G = (V,E) is fixed, we use
an abuse of language and notation and we identify G with its book embedding.
In this way, v ∈ V (resp. e ∈ E) refers to both a vertex (resp. an edge) of G and
its associated point (resp. arc) in the embedding. We denote by xe and ye the
endpoints of an edge e in the embedding, and always suppose that xe < ye. Let
e◦ denote the arc e− {xe, ye} in B. Similarly, a simple path π of G is identified
with the corresponding curve in B. We often write e ⊂ π to mean that the arc
e is a part of the curve π.

Let G = (V G, EG) be a graph embedded in a p-book. The set of edges E
can be partitioned into the set EGS of spine edges and the set EGP of page edges.
Clearly, page edges drawn on a same half-plane Bi are either nested, or sit next
to each other. This is described by the nesting relation @G⊆ EG×EG: given two
distinct edges e1, e2 ∈ EG, we write e2 @G e1 if (1) xe2 ≤ xe1 < ye1 ≤ ye2 and,
(2) either e1 is a spine edge, or e1 and e2 are drawn on the same page. We write
e2@·Ge1 whenever e2 @G e1 and there is no edge e3 such that e2 @G e3 @G e1.
By definition, if e2 @G e1 then e2 is not a spine edge. The nesting level nlG(e)
of a page edge e ∈ EGP is the cardinality of {e′ ∈ EGP | e′ @G e}. The nesting
level of a spine edge is not defined.

The notion of facets in a half-plane is similar to that of faces in the planar
case.

Definition 3. Let G be an embedding in B. A facet of G on page i is a bounded
maximal connected component of Bi−G. The facet of a page edge e, denoted by
FGe (or Fe when no confusion arises), is the unique facet of G whose boundary
includes e and all edges e′ such that e@·Ge′.

Observe that any facet of G is the facet FGe of a page edge e. We extend the
nesting level to facets: nlG(Fe) = nlG(e).

Example 4. Fig. 1-(a) depicts a 3-book embedding G. Vertices are sorted out
along an horizontal line, which acts as the spine `. Spine edges are drawn with
horizontal straight lines. Page edges are drawn with filled, dotted or dashed arcs.
Two arcs drawn with the same style are in the same page. The page where filled
(resp. dotted, dashed) edges are drawn is called the filled (resp. dotted, dashed)
page.
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In G, we have e1@· e4, e@· e1, e@· e2 and e@· e3. So, nl(e) = 0, nl(e1) =
nl(e3) = 1 and nl(e4) = 2. The nesting level of e2 is not defined because it is a
spine edge. Fig. 1-(b) depicts the subembedding obtained from G by erasing e1,
e2 and their common vertex. In this subembbeding, the nesting level of e4 is 1.

In Fig. 1-(c), we have coloured in grey the facet FGe . Observe that its bound-
ary includes the edges e, e1, e2 and e3, plus some pieces of the spine (here the
pieces between the two leftmost vertices and between the two rightmost vertices).

e

e4

e1

e2

e3

(a) G

e

e4
e3

(b) G′

e

e4

e1

e2

e3

(c) The facet FGe

e

e4
e3

(d) The facet FG
′

e

Fig. 1. Examples of a 3-book embedding G (a) and of a subembedding G′ of G (b).
Two facets of e are depicted in grey, one w.r.t. G (c), and the other w.r.t. G′ (d).

Example 4 highlights the fact that the boundary of a facet generally contains
points of the spine. Hence, facets are generally neither open nor closed. We define
the frontier as the part of the boundary that intersects the embedding.

Definition 5. Let G = (V,E) be an embedding in B. Let S be a subset of B. The
frontier of S w.r.t. G, denoted by frG(S), is defined by frG(S) = bd(S)∩

⋃
e∈E e,

where bd(S) refers to the (topological) boundary of S.

Fontiers can be easily computed from facets.

Lemma 6. Let G be a book embedding, e be a page edge and S be a set of facets
of G. Then

frG(Fe) = e ∪
⋃

e@·Ge′
e′ and frG(

⋃
F∈S

F ) =
⋃
F∈S

frG(F ).

When no confusion arises, we omit the superscript G from the above defini-
tions.
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3 An outerplanar-like measure for book embeddings

For planar embeddings, outerplanarity is usually defined by deleting external
vertices. An alternative measure can be defined by deleting all external edges
rather than vertices. These two measures coincide when considering planar em-
beddings of degree 3 (see [6, Sec. 11.1]). For higher degrees, it is well known that
every k-outerplanar graph is a minor of a k-outerplanar graph with degree at
most 3.

In this section, we define an outerplanar-like measure for book embeddings,
called the outeredge measure. It corresponds to peeling a book embedding by
the ”external” edges. The alternative measure where we peel ”external” vertices
rather than edges is discussed in Sec. 7. Naturally, we first define in Sec. 3.2
what ”external” means in our setting. Our definition uses the concept of regions
that we introduce hereafter.

From now on, we fix a p-book B with p half-planes B1, . . . ,Bp.

3.1 Regions

Consider a planar embedding G. A curve ρ of G (namely, the representation of a
cycle of G) splits the plane into two maximal connected sets of points with ρ as
the boundary. Exactly one of the two is bounded. We denote it by Rρ. A point
x of the plane is internal (with respect to the embedding G) if there is a curve
ρ of G such that x belongs to Rρ.

Following this approach, we define the internal/external points of a book
embedding G. However, unlike the planar case, B −G generally consists of one
maximal connected set (consider for instance a curve drawn on two pages of a
3-book). We overcome this problem by building from a cycle ρ of G a particular
(non-maximal) bounded connected set Rρ of B, called region, that has ρ as
frontier. The region Rρ is built from facets of the subembedding ρ of G by
selecting, on every page, one facet out of two with respect to @ρ.

Definition 7. Let G be a book embedding. The region Rρ of a simple cycle ρ of
G is the union of facets of the subembedding ρ having an even nesting level in
ρ.

Observe that a region Rρ of an embedding G relies on the drawing of ρ only.
Thus, the region Rρ is the same for any two embeddings sharing the same
subembedding ρ.

Example 8. Examples of regions are coloured in grey in Fig. 2-(a-d). The 3-book
embedding represented in Fig. 2-(a) is a simple cycle. It has a single region that
is the union of all the facets of even nesting level, namely Fe, Fe4 , Fe5 and Fe6 .
The 3-book embedding of Fig. 2-(b-d) reveals three cycles ρ1, ρ2 and ρ3 depicted
by bold lines. They involve three regions Rρ1 , Rρ2 and Rρ3 of G built from the
facets of the subembeddings ρ1, ρ2 and ρ3, respectively. This is why two vertices
and one edge of G − ρ3 appear inside Rρ3 in Fig. 2-(c). Also, observe that the
boundary of Rρ1 includes a piece of the spine (between the third and the fourth
vertices). Thus, a region is generally neither open nor closed.
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e

e4

e5

e6

(a) G has only one region (b) Cycle ρ1 and Rρ1 (c) Cycle ρ2 and Rρ2

(d) Cycle ρ3 and Rρ3

Fig. 2. Illustration of regions. Each region (painted in grey) is built from a cycle of the
graphs by picked out a suitable set of facets in the subbembedding representing this
cycle (depicted in bold). This is carried out regardless of the vertices and the edges
that are not in the cycle.

Interestingly, regions have almost the same topological properties as faces.
First, like faces, a region Rρ defines a set of points whose the frontier is the
curve ρ.

Proposition 9. Let G be a book embedding and ρ be a simple cycle of G. Then,
fr(Rρ) = ρ.

Proof. Without loss of generality, we can assume that G consists of ρ only,
because Rρ is built from the subembedding ρ without regarding the other edges
of G. In this case, fr(Rρ) ⊆ ρ. Let us prove that e ∈ fr(Rρ) for all edges e of
the cycle ρ. We distinguish two cases, according to whether e is a page edge or
a spine edge.

Suppose that e is a page edge. If nl(e) is even, then Fe ⊆ Rρ by Definition 7,
and e ∈ fr(Fe) ⊆ fr(Rρ) by Lemma 6. If nl(e) is odd, then there exists a unique e′

of ρ such that e′@· e and nl(e′) = nl(e)−1 is even. Then Fe′ ⊆ Rρ by Definition 7,
and e ∈ fr(Fe′) ⊆ fr(Rρ) by Lemma 6.

Suppose that e is a spine edge. Since ρ is a simple cycle, then ρ−e is a simple
path between the endpoints of e. This path necessarily uses an odd number of
page edges e′ ∈ ρ such that e′ @ e. Therefore, there is a page with an odd
number of page edges e′ on this page such that e′ @ e. Among these edges, we
select the one that also satisfies e′′@· e and we denote it by e′′. Clearly, e′′ has
an even nesting level, so Fe′′ ⊆ Rρ by Definition 7, and e ∈ fr(Fe′′) ⊆ fr(Rρ) by
Lemma 6.

Note that Rρ is generally not the unique union of facets of ρ whose frontier is ρ
(see Fig. 2). However if we consider embeddings that do not use all pages (this is
not a restriction, since we can add an empty page to B without modifying Rρ),
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then Rρ is the unique set of facets such that the frontier of B − (Rρ ∪ ρ) is ρ.
Besides, regions are bounded and connected, although not maximal. (see A for
technical details). This suggests that Definition 7, which may seem somewhat
arbitrary, is relevant since it confers on regions the same properties as faces in
planar graphs.

3.2 Exteriority and outeredge book embeddings

Definition 10. Let G be a book embedding.

– A point x of B is internal in G if there is a simple cycle ρ in G such that
x ∈ Rρ.

– A vertex v of G is internal in G if v is an internal point in G.
– An edge e of G is internal in G if some point of e◦ is internal (we recall that
e◦ denotes the set of points of e minus its extremities).

– A point, a vertex, an edge or a face that is not internal in G is called external
in G.

Note that if an edge e is internal, then every point of e◦ is also internal.

Remark 11. Consider the book embedding in Fig. 3. This embedding has three
cycles : ρ1 = 12361, ρ2 = 12541 and ρ3 = 1452361. The vertices 4 and 5, and
the edge (2, 5) are internal because they are in region Rρ1 . The vertex 3 and the
edge (2, 3) are internal because they are in region Rρ2 . The edge (1, 2) is internal
because it is in region Rρ3 .

1 2 3 4 5 6

this vertex is external

these edges are internal these vertices are internal

this edge is external

Fig. 3. Example of internal and external edges and vertices in a 3-book embedding.
Unlike planar embedding, the endpoints of an external edge can be internal, and all
the incident edges of an external vertex can be internal.

Remark 11 and Fig. 3 show that a vertex can be external (here 2) whereas
all its incident edges are internal. Also, an edge (here (4, 5)) can be external
whereas its two endpoints are internal. This differs from planar graphs. It is not
hard to prove that such a situation is possible for page edges only.

Proposition 12. Let e = (x1, x2) be a spine edge of a book embedding G. If x1
or x2 is internal, then e is internal.
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Proof. If xi is internal, then there are a cycle ρ of the embedding G and a facet
F ∈ Rρ such that xi ∈ F . Moreover xi cannot be a point of ρ. It follows that
the spine edge e cannot be part of ρ. Therefore, e◦ ⊂ F , namely e is internal.

We can now formally define the outeredge measure.

Definition 13. Let G be a book embedding. G is (1-)outeredge if all its edges
are external. It is k-outeredge (k > 1) if deleting all the external edges gives a
(k − 1)-outeredge embedding.

For technical reasons, we often iteratively delete some external edges rather
than all external edges.

Definition 14. Let G be a book embedding. A k-peeling of G is a sequence
p = (G0, . . . , Gk) of k + 1 book (sub)embeddings such that G0 = G, Gk is a
maximal spanning forest of G, and for all i ∈ {0, . . . , k − 1}, Gi+1 is obtained
from Gi by removing some external edges of Gi.

In particular, any forest has a 0-peeling. A k-peeling p = (G0, . . . , Gk) of a graph
G = (V,E) can be fully defined by a labelling: lp : E → {0, . . . , k} such that: for
all i ∈ {0, . . . , k− 1}, lp(e) = i if e is an external edge removed from Gi to Gi+1;
and lp(e) = k if e ∈ Gk.

Clearly, any book embedding that admits a k-peeling is k+1-outeredge. The
converse property is not trivial because we have to determine which edges to
peel to get a maximal spanning forest. As a consequence, the proof requires
showing that peeling some external edges rather than all edges does not affect
the remaining regions (and then the set of external edges) at each step of the
peeling process.

Proposition 15. Any book embedding that admits a k-peeling is (k+1)-outeredge.
Any k-outeredge book embedding admits a k-peeling.

Proof. The first proposition is obvious since a forest is 1-outeredge. We prove
the second one by using an induction on k. Let G be a k-book embedding.

Base case. If G is 1-outeredge then all its edges are external and p = (G,T ) is
a 1-peeling of G for any maximal spanning forest T of G (G = T if G is already
a forest).

Inductive step. Suppose that G = (V,E) is k-outeredge. Then the sube-
mbedding G′1 = (V,E′1) obtained by removing from G all the external edges
is (k − 1)-outeredge. By induction hypothesis, G′1 admits a (k − 1)-peeling
p′ = (G′1, . . . , G

′
k). Let M be a maximal set of edges of E − E′1 that can be

added to G′k without creating cycles. We prove that p = (G0, G1, . . . , Gk) is a
k-peeling of G, where G0 = G and each Gi (i 6= 0) is the graph G′i enriched by
all the edges of M .

By construction, Gk is a maximal spanning forest of G. So, it remains to
prove that each Gi+1 (0 ≤ i ≤ k−1) is obtained by deleting some external edges
from Gi. This is clearly true for i = 0. For i ≥ 1, we prove that the set of cycles
of Gi consists of cycles of G′i only: thus regions in Gi and regions in G′i are the
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same, which implies that external edges in G′i are still external in Gi. To do this,
we show by contradiction that no cycle of Gi involves an edge of M . Suppose
that such a cycle ρ exists. Then ρ can be written as a concatenation of paths
(x0, y0) ·ζ0 ·(x1, y1) · · · ζm−1 ·(xm, ym) where ym = x0 and, for all j, (xj , yj) ∈M
and ζj is a path of G′i from yj to xj+1. Since G′k is a maximal spanning forest
of G′1 and since G′i is a subgraph of G′1, there exists also a path ζ ′j from yj to
xj+1 in G′k. Then,(x0, y0) ·ζ ′0 ·(x1, y1) · · · ζ ′m−1 ·(xm, ym) is a cycle (not necessary
simple) of Gk. This contradicts the fact that Gk is a forest.

4 Treewidth of k-outeredge covered-spine book
embeddings

The class of k-outeredge p-book embeddings does not have bounded treewidth
(that is, for all t ≥ 0, there is a k-outeredge p-book embedding G such that
tw(G) > t). Indeed, every grid n × n has treewidth in Θ(n) [6, Lemma 88].
However, it admits a 2-outeredge 3-book embedding (see Fig. 4). In this section,
we introduce the class of covered-spine embeddings and show its treewidth can
be bounded by a function of the outeredge measure.

(1,1) (1,2) (1,3) (1,4)

(2,4)(2,3)(2,2)(2,1)

(3,1) (3,2) (3,3) (3,4)

(4,4)(4,3)(4,2)(4,1)

(1,1) (1,2) (1,3) (1,4) (2,4) (2,3) (2,2) (2,1) (3,1) (3,2) (3,3) (3,4) (4,4) (4,3) (4,2) (4,1)

Fig. 4. Embedding a 4 × 4 grid into a 3-book embedding. All the dotted edges are
external. Removing them turns the embedding into a forest. Then the embedding is
2-outeredge.
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Definition 16. A p-book embedding is covered-spine if for every internal point
x of the spine, x belongs to the embedding (namely, x is a vertex, or there is a
spine edge e such that x ∈ e◦).

The covered-spine property is a property of the embedding. It does not imply
that every pair of consecutive vertices on the spine is an edge of the graph. On
the other hand, an embedding G is not necessarily covered-spine whenever every
pair of consecutive vertices is an edge of G. Such an embedding is depicted in
Fig. 4. The latter is not covered-spine because the points of the spine between the
vertices (2, 4) and (2, 3) are internal and they do not belong to the embedding.
For instance, the book embeddings of Fig. 2, 3, 4, 5-(b) and 6-(b) are not covered-
spine whereas those of Fig. 5-(a) and 6-(a) are.

We can now express the main result of this paper.

Theorem 17. Let G be a k-outeredge covered-spine p-book embedding of degree
d ≥ 3. Then

tw(G) ≤ 3d
2 (p− 1)k if p ≥ 3,

tw(G) ≤ dk + 1 if p = 2.

Roadmap of the proof The rest of this section is dedicated to the proof of Theo-
rem 17. Similarly to [6], it is based on the concept of fundamental cycles that we
introduce now. Let G = (V,E) be a graph and T = (V,ET ) be a maximal span-
ning forest of G. For any E′ ⊆ E, we denote by T ⊕ E′ the graph (V,ET ∪ E′)
and we simply write T ⊕ e when E′ is a singleton {e}. Let e be an edge of
E − ET . The fundamental cycle of e with respect to T , denoted by ρ(e), is the
unique cycle in T ⊕ e. The edge remember number er(G,T ) of G relative to T is
maxε∈ET

|{e ∈ E − ET | ε ∈ ρ(e)}|.
Theorem 18 shows how edge remember number and treewidth are strongly

interrelated.

Theorem 18 ([6]). Let T be a maximal spanning forest of a graph G. Then,
tw(G) ≤ 1

2 deg(G) · er(G,T ) + 1.

Let G = (V,E) be a k-outeredge covered-spine p-book embedding and p =
(G0, . . . , Gk) be a peeling of G with associated labelling l. By definition of the
peeling, Gk is a maximal spanning forest of G. For readability, we denote it by
T . Note that T is also a maximal spanning forest of each Gi. We write G − T
to refer to the graph or the subembedding obtained from G by removing all
edges that belong to T (we also remove the remaining vertices without incident
edges). Moreover, Ei denotes the set of external edges removed from Gi to Gi+1.
Trivially, T ⊕

⋃
i<k Ei equals to G0, and every edge in Ei is external in T ⊕ Ei

(0 ≤ i < k). It follows that each Gi is a subembedding of Gi−1 containing at
least all internal edges of Gi−1.

We aim to compute the edge remember number er(G,T ), and then to apply
Theorem 18. For this purpose, we prove that for all edges ε of T , all fundamental
cycles in T that pass through ε can be arranged into a p-ary tree of height k
(each node corresponding to a fundamental cycle), called the edge remember tree
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of ε. Thus, the edge remember number er(G,T ) simply matches to the maximum
number of nodes in such trees.

The proof of Theorem 17 is organised as follows. In Sec. 4.1, we discuss good
properties of covered-spine book embeddings. One of them provides a simple
characterisation of internal edges that is very useful. However, it is important
to stress that for any e ∈ G − T , T ⊕ e is generally not covered-spine. Then
this characterisation cannot be applied anywhere along the proof, which adds
some technical difficulties. In Sec. 4.2, we introduce the notion of fundamental
facets from which we define the parent function of edge remember trees (see
Definition 26). At last, we compute the number of nodes of these trees in Sec. 4.3,
which leads to the result.

4.1 Good properties of covered-spine book embeddings

Interestingly, the frontier of an internal facet (namely a facet that consists of
internal points only) of a covered-spine book embedding is always a cycle.

Proposition 19. Let FG be a facet of a covered-spine book embedding G. If
there is a simple cycle ρ of G such that FG ⊆ Rρ then fr(FG) is a simple cycle
of G.

Proof. By contradiction, suppose that FG ⊆ Rρ and fr(FG) is not a cycle. Then
there is a point h ∈ bd(FG) of the spine that does not belong to G. Moreover,
h ∈ FG ⊆ Rρ, that is, h is internal. This contradicts that G is covered-spine.

It results a new characterisation of internal edges in terms of facets rather
than regions.

Proposition 20. Let G be a covered-spine book embedding. An edge e is internal
if, and only if, there exist two distinct facets F1 and F2 in G such that fr(F1)
and fr(F2) are simple cycles, and e ∈ fr(F1) ∩ fr(F2).

Proof. If statement: Suppose that F1 = FGe1 for some page i and some page edge
e1 ∈ EGi distinct from e (if e = e1 then swap F1 and F2). Since fr(F1) and fr(F2)
are simple cycles of G that go through e (by hypothesis), there is a simple cycle
ρ in G that uses a subset of edges of fr(F1) ∪ fr(F2) only, and that contains e1
but not e (since: either F2 = FGe and e and e1 are drawn in the same page; or e
is a spine edge and F1 and F2 are on distinct pages). Clearly, nlρ(e1) = 0 and
then F ρe1 ⊆ R

ρ. In addition e◦ is included in F ρe1 , and hence e is internal.
Only if statement: Suppose now that e is internal: there is a simple cycle ρ and

a facet F ρe1 in the (sub)embedding ρ such that e◦ ⊆ F ρe1 ⊆ R
ρ. We distinguish

two cases depending on whether e is a page edge or not. If e is a page edge,
we have necessarily that FGe ⊆ F ρe1 ⊆ R

ρ because ρ is a subembedding of G,
In addition, there is e′@·Ge (e′ can be e1) such that FGe′ ⊆ F ρe1 ⊆ R

ρ. Clearly,
e ∈ fr(FGe ) ∩ fr(FGe′ ) and from Proposition 19, fr(FGe ) and fr(FGe′ ) are simple
cycles.

Otherwise e is a spine edge not used in ρ, and since e◦ ⊆ F ρe1 ⊆ R
ρ, we have

that e1@· ρ⊕ee (ρ⊕e is the embedding that consists of ρ plus the edge e) and that
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nlρ(e1) is even. This means that the number of page edges e′ @ρ⊕e e on the same
page i as e1 is odd. However the total number (on both pages) of page edges e′

such that e′ @ρ⊕e e is even because ρ is a cycle. Therefore there is another page
edge e2 on some page j 6= i such that e2@· ρ⊕ee and nlρ(e2) is even. This means
that e◦ ⊂ F ρe2 ⊆ R

ρ. Since ρ is a subembedding of G, there exist also in G two
facets with e in their frontier, one included in F ρe1 and the other included in F ρe2 .
By Proposition 19, the frontiers of these two facets are cycles.

Proposition 20 can be slightly refined: a page edge of a covered-spine embed-
ding cannot be on the frontier of two distinct facets of the same region.

Proposition 21. Let ρ be a simple cycle of a covered-spine book embedding G
and e be an edge of ρ. If there exist two distinct facets F1 and F2 of G such that
F1, F2 ⊆ Rρ and e ∈ fr(F1) ∩ fr(F2), then e is an internal spine edge of G.

Proof. Suppose that e is a page edge. Then the facets F1 and F2 are actually
FGe and FGe′ with e′@·Ge. Since ρ is a subgraph of G and since e ∈ ρ, we have
that FGe ⊆ F ρe and FGe′ ⊆ F

ρ
e′′ for some e′′@· ρe. By definition of Rρ, F ρe and F ρe′′

cannot both be included in Rρ. Therefore, FGe and FGe′ cannot both be included
in Rρ as well, which contradicts the hypothesis. So e is a spine edge, and from
Proposition 19, fr(F1) and fr(F2) are simple cycles of G. Then Proposition 20
implies that e is an internal spine edge.

At last, the covered-spine property is preserved by peelings.

Lemma 22. If G is covered-spine and p = (G0, G1, . . . , Gk) is a k-peeling of G,
then each Gi is covered-spine.

Proof. By induction on i. For i = 0, G0 is covered-spine by hypothesis. Suppose
that Gi−1 is covered-spine and let x be an internal point of the spine in Gi. Then
x is also an internal point in Gi−1 and, moreover, it belongs to a spine edge e
of Gi−1. Using Proposition 12 or Definition 10 depending on whether x is an
endpoint of e or not, we get that e is internal in Gi−1. Consequently, e is still an
edge of Gi.

4.2 Fundamental facets and edge remember trees

From now on, we fix a k-outeredge covered-spine p-book embedding G and a
peeling p = (G0, . . . , Gk) of G with associated labelling l. We set T = Gk.
We first introduce the fundamental facets of the edges of G − T relative to the
maximal spanning forest T . Thereafter, we sort fundamental cycles out in edge
remember trees in order to count them. The construction of these trees relies on
fundamental facets.

Consider an edge e of G − T and the associated subembedding T ⊕ e (see
Fig. 5 for an example). The unique cycle of T ⊕ e is the fundamental cycle ρ(e),
which defines the region Rρ(e). Since ρ(e) is a subembedding of T ⊕ e, some
facets of T ⊕ e are included in Rρ(e). Only one of them, called the fundamental
facet of e, has e in its frontier.
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Lemma 23. Let e ∈ G− T . Exactly one facet of T ⊕ e is included in Rρ(e) and
includes e in its frontier.

Proof. We prove that such a facet exists. By Proposition 9, e is included in
the frontier of Rρ(e). From Definition 7 and Lemma 6, there is a facet F of
the embedding ρ(e) included in Rρ(e) whose frontier includes e. Since ρ(e) is a
subembedding of T ⊕ e, there is also a facet F ′ of T ⊕ e included in F (and then
in Rρ(e)) whose frontier includes e.

Next we prove the uniqueness. Let i = l(e). By construction, e is external in
Gi. By hypothesis, G is covered-spine, so Gi is too (by Lemma 22). The cycle
ρ(e) exists in Gi because it exists in the subembedding T⊕e of Gi. Consequently,
Proposition 21 implies that there exists at most one facet F in Gi included in
Rρ(e) whose frontier includes e. Since T ⊕ e is a subembedding of Gi, there is
also at most one facet in T ⊕ e included in Rρ(e) whose frontier includes e.

Definition 24. Let e ∈ G− T . The fundamental facet F (e) is the unique facet
of T ⊕ e that is included in Rρ(e) and whose the frontier includes e.

Examples of fundamental facets can be found in Fig. 5 and 6. It is worthwhile to
recall here that, although G is covered-spine, T ⊕e is generally not. For instance,
the subembedding T ⊕ e of Fig. 5-(b) is not covered-spine because there is no
spine edge between the third and the fourth vertices (from the left). In Fig. 5,
we can see that every edge of G− T included in the region Rρ(e) carries a label
greater than that of e. This fact can be generalized in Lemma 25.

Lemma 25. Let e1, e2 ∈ G− T . If e◦1 ⊂ F (e2) then l(e1) > l(e2).

Proof. Let i = l(e2). By construction, e2 was removed from Gi to Gi+1. This
means that the cycle ρ(e2) exists in Gi. By Definition 24, F (e2) ⊆ Rρ(e2). Thus
e1 is internal in Gi and l(e1) > i.

We now explain how we sort fundamental cycles out in edge remember trees.
For each edge ε of T , we define a tree whose nodes are the edges e in G−T whose
fundamental cycle ρ(e) uses ε. The parent of a node e in the tree is another node
whose corresponding edge is included in the fundamental facet F (e).

Definition 26. Let ε be an edge of T . An edge remember tree of ε is a tree
structure (Nε ∪ {ε}, fε) where Nε = {e ∈ G − T | ε ⊆ ρ(e)} and such that the
parent function fε : Nε → Nε∪{ε} fulfils, for all e ∈ Nε: if Ie = {e1 ∈ Nε | e◦1 ⊂
F (e)} 6= ∅, then fε(e) is a minimal (with respect to l) element of Ie; otherwise,
fε(e) = ε.

Generally, there are several edge remember trees for ε. Since all edge remember
trees of ε have the same number of nodes, we can choose any of these trees.
From now on, we fix an edge ε of T and an edge remember tree of ε denoted by
ERTε = (Nε ∪ {ε}, fε).
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0

0

1 3 1 1 2 1ε

e

(a) A 4-peeling p of G

ε

e

(b) Fundamental facet F (e) with respect to T p

Fig. 5. Example of a fundamental facet. Figure (a) depicts a 4-peeling p of an embed-
ding G with its associated labelling. Removing all labelled edges results the maximal
spanning forest T p. Figure (b) depicts the subembedding T p⊕e of G. The region Rρ(e)
of its unique cycle ρ(e) is painted in grey. The striped part of Rρ(e) is the fundamental
facet F (e) with respect to p. It is the facet of T p⊕ e that is included in Rρ(e) and that
has e in its frontier.

Example 27. Consider Fig. 6. The spanning tree T is obtained from the embed-
ding G of Fig. 6-(a) by the peeling defined by the labelling l : l(x) = 0 for all
edges x ∈ {b, c, e, f, g}, and l(x) = 1 for all edges x ∈ {a, d}. Figure 6-(c) depicts
an edge remember tree ERTε of ε associated to the peeling. Unlike edge c, the
edges a, b, d, e, f, g are nodes of Nε because their fundamental cycles go through
ε. The node d is the parent of e in ERTε because d is a minimal edge (with
respect to l) of ERTε included in the fundamental facet F (e). The nodes a, d
and f are the children of the root ε because their fundamental facets include no
node of ERTε.

4.3 Number of nodes of an edge remember tree and treewidth

As mention before, the edge remember number (and then the treewidth of G
through Theorem 18) actually matches the maximal number of nodes in the
edge remember trees. We show that ERTε is a p-ary tree of height at most k.

Lemma 28. ERTε is a tree of height at most k.

Proof. By definition, for any e1 ∈ Nε, if fε(e1) = e2 6= ε then e◦2 ⊂ F (e1), and
therefore l(e2) > l(e1) by Lemma 25. It follows there is no cycle in ERTε. Since
(1) every edge of Nε distinct from ε has an image by fε, (2) the range of labels
is {0, . . . , k}, and (3) only the root ε has label k (only edges of T are labelled by
k), ERTε is a tree of height at most k.



On exteriority notions in book embeddings and treewidth 17

a
b

c

d
e

f

g

ε

(a) An embedding G

eε

(b) The subembedding T ⊕ e of G

ε

a

b

d

e g

f

(c) ERTε

Fig. 6. Construction of an edge remember tree. (b) depicts the subembedding T ⊕ e
of the embedding G of (a). The fundamental cycle of e (in bold) goes through ε. The
region Rρ(e) is painted in grey and the fundamental facet F (e) is the striped part of
Rρ. The latter includes the edge d, whose fundamental cycle goes through ε as well. It
follows that e is a child of d in the edge remember tree ERTε (c).

We prove that every node e of ERT ε has at most p children by distinguishing
two cases depending on whether e is ε or not. Suppose that e 6= ε. By definition,
if two nodes e1 and e2 have the same parent e, then e ⊂ F (e1) and e ⊂ F (e2).
This means that the fundamental facets F (e1) and F (e2) intersect one another.
If moreover F (e1) and F (e2) are on the same page, then Lemma 29 implies that
either e1 or e2 is a page edge. This fact will be used in Lemma 30 to precisely
compute the number of children of e.

Lemma 29. Let e1, e2 be two distinct nodes of Nε. Suppose that F (e1) and
F (e2) are on the same page, and that F (e1) ∩ F (e2) 6= ∅. Then one, and only
one, of the next statements holds: either e◦1 ⊂ F (e2) and e1 is a page edge; or
e◦2 ⊂ F (e1) and e2 is a page edge.

Proof. Suppose that F (e1) and F (e2) are on the half-plane Bi. If e◦1 ⊂ F (e2) and
e◦2 ⊂ F (e1), then Lemma 25 implies that l(e1) > l(e2) and l(e2) > l(e1), which
is impossible. Suppose now that e◦1 6⊂ F (e2). Then F (e2) ∪ e2 is a connected set
of points of Bi− (T ⊕ e1). Since F (e1)∩F (e2) 6= ∅ and F (e1) is a facet of T ⊕ e1
(that is, a maximal connected set of points of Bi−(T ⊕e1)), we have e◦2 ⊂ F (e1).

Finally we prove by contradiction that e2 is a page edge. Suppose that e2
is a spine edge. Then F (e2) is a facet FT⊕e2e in T ⊕ e2 where e is some page
edge of T . Now there are two cases: Either e1 is a page edge, but in this case
e @G e1 because F (e1) ∩ F (e2) 6= ∅; Or e1 is a spine edge, but in this case
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F (e2) = FT⊕e2e = (FT⊕e1e − e◦2) ∪ e◦1 because F (e1) ∩ F (e2) 6= ∅. In both cases,
this contradicts the fact that e◦1 6⊂ F (e2).

Lemma 30. Let e ∈ Nε. Then e has at most p− 1 children in ERTε.

Proof. We prove that if e has at least two children, then the fundamental facet of
e and those of its children are pairwise on distinct pages. Note that e 6= ε because
e ∈ Nε. Let e1, e2 ∈ Nε be such that fε(e1) = fε(e2) = e. From Definition 26,
we establish that:

Fact 1. e is a minimal edge of Nε (with respect to the label) such that e◦ ⊂
F (e1) ∩ F (e2).

Fact 2. F (e1) and F (e2) are on distinct pages: otherwise, from Lemma 29, e◦1 ⊂
F (e2) or e◦2 ⊂ F (e1), and using Lemma 25, we get l(e) > l(e2) > l(e1)
or l(e) > l(e1) > l(e2) which contradicts the minimality of e.

Now, suppose that F (e) and F (e1) are on the same page. By Fact 1 and 2,
e is necessarily on the spine. Since in addition e◦ ⊂ F (e1), we conclude that
F (e) ∩ F (e1) 6= ∅. Hence we get a contradiction to Lemma 29.

Remark 31. Suppose that e ∈ Nε is a page edge. The proof of Lemma 30 shows
that two children of e are on distinct pages. Since a page edge cannot be included
in two facets located on different pages, e has at most one child.

Suppose now that e = ε. The contraposition of Lemma 32 states that the
frontier of the fundamental facet of any child of ε includes ε. This will be useful
to bound the number of children of ε in Lemma 33.

Lemma 32. Let e ∈ Nε. If ε 6∈ frT⊕e(F (e)), then there is an edge e1 ∈ Nε with
e◦1 ⊂ F (e).

Proof. By definition of fundamental facets, F (e) ⊆ Rρ(e) is a set of internal
points. Since G is covered-spine, every spine point h ∈ F (e) is internal, and then
belongs to some spine edge eh of G. We denote by H the set of such spine edges
eh. Necessarily, every eh ∈ H does not belong to T (because, on one hand, the
fact that h is a point of F (e) implies that eh

◦ ⊆ F (e), and on the other hand,
F (e) includes no edge of T ⊕ e). So, ρ(eh) is well defined.

We prove by contradiction that there is at least one spine edge eh of H such
that ρ(eh) goes through ε, that is, such that eh belongs to Nε. Suppose that it
is not the case. Then the path that consists of the frontier of F (e) in T ⊕ e, plus
the paths ρ(eh) − eh for all eh ∈ H form together a fundamental cycle for e in
T ⊕e that does not use ε (when H = ∅, the fundamental cycle is simply fr(F (e)),
which does not use ε by hypothesis). So we have two fundamental cycles for e
in T ⊕ e (the first is ρ(e) which goes through ε), which is impossible.

Lemma 33. The root ε has at most p children in ERTε.
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Proof. Suppose that ε has p+1 children e0, . . . , ep in ERTε. Then by Lemma 32,
ε is on the frontier of F (ei) for all i ∈ {0, . . . , p}. Since p ≥ 2 (a book has at
least two pages), there are at least three such facets. It follows that ε must be
on the spine. Since in addition there are only p pages, two of these fundamental
facets, saying F (e0) and F (e1) are on the same page and intersect one another.
Then Lemma 29 yields that e◦0 ⊂ F (e1) or e◦1 ⊂ F (e0), which contradicts the
fact that e0 and e1 are both children of ε (see Definition 26).

Thus, any edge remember tree is a p-ary tree of height at most k. Since
the edge remember number is closely related to the number of nodes of edge
remember trees, we can prove our main result (Theorem 17): the treewidth of a
k-outeredge covered-spine p-book embedding G of degree d ≥ 3 is bounded by
3d
2 (p− 1)k if p ≥ 3, and by dk + 1 if p = 2.

Proof of Theorem 17. By Proposition 15, G admits a k-peeling p. We denote
by T the maximal spanning forest associated to p. Clearly, the size of the biggest
edge remember tree ERTε, where ε ranges over edges of T , precisely corresponds
to the edge remember number of G, plus 1 (the root is not a fundamental cycle).
From Lemmas 28, 30 and 33, we get that the number of nodes in ERTε is
bounded by

1 + p
p−2 ((p− 1)k − 1) ≤ 3(p− 1)k if p ≥ 3,

2k + 1 if p = 2.

Then the result immediately follows from Theorem 18.

5 Treewidth of book embeddings with high degrees

Theorem 17 states that the treewidth of a k-outeredge covered-spine p-book em-
bedding G of degree d ≥ 3 is bounded by 3d

2 (p − 1)k when p ≥ 3. This upper
bound depends on the degree of the graph. For graphs with high degree (com-
pared to p), we can improve this bound using the connection between treewidth
and minors of Proposition 1. It is known that any graph G is the minor of a
3-degree graph G′ that admits a 3-book embedding. This holds because every
graph is a minor of a graph with degree at most 3 and, moreover, every graph
has a 3-book subdivision [26]. Contrary to Proposition 34, this result does not
guarantee that G′ has a covered-spine embedding. In addition, it does not take
into account the outeredgeness at all.

Proposition 34. Every graph that admits a k-outeredge covered-spine p-book
embedding is the minor of a graph with degree at most 3 that admits a (k + 1)-
outeredge covered-spine p-book embedding.

Consequently, applying Theorem 17 together with Proposition 1 immediately
yields a new bound that no longer depends on the degree. This new bound is
better than the previous one when the degree is greater than 3(p− 1).

Theorem 35. Let G be a k-outeredge covered-spine p-book embedding. Then

tw(G) ≤ 9
2 (p− 1)k+1 if p ≥ 3,

tw(G) ≤ 3(k + 1) + 1 if p = 2.
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The rest of this section is devoted to the proof of Proposition 34. We first
describe a procedure M that builds from the embedding G a book embedding
M(G) of degree 3. Then, we show that the graph G is a minor of the graph
M(G), and that the embedding M(G) is covered-spine and (k + 1)-outeredge
whenever the embedding G is covered-spine and k-outeredge.

The procedure M Let us consider a book embedding G0 = (V0, E0) given in
input. Procedure M proceeds as follows. While there exists a vertex v of degree
d > 3 in Gi (with i initialized to −1) do (see Fig. 7):

Step 1. Increase i by 1 and set Gi+1 := Gi. Let x1, . . . , xn, y1, . . . , ym be all
vertices of Gi+1 adjacent to v. We suppose that xn < . . . < x1 < v <
y1 < . . . < ym (with respect to the order of the spine `). Since d > 3,
there are at least two edges adjacent to v that go to the same direction
(on the left or on the right). We set z1 = x1 and z2 = x2 if these two
edges go to the left, otherwise z1 = y1 and z2 = y2.

Step 2. Erase (z1, v) and (z2, v) from Gi+1; Insert a new vertex v̄ on the spine
between v and the first neighbour of v on the same side as z1, and add
a new spine edge ē = (v, v̄).

Step 3. For each i ∈ {1, 2}, there are two cases : If (zi, v) was a spine edge of
Gi, then draw a new spine edge (zi, v̄) in Gi+1; If ei = (zi, v) was a page
edge of Gi, then draw in Gi+1 a new page edge ēi = (zi, v̄) on the same
page as ei in such a way that, for all edges e present in both Gi+1 and
Gi, e@·Gi+1 ēi whenever e@·Giei and ēi@·Gi+1e whenever ei@·Gie.

Clearly the procedure ends. The output M(G0) is the last book-embedding built
by the procedure.

. . . . . .
xn x2 x1 v y1 y2 ym

. . . . . .
xn x2 x1 v̄ v y1 y2 ym

Fig. 7. Reducing the degree of a vertex v while keeping the covered-spine property and
the outeredgeness.

We suppose that Procedure M ends after m iterations and that (Gi =
(Vi, Ei))i≤m are the graphs built along Procedure M . From now on, we fix
0 ≤ i < m. According to Procedure M , for some vertex v ∈ Vi of degree strictly
higher than 3, we have Vi+1 = Vi ∪ {v̄} and Ei+1 = (Ei − {(z1, v), (z2, v)}) ∪
{(z1, v̄), (z2, v̄), ē}. By construction, Gi results from the edge contraction of (v, v̄)
in Gi+1.

Lemma 36. Gi is a minor of Gi+1.
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We show that, if Gi is covered-spine and k-outeredge then Gi+1 is too. This
relies on how regions of Gi are connected to regions of Gi+1. We start with some
technical definitions and lemmas. Let σ be a surjective map from Vi+1 to Vi
defined by σ(x) = x if x 6= v̄; otherwise σ(v̄) = v. We extend it to a bijective
map from Ei+1 − {ē} to Ei: σ(x, y) = (σ(x), σ(y)).

Fact 37 For all vertices x, y ∈ Vi+1, x ≤ y iff σ(x) ≤ σ(y).
For all edges e1, e2 ∈ Ei+1 − {ē}, e1 @Gi+1 e2 iff σ(e1) @Gi σ(e2).

We denote by Φi+1 the set of all simple cycles ρ in Gi+1 such that, if v and v̄
are two vertices of ρ, then ρ goes through ē = (v, v̄). We can extend σ to a map
from Φi+1 to cycles of Gi as follows: for all ρ = (v1, . . . , vr, v1) ∈ Φi+1,σ(ρ) = (σ(v1), . . . , σ(vi), σ(vi+2), . . . , σ(vr), σ(v1))

if (vi, vi+1) = ē for some i ∈ [1, r − 1] ;
σ(ρ) = (σ(v1), . . . , σ(vr), σ(v1)) otherwise.

Lemma 38. Let x be a point of the spine not between v and v̄. If ρ is a cycle
of Φi+1, then x ∈ Rρ iff x ∈ Rσ(ρ).

Proof. We prove the only-if-implication only, the proof of the if-implication being
very similar. Let us suppose that x ∈ Rρ. Then there is a page edge e1 of ρ such
that x ∈ F ρe1 and nlρ(e1) is even (by definition of Rρ). Since e1 is a page edge,
e1 6= ē. So, σ(e1) is well defined and is part of σ(ρ). Moreover, x belongs to the

facet F
σ(ρ)
σ(e1)

because of Fact 37 and x is not between v and v̄. Fact 37 also implies

that one iteration of Steps 1-7 preserves the nesting level of edges (with respect

to a cycle of Φi+1), that is, nlρ(e) = nlσ(ρ)(σ(e)) for any page edge e of ρ. So

nlρ(e1) = nlσ(ρ)(σ(e1)), which implies that nlσ(ρ)(σ(e1)) is even. Consequently,

x ∈ Fσ(ρ)σ(e1)
⊆ Rσ(ρ).

Next we define two functions π1 and π2 that map every cycle of Gi+1 onto
Φi+1 as follows. If ρ belongs to Φi+1, then π1(ρ) = π2(ρ) = ρ. Otherwise, ρ
can be rewritten as (v, v1, . . . , vi, z1, v̄, z2, vi+1, . . . , vr, v), and we set π1(ρ) =
(v, v1, . . . , vi, z1, v̄, v) and π2(ρ) = (v̄, z2, vi+1, . . . , vr, v, v̄) (z1 and z2 are the
vertices of Step 1 in Procedure M). Fig. 8 illustrates these projections.

v v̄

(a) ρ and its region

v v̄

(b) π1(ρ) and its region

v v̄

(b) π2(ρ) and its region

Fig. 8. Projection of a cycle onto cycles of Φ by π1 and π2.
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Lemma 39. Let x be a point of the spine not between v and v̄. If ρ is a simple
cycle of Gi+1, then x ∈ Rρ implies that either x ∈ Rσ(π1(ρ)) or x ∈ Rσ(π2(ρ)).

Proof. If x ∈ Rρ then x ∈ F ρe0 for some page edge e0 ∈ ρ such that nlρ(e0) is
even. Clearly, e0 is either an edge of π1(ρ) or an edge of π2(ρ). Suppose that e0
is an edge of π1(ρ) (the case where e0 is an edge of π2(ρ) is symmetric). Since

π1(ρ) is a subembedding of ρ, F ρe0 ⊆ F
π1(ρ)
e0 . We distinguish two cases depending

on the parity of nlπ1(ρ)(e0). If nlπ1(ρ)(e0) is even, then x ∈ Fπ1(ρ)
e0 ⊆ Rπ1(ρ) by

Definition 7, and the result holds by Lemma 38.
Otherwise nlπ1(ρ)(e0) is odd. For ρ′ ∈ {ρ, π1(ρ), π2(ρ)}, we denote by #ρ′(e)

the number of page edges e′ in ρ′ such that e′ @ρ
′
e0. Using this definition, we

get that #ρ(e0) is even and #π1(ρ)(e0) is odd. Since ρ = π1(ρ)∪π2(ρ)−{ē} and
π1(ρ) ∩ π2(ρ) = {ē}, we have #ρ(e0) = #π1(ρ)(e0) + #π2(ρ)(e0). Consequently,
#π2(ρ)(e0) is odd and, since π2(ρ) is a cycle, there exists a page edge e′ in π2(ρ)
such that e′ @ρ e0. We choose such an edge with the greater nesting level and

denoted by e1. Then nlπ2(ρ)(e1) is even and x ∈ F ρe0 ⊆ F
π2(ρ)
e1 ⊆ Rπ2(ρ). The

result holds by, Lemma 38.

Lemma 40. If Gi is covered-spine, then Gi+1 is too.

Proof. Let x be an internal spine point of Gi+1. If x is between v and v̄, then x
belongs to ē. Otherwise, x is also an internal spine point of Gi by Lemma 39. So x
belongs to a spine edge of Gi because we have supposed that Gi is covered-spine.
Then, by construction of Gi+1, x still belongs to an edge of Gi+1.

From now on, we suppose that Gi is covered-spine. Then Gi+1 is also covered-
spine by Lemma 40. Consequently, we can use Proposition 20 to determine
whether an edge is external or not. Let peel be the function that maps a book
embedding to a new book embedding obtained by removing all the external
edges. We write peel j the map obtained by j compositions of peel .

Lemma 41. Let j ≥ 0. If there is a cycle in peel j(Gi+1) then there is a cycle
in peel j(Gi).

Proof. First we prove by induction on j the next property:
(P) : Let e 6= ē be an edge of Gi+1 and j be a positive integer. If e is an edge

of peel j(Gi+1) then σ(e) is an edge of peel j(Gi).
For j = 0, we have peel0(Gi+1) = Gi+1 and peel0(Gi) = Gi. Then the result

trivially holds since σ is a bijection from Ei+1 − {ē} to Ei.
Inductive case (j > 0). Let e ∈ Ei+1−{ē} be an edge in peel j(Gi+1). Since e

is in peel j(Gi+1), e is an internal edge in peel j−1(Gi+1). By Proposition 20, there
exist two facets F1 and F2 such that e ∈ fr(F1)∩fr(F2) and, fr(F1) and fr(F2) are

simple cycles of Φ. Let e1 and e2 be the page edges such that F1 = F
peelj−1(Gi+1)
e1

and F2 = F
peelj−1(Gi+1)
e2 . Using the induction hypothesis and the fact that σ

maps cycles of Φi+1 to cycles in Gi, there are two facets F ′1 = F
peelj−1(Gi)
σ(e1)

and

F ′2 = F
peelj−1(Gi)
σ(e2)

whose frontiers are simple cycles such that σ(e) ∈ F ′1 ∩ F ′2.
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So by Proposition 20, σ(e) is internal in peel j−1(Gi), and is still an edge of
peel j(Gi).

As an immediate consequence of (P), if ρ is a cycle of peel j(Gi+1), then
σ(π1(ρ)) or σ(π2(ρ)) is a cycle of peel j(Gi).

Finally, we can prove that any graph that admits a k-outeredge covered-spine
p-book embedding G is a minor of a graph with degree at most 3 that admits
the k-outeredge covered-spine p-book embedding M(G).

Proof of Proposition 34. Let G0 be a k-outeredge covered-spine book embed-
ding. By Lemma 36, G0 is a minor of Gm, and by Lemma 40, the embedding Gm
is covered-spine. Since G0 is k-outeredge, peelk+1(G0) has no cycle (by Propo-
sition 15). By Lemma 41, that is the case for all peelk+1(Gi), i ∈ {1, . . . ,m}.
In particular, this means that all edges of peelk+1(Gn) are external. So Gm is
(k + 1)-outeredge (by Proposition 15).

6 A lower bound for the class of k-outeredge
covered-spine book embeddings

We denote by Cp,k the class of graphs that admit a k-outeredge covered-spine p-
book embedding. We prove that tw(Cp,k) = Ω(2k) for a fixed p. For this purpose,
we use results from automata theory and verification areas. Indeed, Theorem 3.11
from [24] states that the emptiness problem for p-stack pushdown automata (p-
PDA) is decidable in 2ETime when restricted to particular computation graphs:
the class Bp,k of k-phase p-nested words (the number of stacks p is fixed).

Theorem 42. [24] For k ∈ N, the emptiness problem for p-PDAs M restricted
to Bp,k is decidable in time |M |O(tw(Bp,k)).

The authors of [24] point out this result matches the 2ETime lower bound
for this problem given in [17]. Recall that 2ETime is the class of all decision

problems that can be solved by a deterministic Turing machine in time 22
dn

for
some constant d. This implies the following proposition.

Proposition 43. tw(Bp,k) = Ω(2k).

Multi-nested words [23] correspond to multi-pushdown graphs of degree 3 in
[14]. Formally, a p-nested word is a graph N = (V,E) where V is a finite set of
vertices, and E is a disjoint union of sets of edges L, E1, . . . , Ep such that

– L ⊆ V × V is a non-reflexive successor edge relation such that L∗ is a linear
ordering <L on the vertices of V ;

– for every 0 < j ≤ p, Ej is a nesting matching: for all u, u′, v, v′ ∈ V and
1 ≤ j′ ≤ p: if Ej(u, v) and Ej′(u

′, v′), then u, v, u′, v′ are all different; if
Ej(u, v) and Ej(u

′, v′) and u <L u
′, then either v <L u

′ or v >L v
′ holds.
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Intuitively, p-nested words capture the behaviours of runs of p-pushdown au-
tomata. A relation Ej corresponds to the matching push-pop relation on stack
j. Observe that every vertex of a nested word has at most one edge in both
Ej ’s. This means that a p-pushdown automaton cannot perform two push/pop
actions at the same time. In the following definition, a phase corresponds to any
sequence of actions on stacks such that all pops in the sequence are on the same
stack. A p-nested word N is k-phase if,

⋃
1≤j≤pEj can be partitioned into k sets

Phase1, . . . , Phasek such that:

– for all 1 ≤ i ≤ k, all edges in Phasei are in Ej for some 1 ≤ j ≤ p;
– for all 1 ≤ i < i′ ≤ k, if (v, w) ∈ Phasei and (v′, w′) ∈ Phasei′ , then w < w′.

There is a trivial embedding of a p-nested word N into a p-book: vertices are
drawn on the spine from left to right with respect to <L; the successor edges of
L are drawn on the spine; for every 1 ≤ j ≤ k, the nested edges of Ej are drawn
on page j. This embedding is covered-spine. We show that it admits a k-peeling
whenever N is k-phase.

Proposition 44. Any k-phase p-book nested word admits a k-peeling p-book
embedding.

Proof. Let G0 = (V,L, {Ej}0<j≤p) be a k-phase p-book nested word. Without
loss of generality, we suppose that V = {0, . . . , n− 1} where n is the number of
vertices in V , and that L = {(x, x + 1) ∈ V 2 | 0 ≤ x < n − 1}. We denote by
Phase1, . . . , Phasek the partition of

⋃
0<j≤pEj into k phases. We consider the

trivial embedding of G0 as described above and denote by pi the page associated
with Phasei. We prove the proposition by induction on k. The base case k = 1
is trivial: since every page edge is drawn on the page p1, G0 admits a 1-peeling.
For the induction step, we fix k > 1 and consider G1 to be the book embedding
built from G0:

– by removing all page edges e ∈ Phasek; (by definition of k-phase, all these
page edges are located on page pk);

– by removing, for all e = (x, y) ∈ Phasek, the spine edge (y−1, y). We denote
by S the set of spine edges thus removed.

Clearly, G1 = G0 − (Phasek ∪ S) is a (k − 1)-phase p-book embedding. By
induction, G1 admits a (k − 1)-peeling p′ = (G1, . . . , Gk). We prove that p =
(G0, G1 ∪ Phasek, . . . , Gk ∪ Phasek) is a k-peeling of G1 in six steps.

Any spine edge s ∈ S is external in G0. By construction, there is at most
one facet that includes s in its frontier. Hence, by Proposition 20, and since G0

is covered-spine, s is external.
G1 ∪ Phasek is covered-spine. The deletion of external edges preserves the

property of being covered-spine, then since G0 is covered-spine, G1 ∪ Phasek =
G0 − S is too.

Any edge e of Phasek is external in G1 ∪ Phasek. Since e = (x, y) is a page
edge, only two facets contain e in its frontier, whose one is FG1∪Phasek

e . However,
the frontier of FG1∪Phasek

e cannot form a cycle because, by construction, the
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spine edge (y−1, y) missed in G1∪Phasek. So we conclude using Proposition 20
and the fact that G1∪Phasek is covered-spine that e is external in G1∪Phasek.

Each Gi is covered-spine. Since any edge of Phasek is external in G1∪Phasek
and G1∪Phasek is covered-spine, so is G1. From Lemma 22, each Gi is covered-
spine.

Any external edge e in Gi is still external in Gi∪Phasek. Since Gi is covered-
spine, from Proposition 20 there is at most one facet F in Gi whose frontier
includes e and forms a cycle. In addition, F is also a facet of Gi ∪ Phasek. Any
facet of Gi ∪ Phasek that does not exist in Gi is of type FGi∪Phasek

e′ where
e′ = (x′, y′) ∈ Phasek. However, the frontier of such a facet cannot form a
cycle because, by construction, the spine edge (y′−1, y′) missed in Gi∪Phasek.
Therefore, we conclude using Proposition 20 that e is still external in Gi ∪
Phasek.

Gk ∪Phasek is a maximal spanning forest of G0. By definition of p′, Gk is a
maximal spanning forest of G1. Suppose that Gk ∪Phasek is not a forest. Then
there is a cycle in Gk ∪Phasek that necessary uses an edge of Phasek. Let x be
the smallest node such that there is an edge e = (x, y) of Phasek used by such
a cycle ρ. Consider π = ρ − e, since by construction, the spine edge (y − 1, y)
is not an edge of G1 ∪ Phasek, it is not in Gk ∪ Phasek too. Then the spine
edge (y, y + 1) is part of π. Consequently, in order to join x, π necessary passes
through an edge e′ = (x′, y′) on a page i 6= pk such that x′ < y < y′. This
contradicts the fact that G0 is k-phase.

To conclude: G1 ∪ Phasek is obtained from G0 by removing external edges
since edges of S are external in G0 and G1∪Phasek = G0−S; for i = 1, . . . k−1,
Gi+1 ∪ Phasek is obtained from Gi ∪ Phasek by removing external edges only
(since any external edge in Gi is still external in Gi ∪Phasek and p′ is a (k− 1)-
peeling); Gk ∪Phasek is a maximal spanning forest of G0. Then p is a k-peeling
of G0.

Proposition 44 together with Proposition 15 entail that Bp,k ⊆ Cp,k+1. Ap-
plying Proposition 43 leads to a lower bound on the treewidth of Ck,p.
Theorem 45. Let p ≥ 3 be a fixed integer, tw(Cp,k) = Ω(2k−1).

Remark 46. Note that authors of [24] have built a long proof to compute the
treewidth of a k-phase nested word (Lemma 3.10 in [24]). Proposition 44 together
with Theorem 35 gives another proof. This illustrates how our results can be
applied to the field of formal verification.

7 Discussion

Up to now, we have been interested in the outeredge measure (see Definition 13).
To end this paper, we discuss an alternative measure where vertices are peeled
rather than edges.

Definition 47. Let G be a book (or planar) embedding. G is (1-)outervertex if
all its vertices are external. It is k-outervertex (k > 1) if deleting all the external
vertices (and their adjacent edges) gives a (k − 1)-outervertex embedding.
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In planar graphs, the k-outervertex measure is usually called k-outerplanarity. It
trivially coincides with the k-outeredge measure for graphs of degree 3. We study
the relationship between the outeredge measure and the outervertex measure in
the setting of book embeddings. We start with a simple result that also holds
for the plane. It follows from the observation that, in the plane or a 2-book, a
vertex is external as soon as one of its incident edges is external. We recall that
this generally fails for book embeddings (c.f. Remark 11).

Proposition 48. A k-outeredge 2-book embedding is k + 1-outervertex.

Proof. Let G be a k-outeredge 2-book embedding. We use an induction on k.
Basis: For k = 1, every edge of G is external. Then every endpoint of an

edge is external too. So, removing all external vertices deletes all edges of G.
The resulting embedding is trivially 1-outervertex. By definition, this means
that G is 2-outervertex.

Inductive step (k > 1). Let G′ be the (k − 1)-outeredge embedding obtained
by removing all external edges. In a 2-book, every endpoint of some external
edge of G is external. So, removing external vertices gives a subembedding G”
of G′. Then, G′′ is at most (k − 1)-outeredge. By the induction hypothesis, G′′

is k-outervertex, which means that G is (k + 1)-outervertex.

The converse does not hold. Indeed, consider the covered-spine 2-book embed-
ding where the set of vertices is {1, 2, . . . , n}, the set of spine edges is {(j, j +
1) | 1 ≤ j < n}, the set of edges on the first page is {(1, j) | 2 < j ≤
n and j is even} and the set of edges on the second page is {(1, j) | 2 < j ≤
n and j is odd} (see Fig. 9-(a) for an example with n = 8). This embedding is
1-outervertex and n/2-outeredge.

v

(a) G is 2-outervertex and 4-outeredge

v

(b) M(G) is 4-outervertex and 4-outeredge

Fig. 9. Procedure M does not preserve the outervertex measure.

Proposition 48 fails as soon as we consider graphs with 3 pages.

Proposition 49. For all k > 2, there is a 3-book embedding of degree 3 that is
2-outeredge and k-outervertex.
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Proof. Let Cn be the 3-book embedding of degree 3 depicted in Figure 10. It
consists of 2n vertices 0, . . . , 2n− 1 ordered on the line from left to right, filled
edges (2i, 2i + 2)i∈[0,n−2] drawn on the first page, dashed edges (2i + 1, 2i +
3)i∈[0,n−2] drawn on the second page, and dotted edges (i, 2k− 1− i)i∈[0,n−1] on
the third page.

Clearly, filled edges and dashed edges are all external. Then Cn is 2-outeredge.
Note that the only external vertices of Cn are the leftmost and the rightmost
vertices. So Cn is not 1-outervertex. Removing these vertices (and the incident
edges) gives Cn−1. By induction, we get that Cn is exactly n-outervertex, C1

being trivially 1-outervertex.

(a) C2 (b) C3

v0 v2n−1

(c) Cn

Fig. 10. A 2-outeredge-bounded class that is not outervertex-bounded. In Cn, filled
edges and dashed edges are all external, whereas only vertices v0 and v2n−1 are external.

As already mentioned, Theorem 83 from [6] states that every k-outerplanar
embedding has treewidth at most 3k− 1. Such a result fails for k-outervertex p-
book embeddings since, for any n > 0, the n×n grid is the minor of a graph that
can be embedded in a 1-outervertex 3-book embeddings. For instance consider
the embedding of the grid 4 × 4 of Fig. 4. Each dotted edge ((i, j), (i, j + 1))
can be subdivided once into two edges ((i, j), xj) and (xj , (i, j + 1)) where xj is
a new vertex. The new vertices are drawn to the right of the embedding such
that xj′ < xj if j < j′. Their incident edges are drawn on the dotted page. This
embedding is 2-outervertex since removing all the xj ’s gives a forest.

In Theorems 17 and 35, we give upper bounds on the treewidth of k-outeredge
covered-spine book embeddings. We can ask whether such results exist for k-
outervertex covered-spine book embeddings. If we take a closer look at the proof
of [6, Theorem 83], we can see that it uses a peeling of the external edges rather
than external vertices. In this way, the author reduces the problem to k-outeredge
planar embeddings of degree 3. This is possible because: (1) every k-outerplanar
embedding is a minor of a k-outerplanar embedding with degree at most 3; (2) if
a k-outerplanar embedding has degree at most 3, then removing all its external
edges gives a (k − 1)-outerplanar embedding.

We think that the point (2) still holds for k-outervertex covered-spine book
embeddings but the proof seems very technical. Also, we can ask whether every k-
outervertex covered-spine book embedding is a minor of a k-outervertex covered-
spine book embedding with degree at most 3. That is, does there exist a similar
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result to Proposition 34? Procedure M presented in Sec. 6 does not work. As a
counterexample, the embedding M(G) in Figure 9 becomes 4-outervertex while
G is 2-outervertex only. The existence of such a procedure is open. The difficulty
is to preserve the covered-spine condition.
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A On topological properties of regions

In this section, we discuss about topological properties of regions as defined in
this paper. Let ρ be a book embedding that consists of a simple cycle. We have
already mentioned (see Proposition 9) that the frontier of the region Rρ is ρ.
However, Rρ is generally not the unique union of facets satisfying this property,
but it is the unique one whose the frontier of its complement is also ρ (see
Proposition 50, which actually holds when there exists a page without edge.
However, this restriction can always be supposed in this paper without loss of
generality). Furthermore, like regions surrounded by a curve in the plane, the
region Rρ is a bounded connected set (Lemma 51 and Proposition 52). This
suggests that our definition of regions, which may seem somewhat arbitrary, is
topologicaly relevant in the sense it confers on regions the same properties as
faces in planar graphs.

Proposition 50. Let S be a union of facets of a book embedding that consists
of a simple cycle ρ. If fr(S) = ρ and fr(B− (S ∪ρ)) = ρ then S = Rρ. Moreover,
the converse holds whenever a page of the book B is empty.

Proof. We recall that Rρ is the union of all facets Fe such that nlρ(e) is even.
We prove the contrapositive. Let us suppose that S 6= Rρ. Then, one of the
following cases holds:

Case 1. There are page edges e and e′ with e′@· e such that Fe and Fe′ are
included in S. Then, e ∩ fr(B − (S ∪ ρ)) = ∅.

Case 2. There are page edges e and e′ with e′@· e such that Fe and Fe′ are not
included in S. In this case, e ∩ fr(S) = ∅.
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Case 3. If cases 1 and 2 fail, then S necessarily collects all facets Fe such that
nlρ(e) is odd. In this case, for all edges e with nlρ(e) = 0, e ∩ fr(S) = ∅.

We show that the converse holds when a page Bi of the book contains no
page edge. Clearly, by construction of Rρ, every page edge e of the embedding
is also included in fr(B − (Rρ ∪ ρ)). Then, any neighbourhood of a point x of
any spine edge e meets B − (Rρ ∪ ρ) because it meets the empty page Bi. Also,
it trivially meets Rρ ∪ ρ. Consequently, x (and then the points of e) belongs to
the frontier of B − (Rρ ∪ ρ).

Lemma 51. Let ρ be a book embedding that consists of a simple cycle.
If all page edges have a null nesting level then Rρ is a connected set.

Proof. We prove this property by induction on the number of edges. We first
observe that Rρ =

⋃
e∈EP

Fe because all page edges have a null nesting level.
The basis case of a graph with only two edges is trivial. For the induction case,
let us consider x1 to be the smallest vertex drawn on the spine (w.r.t. the linear
order < defined over the points the spine). There are two edges e1 = (x1, x3) and
e2 = (x1, x2) such that x1 < x2 < x3 and e1 is not a spine edge. If the path from
x2 to x3 is fully drawn on the spine, then Rρ = F ρe1 ∪F

ρ
e2 is connected (with the

convention that Fe2 = ∅ if e2 is a spine edge). Else, since ρ is a cycle, there is a
page edge e = (x, y) (drawn on a different page than e1) with ]x, y[∩]x2, x3[ 6= ∅
and then Fe1 and Fe are connected. Finally, let ρ′ be the simple cycle obtained
from ρ by removing e1 and e2 and replace them by the edge e′ = (x2, x3) drawn
on the same page as e1. By induction, Rρ′ is a connected set including F ρe . Since

Rρ = F ρe1 ∪ F
ρ
e2 ∪ (Rρ′ − F ρ

′

e′ ), Rρ is also connected.

Proposition 52. Let ρ be a book embedding that consists of a simple cycle.
Then Rρ is a bounded connected set .

Proof. Clearly, Rρ is bounded since any facet is bounded. We define the nesting
level of a cycle ρ as the sum of the nesting levels of its page edges. We prove by
induction on the nesting level of ρ that Rρ is connected. The basis case results
from Lemma 51.

Suppose that the nesting level of ρ is w > 0. Then there is a page p with at
least two nested page edges. Let α0 = (x0, y0) and α1 = (x1, y1) be two page
edges drawn on page p such that α0@· ρα1, nlρ(α0) = 0 and nlρ(α1) = 1. We build
from ρ, α0 and α1 a new book embedding G as follows (see Fig. 11): remove α0

and α1; instead, draw two new page edges on p, e0 from x0 to x1 and e1 from
y0 to y1, in such a way that there is no edge e such that e @G e0 or e @G e1 in
G (more precisely, we do not add e0 (resp. e1) if x0 = x1 (resp. y0 = y1)).

By construction, nlG(e0) = nlG(e1) = 0. We can easily check that for the
other page edges e, drawn on page p

either nlG(e) = nlρ(e) or nlG(e) = nlρ(e)− 2. (1)

Clearly our construction has created at most two cycles ρ0 and ρ1 in G.
Each of them involves exactly one edge among e0 and e1. We suppose that ρi
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α0, 0

1

α1, 1

2

3 2

e0, 0

1

e1, 0

0

1 0

Fig. 11. Construction of a book embedding with a smaller nesting level

(when it exists) goes through ei, i < 2. By Eq. (1), each cycle ρi has a smaller
nesting level than ρ. Using the inductive hypothesis, each Rρi is connected.
Furthermore, nlρi(ei) = 0 because nlG(ei) = 0. It results that F ρiei ⊆ R

ρi , and
then F ρiei is connected to Rρi − F ρiei (2).

Now, according to Eq. (1) and from construction of G, we have Rρ = (Rρ1 −
F ρ1e1 )∪(Rρ2−F ρ2e2 )∪F ρα0

. By (2), and since we have clearly that FGei ∩` ⊆ F
ρ
α0
∩`

for i ∈ {0, 1}, all points of Rρi − F ρiei are also connected to F ρα0
. It follows that

Rρ is connected.


