

Clinical and preclinical imaging of hepatosplenic schistosomiasis.

Brice Masi, Teodora-Adriana Perles-Barbacaru, Monique Bernard, Angèle

Viola

► To cite this version:

Brice Masi, Teodora-Adriana Perles-Barbacaru, Monique Bernard, Angèle Viola. Clinical and preclinical imaging of hepatosplenic schistosomiasis.. Trends in Parasitology, 2020, 36 (2), pp.206-226. 10.1016/j.pt.2019.11.007 . hal-02412606

HAL Id: hal-02412606 https://amu.hal.science/hal-02412606

Submitted on 14 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Clinical and preclinical imaging of hepatosplenic schistosomiasis
2	
3	Brice Masi, Teodora-Adriana Perles-Barbacaru*, Monique Bernard and Angèle Viola*
4	
5	CNRS, Aix-Marseille Université, CRMBM, Faculté des Sciences Médicales et Paramédicales
6	la Timone, 27 boulevard Jean Moulin, Marseille, FRANCE.
7	
8	*Correspondence: angele.viola@univ-amu.fr (A. Viola) and teodora.perles-barbacaru@univ-
9	<u>amu.fr</u> (T. Perles-Barbacaru)
10	
11	Keywords: hepatosplenic schistosomiasis, liver fibrosis, portal hypertension, clinical
12	imaging, preclinical imaging, quantitative imaging methods
13	
14	Abstract
15	Schistosomiasis, a neglected tropical disease, is a major cause of chronic morbidity and
16	disability, and premature death. The hepatosplenic form of schistosomiasis is characterized by
17	hepatosplenomegaly, liver fibrosis, portal hypertension and oesophageal varices, whose rupture
18	may cause bleeding and death. We review currently available abdominal imaging modalities
19	and describe their basic principles, strengths, weaknesses, and usefulness in the assessment of
20	hepatosplenic schistosomiasis. Advanced imaging methods are presented that could be of
21	interest for hepatosplenic schistosomiasis evaluation by yielding morphological, functional and
22	molecular parameters of disease progression. We also provide a comprehensive view of
23	preclinical imaging studies and current research objectives such as parasite visualisation in
24	hosts, follow-up of host-immune response, and development of non-invasive quantitative

25 methods for liver fibrosis assessment.

26 Hepatosplenic schistosomiasis

27 Schistosomiasis, a waterborne helminthic disease is a major cause of chronic morbidity and 28 premature death in Africa, South America, South East Asia, and Middle East, whereas imported 29 cases have recently been on the rise in Europe. Schistosoma mansoni and Schistosoma 30 japonicum are the main causative agents of hepatosplenic schistosomiasis (HSS). Schistosome 31 eggs eliminated with mammalian excreta hatch in water and release miracidia that infect 32 specific intermediate host snails. The gastropods shed on cercariae that can penetrate the skin 33 of the human host. These larvae transform into schistosomulae, migrate to the venous 34 circulation, and differentiate into sexually mature worms [1, 2]. The eggs laid in the mesenteric 35 vessels (S. mansoni, S. japonicum) migrate to the gastrointestinal tract and the liver. The host immune response leads to egg encapsulation within layers of immune cells embedded in 36 37 extracellular matrix (ECM). Granuloma formation is a cause of chronic inflammation and fibrosis (Box 1) [1]. The diseases caused by S. mansoni and S. japonicum are divided in two 38 39 stages, the acute and chronic phases. The acute syndrome generally occurs in the first infection, in the first months after exposure. In the chronic phase, two main clinical forms of 40 41 schistosomiasis may occur, the hepatointestinal or the hepatosplenic disease [3].

42 The hepatosplenic complication occurs in less than 10% of patients, 5–20 years after infection 43 [4, 5], owing to chronic granulomatous inflammation in the liver, leading to severe fibrosis of 44 the portal system (Figure 1, Key Figure). Hepatomegaly is often an early sign of granulomatous inflammation [1, 6]. Fibrosis in HSS occurs with little hepatocellular damage unlike cirrhosis 45 46 (Box 1) [5, 7]. The major complication of liver fibrosis is portal hypertension (PH) (Box 1), which causes splenomegaly and esophageal, gastric, splenorenal, pancreaticoduodenal and 47 48 periumbilical varice formation. Esophageal varice bleeding is potentially fatal [1, 2, 5, 8]. Other 49 complications include anemia, thrombocytopenia, nephritic glomerulopathy, and pulmonary arterial hypertension with right heart failure [1, 2, 5, 8]. Liver dysfunction may occur in cases 50

51 of comorbidities (hepatitis, steatosis) (Box 1) [5] and in advanced-stage disease. HSS is 52 associated with a higher incidence of hepatocellular carcinoma [2]. The diagnosis of parasite 53 infection is generally based on fecal egg count (Kato-Katz technique) and requires sexually 54 mature worms. Rectal mucosa biopsy for egg detection is performed when infection is 55 suspected despite negative Kato-Katz tests. The diagnosis of HSS relies on clinical examination, liver biopsy and medical imaging. Changes in size and consistency of the liver 56 57 and the spleen can be detected at palpation and percussion. Biopsy, the standard diagnostic 58 technique is highly invasive and tissue sampling often inadequate to cover fibrosis 59 heterogeneity. Ultrasonography (USG, see Glossary) is currently the most widely used 60 technique to detect organomegaly and altered texture due to fibrosis [9, 10].

61

62 Overview of imaging modalities and applications to HSS

Imaging allows the assessment of HSS morbidity by diagnosing and staging fibrosis, evaluating 63 64 vascular complications, guiding surgical interventions, and monitoring response to treatment. Improving fibrosis diagnosis and staging, especially early and mild forms, with non-invasive 65 and quantitative methods is a major challenge in liver imaging, regardless of the cause of 66 67 fibrosis. Preclinical imaging studies are essential to better characterize specific morphologic 68 and functional changes linked to granulomatous inflammation. They are also required for the 69 development and validation of imaging methods with improved sensitivity to early fibrosis, and 70 for the identification of robust biomarkers translatable to the clinical setting.

This review provides an update on HSS imaging, covering clinical and research applications. After a methodological overview of abdominal imaging modalities, we discuss their utility in the diagnosis and follow-up of HSS. We describe multimodal approaches combining imaging techniques with **elastography** and the results obtained so far on HSS. We discuss the potential of advanced methods evaluated in the research setting that could take up the challenge of non-

invasive quantitative assessment of fibrosis severity and vascular dysfunction. We also provide the first synthesis of preclinical imaging studies and present the main lines of research including parasite visualization in hosts, follow-up of host-immune response, and development of noninvasive quantitative methods for HSS assessment.

80 Ultrasonography (USG)

USG is the first-line medical imaging examination for the non-invasive exploration of gastrointestinal and hepatic diseases (Table 1). Real-time imaging of parenchymal texture, vascular anatomy and haemodynamics allows fast clinical interpretation as well as guidance of interventional procedures and monitoring response to therapy.

85 Due to its portability and cost-effectiveness, USG is also the most-widely used radiologic method to diagnose HSS (Table 2). Although HSS caused by S. mansoni and S. japonicum 86 share common features, differences in fibrotic lesions have been described such as the 87 "mosaics" formed by echogenic septa [11-14] in S. japonicum infection. The need for fibrosis 88 89 scales specific for HSS and standardized USG methods for schistosomiasis exploration led to 90 consensus guidelines. The landmark Niamey classification specific for the mansonian disease includes scores for liver parenchymal patterns, periportal fibrosis and PH [15]. Granulomatous 91 92 inflammation is described as pattern B or "starry sky" (Figure 1) because of diffuse echogenic spots. Fibrosis along portal sub-branches is described in pattern C as "rings" and "pipestems" 93 depending on the viewing angle, and as "bull's eye" on cross-sections with an anechogenic 94 95 portal vein surrounded by echogenic fibrous tissue. Fibrosis can also be localized around the 96 portal vein bifurcation as "ruff" (pattern D). USG permits to measure fibrosis thickness of second order branches, of the gallbladder as well as ruff thickness. In advanced forms, patches 97 98 form around the hepatic portal vessels for pattern E and extend to the liver periphery as "Bird's 99 claw" for pattern F. Combinations of patterns are possible (e.g. iDb, Dc, Ec). PH is evaluated by measuring portal vein diameter, second order branch dilation, splenic vein diameter and by 100

detecting varices. Volumetric assessment of the liver is possible with newer USG systems.
Spleen enlargement and texture (homogenous or granular) can be evaluated. Ascites, masses
such as cancers (pattern Z) or haemangioma can be detected. The differential diagnosis between
cirrhosis and schistosomiasis is complicated by the presence of intraparenchymal fat (*e.g.*alcoholic and non-alcoholic steatosis) resulting in hyperechogenicity of the parenchyma. In this
case, pattern Y is assigned. Systemic varices and portal vein thrombosis can be detected by
analysing blood flow using Doppler ultrasound.

108

109 *Computed tomography (CT)*

110 **CT** is widely used to explore diffuse or focal digestive diseases (Table 1). There are few CT studies on liver fibrosis [16]. Analysis of texture features from CT images enables staging of 111 fibrosis throughout the liver, but is less accurate in case of heterogeneous fibrosis and 112 considered inferior to ultrasound transient elastography (TE, FibroScan®) [17]. PH can be 113 114 diagnosed by portal vein and mesenteric vein dilation, varices and organomegaly detectable 115 with a single rapid scan. Repeated scanning during injection of mainly tri-iodinated benzene 116 ring-containing contrast agents (CA) allows identification of arterial, venous and perfusion 117 phases with the potential to detect perfusion changes occurring during fibrosis, but delivers 118 higher radiation dose. Increased parenchymal CA retention is observed in advanced fibrotic 119 tissue.

Unexpected hepatic and pancreatic lesions have been described in the acute phase of *S. mansoni*infection together with hepatomegaly and splenomegaly [18] (Table 2). In mansonian HSS, the
main features of the fibrotic liver are round low-density periportal zones enhancing after CA
administration, and linear bands in longitudinal sections of portal veins [19]. In HSS caused by *S. japonicum*, capsular and septal calcifications result in a "turtle back" appearance of the liver.
Fibrous septa are enhanced after CA injection [11-13, 20-22].

126

127 Magnetic resonance imaging (MRI)

Anatomy, microstructure, vasculature, perfusion, and metabolism can be assessed with magnetic resonance methods (Table 1). In the portal venous phase and the delayed venous phase, unspecific extracellular gadolinium chelates enhance fibrous hepatic tissue, and improve texture analysis [23]. Clinically approved hepatocyte-specific CAs such as Gadoxetate Disodium (Gd-EOB-DTPA) employed for diagnosing and staging HCC are used to assess the residual liver tissue function in liver fibrosis [24].

MRI would provide more precise information than USG regarding periportal fibrosis, gallbladder fibrosis, and alterations of the abdominal venous system in HSS (Table 2) [4, 25]. Besides the detection of morphological anomalies suggestive of liver fibrosis and PH on anatomical images (splenomegaly, large portal vein diameter, varices, ascites...) [4, 14], granulomatous inflammation and liver fibrosis can be detected on CA-enhanced MRI, and various methods can be used to assess subtle changes in liver microstructure [26] (Supplementary file).

141

Scintigraphy, single-photon emission computed tomography (SPECT), positron emission tomography (PET)

Although the main applications of nuclear medicine techniques are in oncology (Table 1),scintigraphy can be used to stage PH and portosystemic shunts in chronic liver diseases [27],

146 whereas ¹⁸F-fluorocholine radiotracer seems promising for the grading of liver fibrosis [28].

Differentiation between cirrhotic and non-cirrhotic PH is possible with ^{99m}Tc-labelled sulphur colloid particles but specific fibrosis patterns pathognomonic for schistosomiasis are not discernible. Scintigraphy has been used in the post-operative follow-up of patients who underwent splenectomy followed by auto-implantation of spleen tissue [29, 30]. A case report described hypermetabolic pancreatic lesions with **deoxy-2-**(1⁸**F**)**fluoro-D-glucose** in HSS [31]. Interestingly, hepatic angioscintigraphy with ^{99m}Tc-labelled sulphur colloid particles revealed increased hepatic perfusion index in patients with HSS, which was correlated with splenomegaly and oesophageal varices [32]. This finding would reflect an increased perfusion through the hepatic artery (Table 2).

156

157 Endoscopy and laparoscopy

158 Endoscopy can be used for diagnosis, biopsy, follow-up, and therapeutic purposes (*e.g.*159 laparoscopic surgery, image-guided embolization or ligation of varices) (Table 1).

160 HSS can be explored by endoscopy (Table 2) [33]. The cost and risk of infection linked to the invasiveness of the technique are limitations to its use in resource-limited countries. Endoscopy 161 162 permits to view and treat collaterals, to identify ascites, PH, whereas hepatomegaly, splenomegaly and granulomatous inflammation in liver can be detected with laparoscopy. 163 164 Endoscopy is the gold-standard technique to guide ligation or sclerotherapy treatment of oesophageal varices. In HSS with PH, endoscopic sclerotherapy for esophageal varices was 165 shown to be more efficient for secondary prophylaxis of upper gastrointestinal bleeding when 166 167 preceded by splenectomy and esophagogastric devascularisation [34].

168

169 Which imaging modality for which HSS stage?

The acute stage is characterized by a syndrome with severe clinical manifestations including hepatomegaly, splenomegaly and lymphadenopathy. The enlargement of the liver, the spleen and abdominal lymph nodes can be visualized with USG [35]. When other sites of lesions are suspected during this stage (e.g. central nervous system, lungs or intestines...), other imaging modalities more appropriate for the exploration of these organs should be utilized (CT, MRI or endoscopy). Regarding the chronic phase, physical examination and laboratory findings may 176 not always permit to classify patients, especially if the time of infection is unknown. Moreover, 177 there are frequent overlaps of the pathological signs of the acute and chronic stages, and of moderate and severe HSS (Table 2). Fibrosis and PH are common features of both moderate 178 179 and severe HSS, but PH predominates in severe HSS and is associated with congestive 180 splenomegaly and a high risk of variceal bleeding. Fibrosis grade is regarded as a predictive value for PH and esophageal varices. USG, the first line imaging modality, permits the detection 181 182 of splenomegaly, fibrosis, and hemodynamic changes. Although USG can be used for fibrosis 183 grading, it is not sensitive to mild disease, and often underestimates fibrosis in comparison to 184 liver biopsy [14], and is sensitive to inflammation [35]. If available, conventional CT or MRI 185 methods can be used to map fibrosis spatial distribution [5, 36]. As for USG, the results may be affected by inflammation in early disease stages. Fibrogenesis and inflammation are 186 187 generally concomitant processes and such indirect parameters are not sufficiently specific. (Supplementary file). Additional investigation can be performed with SWI to detect iron 188 189 deposits in inflammatory processes. When using CT or MRI, additional hemodynamic 190 parameters can be collected with DCE or ASL. All these methods are available on clinical MRI 191 scanners. 192 193 194 **Emerging methods for human schistosomiasis assessment?** 195 196 Evaluation of liver fibrosis 197

198 <u>Elastography</u> - Elastography has become the most widely used method to detect liver fibrosis
199 and cirrhosis consecutive to steatosis or viral hepatitis [37]. Elastography cannot be regarded
200 as an emerging method, but so far only few studies have reported its use in HSS.

201 In sonographic elastography, tissue excitation is either induced by acoustic radiation force 202 impulse (ARFI) or using a mechanical vibrating device for TE. Pulse-echo acquisitions are 203 performed to measure the velocity of the shear-wave, which informs about the elastic properties 204 of the tissue. Few studies have explored HSS using sonographic elastography (Table 3) and 205 only one used the ARFI method (Table 3). In patients with hepatitis C virus co-infection 206 discrepancies between liver biopsy and ultrasonographic TE findings were identified [38, 39], 207 probably due to fibrosis heterogeneity. In the absence of comorbidities, liver stiffness 208 measurement (LSM) was higher in HSS patients than in controls and cirrhotic patients [40, 41]. 209 One single study evaluating both liver and spleen stiffness reported a correlation between 210 spleen stiffness and some USG signs of PH (portal vein diameter, area, and congestion index, 211 splenic artery resistance index, splenic vein diameter and spleen diameter) [41]. In S. japonicum 212 HSS, LSM was not correlated to USG findings [42]. These studies suggest that liver LSM could 213 be a marker of HSS fibrosis. Moreover, spleen stiffness could assist in selecting patients for 214 endoscopy. Indeed, it would be superior to liver stiffness in predicting esophageal varices [43]. 215 However, ultrasound TE has several limitations, including a lack of reproducibility/reliability in case of steatosis, light fibrosis, obesity or ascites. Moreover, liver stiffness is affected by 216 217 inflammation, iron overload, blood flow, and venous congestion [37, 44, 45].

Mechanically generated shear waves propagating through the liver can also be detected using motion-sensitive MRI techniques [37] implemented on standard MRI systems. Magnetic resonance elastography (MRE)-derived stiffness correlates with fibrosis stage in patients [46]. MRE appears more accurate and reliable than USG elastography to stage fibrosis [45, 47-50] and allows better coverage of fibrosis heterogeneity [37], moreover it is reliable in case of ascites. However, confounding comorbidities such as iron overload can limit the reliability of MRE. 225 Advanced MRI methods - MRI methods sensitive to Brownian water motion in tissues are used 226 to probe tissue microstructure. Diffusion-weighted imaging (based on Gaussian distribution of 227 water diffusion) with apparent diffusion coefficient (ADC) mapping, diffusion kurtosis imaging 228 (based on non-gaussian distribution of water diffusion) have been successfully applied to stage 229 moderate to advanced fibrosis in pre-cirrhotic liver with equal performance [51, 52]. Intravoxel incoherent motion (IVIM) analysis which separately assesses parenchymal diffusion and 230 231 microvascular perfusion changes could be potentially more sensitive to pathophysiological 232 alterations during early fibrosis [53].

233 Double contrast-enhanced MRI using gadolinium-based CAs and SPIOs with or without texture 234 analysis has been used to differentiate early liver fibrosis from advanced disease with excellent 235 results [23, 54, 55]. Collagen fiber deposition in the space of Disse leads to an increase of the 236 extracellular space quantifiable as the distribution volume fraction of nonspecific CA in the parenchymal (equilibrium) phase by MRI (or CT) [56-59]. Preclinical studies have shown that 237 238 the liver accumulation of collagen targeted CAs correlates with histological fibrosis scores [60]. 239 Non-contrast enhanced relaxometric studies quantifying the longitudinal (T_1) , transverse (T_2^*) 240 and combined $(T_1 \varrho)$ magnetic relaxation time constants, which provide information on tissue 241 microstructure and macromolecule content, have shown a good correlation of these parameters 242 with liver fibrosis, without being specific for it [61-64]. (Supplementary file).

243 <u>Phosphorus magnetic resonance spectroscopy (³¹P-MRS)</u> - MRS is a non-invasive method for
244 monitoring cellular metabolism that can be performed during an MRI exploration. Spectra are
245 often acquired from a unique voxel (single voxel spectroscopy, SVS). MRS imaging (MRSI)
246 permits the simultaneous acquisition of multiple spectra in contiguous voxels and the
247 generation of metabolic maps providing spatial distribution of metabolite signals. ³¹P-MRS
248 allows assessment of bioenergetics and phospholipid metabolism intermediates mainly
249 phosphomonoesters (PME) and phosphodiesters (PDE) (Box 1). An alteration of phospholipid

metabolism in cirrhosis has been identified using SVS and MRSI techniques [65, 66]. Fibrosis
was associated with a decrease in PDE and the PME/(PME+PDE) ratio could separate mild
from advanced fibrosis [65]. In another study, the PME/PDE ratio was strongly correlated with
advanced fibrosis [66]. (Supplementary file).

254

255 Assessment of vascular damage

256 Detection of varices with non-invasive capsule endoscopy - Capsule endoscopy involving 257 transit of an ingestible wireless camera along the digestive tract can be performed to visualise 258 the entire small bowel when simultaneous therapeutic intervention or tissue sampling is not 259 required. Capsule endoscopy has been successfully used in a pilot study to detect oesophageal 260 varices in HSS and enabled the identification of small bowel lesions in PH together with edema, 261 erosions and scarred mucosa [67, 68]. Although clinically significant esophageal and rectal varices are typically visible endoscopically, ectopic varices may require cross sectional or 262 263 multiplanar portal venous phase CT or MRI for diagnosis.

Assessment of liver perfusion - Besides the non-invasive delineation of hepatic vascular 264 anatomy by CT and MRI angio- and portography, several methods can be used for the 265 266 assessment of hemodynamic changes in liver pathologies, including cirrhotic or non-cirrhotic PH. Among them, dynamic contrast-enhanced (DCE) CT, MRI or USG, relying on CA 267 268 injection and liver-specific tracer kinetic modelling, allows quantitative assessment of liver perfusion and separation of arterial and portal-venous phases [69, 70]. DCE MRI studies 269 270 showed that reduced portal perfusion was quantitatively related to fibrosis stage [71]. Hemodynamic parameters obtained from DCE imaging, such as increased mean transit time 271 272 [72] and arterial blood flow [73], have the potential to detect perfusion changes occurring early 273 during fibrosis. Non-invasive and quantitative tissue perfusion measurement can also be performed with arterial spin labelling (ASL) techniques without exogenous CA. These 274

techniques developed for the heart, kidney and brain have been successfully applied to the liver.
A significant reduction in liver and spleen perfusion could be measured in cirrhosis [74, 75].
Although ASL has not yet been implemented in the clinical abdominal MRI routine, it
represents an alternative to standard DCE methods, when repeated measures are required or
when CA injection is contraindicated.

Quantitative MRI providing blood velocity in all directions and over the entire cardiac cycle,
now feasible within tenth of minutes, can depict altered flow patterns in the abdominal
vasculature, revealing PH and its consequences such as portocaval anastomoses less accessible
by USG, Doppler US or endoscopy.

284 MRI detection of splenic siderotic nodules - Diffusion MRI with ADC mapping of the spleen [41] and magnetic susceptibility-weighted imaging (SWI) [76, 77] have been successfully used 285 286 to evaluate splenic signs of PH including splenic siderotic nodules (Gamna-Gandy bodies) (Box 1) with higher sensitivity than anatomical MRI. Although these nodules are a frequent sign (> 287 288 65%) of PH in HSS [78, 79], SWI which is sensitive to iron deposits, has not yet been applied in HSS. SWI as well as quantitative susceptibility mapping (QSM) is also sensitive to 289 calcifications, which are frequent in S. japonicum infection, and to hemorrhages. SWI has 290 291 shown high accuracy for the grading of mild and advanced liver fibrosis [77, 80].

292

293 Pre-clinical imaging studies of schistosomiasis

294 Animal models

Models of schistosomiasis have been developed in different animal species providing the opportunity to study host immune response to schistosome infection, granulomatous inflammation, fibrogenesis, and to evaluate new therapies or vaccine candidates. Although they do not recapitulate all the features of the human disease, they remain clinically relevant as they develop liver fibrosis [81] and PH [82]. The characterization of experimental HSS with imaging methods is essential for the selection of appropriate models in pharmacological studies.
Preclinical studies aim at developing methods allowing direct visualisation and quantification
of the parasites within host tissues, monitoring of host immune response to schistosome,
detection, staging and quantification of liver fibrosis, and identification of markers for assessing
anti-parasitic or anti-fibrotic drug efficacy (Table 4).

305

306 *Imaging parasites within host tissues*

307 In vivo visualisation of schistosomes at different developmental stages could help monitor 308 parasite burden, detect ectopic localization and assess the schistosomicidal efficacy of new 309 chemotherapies. Using fluorescence molecular tomography (FMT) [83] and microPET in mice, adult worms of different species (S. mansoni, S. japonicum and S. haematobium the agent 310 of urogenital schistosomiasis) were directly visualized [84] and the anti-helminthic efficacy of 311 several drugs could be monitored. FMT was used alone or in combination with microPET and 312 313 MRI [85]. MicroPET studies showed that (18F)FDG was taken up by S. mansoni worms in mice (Table 4). 314

315 Confocal laser scanning microscopy combined with a lens system integrated in a rigid 316 endoscope was tested for the visualisation of eggs within the gut mucosa of mice infected with 317 S. mansoni [86]. Detection and differentiation between viable and dead eggs was achieved in 318 real time during endoscopy. Although performed on euthanized animals, this technique is a 319 potential substitute for invasive tissue sampling when stool specimens are negative in early 320 infection or due to treatment. The technique was applied shortly after to detect eggs in the 321 bladder mucosa of a S. haematobium infected patient [87]. Fluorescent CA targeting eggs could 322 possibly increase sensitivity of the endoscopic approach.

323 Monitoring host immune response

Bioluminescence imaging (BLI), a method allowing direct visualisation of gene expression through chemically-induced light emission [88, 89] was used to follow up eosinophilia and eosinopoiesis in mice infected with *S. mansoni* and expressing a luciferase reporter driven by an eosinophil peroxidase promoter [90]. In another study, the dynamics of collagen deposition in *S. japonicum* infection were monitored in mice expressing luciferase under a collagen promotor [91]. Newly formed collagen was assessed in mice with and without praziquantel treatment after granuloma formation.

331 Characterization of HSS and identification of imaging markers of fibrosis

HSS has been investigated with SPECT/CT, MRI, and USG (Table 4). USG studies in *S. japonicum* infected mice, rabbits and pigs identified common features with the human disease including hepatomegaly, advanced liver fibrosis, and enlarged portal vein diameter. A longitudinal study of the mouse model provided further description of HSS including portal and splenic vein diameter, spleen and liver morphometry, liver fibrosis patterns, and intestinal wall thickening [92]. These studies confirmed the relevance of experimental models of *S. japonicum* infection in pathophysiological and pharmacological studies.

HSS in S. mansoni infection was investigated in experimental models (mice) and semi-captive 339 340 chimpanzees. As for S. japonicum infection, the imaging studies demonstrated the relevance of these models to the characterization of HSS. A longitudinal study performed on S. mansoni 341 342 infected mice using microSPECT/CT and a new radiotracer labeled with ¹⁸⁸Re (¹⁸⁸Re-OCTAM) binding to hepatocyte asialoglycoprotein receptors (Box 1) permitted to detect hepatic necrosis 343 344 and fibrosis [93]. The first MRI study of S. mansoni infected mice [94] used anatomical MRI and identified a patchy liver pattern assigned to fibrosis at histology. A longitudinal MRI study 345 346 of this model [95] revealed anatomical signs of PH (liver, spleen and portal vein enlargement) 347 and contrast-enhancement of fibrotic liver lesions. Furthermore, this study proposed that

quantitative mapping of the transverse T₂ relaxation time constant could be used to noninvasively assess fibrosis [95].

350

351 Concluding remarks

Assessment of HSS morbidity and treatment monitoring would benefit from non-invasive 352 imaging methods allowing reliable fibrosis staging and estimation of vascular dysfunction (see 353 354 outstanding questions). Quantitative methods, which have been successfully evaluated on human fibrotic and cirrhotic liver (USG elastography, MRE, ³¹P-MRS, ASL, perfusion PET ...) 355 356 or in experimental schistosomiasis (T₂ mapping) have a potential for clinical/human 357 schistosomiasis assessment provided the equipment is available. Advanced acquisition and post-processing methods under development aiming at identifying markers sensitive to early 358 359 pathological mechanisms (inflammation, perfusion changes) and early fibrosis stages (e.g. IVIM, combined arterial and portal venous input DCE, double-contrast enhanced MRI) still 360 361 require validation in schistosomiasis models. Moreover, the precise relationship between imaging markers (e.g. relaxation time constants or ADC) and pathophysiological changes 362 accompanying chronic hepatic inflammation (iron accumulation and edema) as well as the 363 364 possible contributions of confounding factors such as comorbidities (steatosis, hepatitis) need to be established. Non-invasive markers of hepatic fibrosis are increasingly needed in 365 366 pharmacological studies prompting the development of advanced and standardized quantitative 367 methods with translational potential in clinics.

368

Funding: this work was funded by CNRS (Centre National pour la Recherche Scientifique)
and Aix-Marseille University. CRMBM is a member of France Life Imaging (grant ANR-11INBS-0006 from the French "Investissements d'Avenir" program).

- 373 Declarations of interest: none
- 374

375 **References**

- 1. Ross, A.G. et al. (2002) Schistosomiasis. N Engl J Med 346 (16), 1212-20.
- 2. Colley, D.G. et al. (2014) Human schistosomiasis. Lancet 383 (9936), 2253-64.
- 378 3. Burke, M.L. et al. (2009) Immunopathogenesis of human schistosomiasis. Parasite Immunol
- 379 31 (4), 163-76.
- 4. Lambertucci, J.R. et al. (2008) Imaging techniques in the evaluation of morbidity in
- 381 schistosomiasis mansoni. Acta Trop 108 (2-3), 209-17.
- 382 5. Lambertucci, J.R. (2014) Revisiting the concept of hepatosplenic schistosomiasis and its
- 383 challenges using traditional and new tools. Rev Soc Bras Med Trop 47 (2), 130-6.
- 384 6. Gryseels, B. et al. (2006) Human schistosomiasis. Lancet 368 (9541), 1106-18.
- 385 7. Olveda, D.U. et al. (2014) The chronic enteropathogenic disease schistosomiasis. Int J Infect
- 386 Dis 28, 193-203.
- 387 8. Andrade, Z.A. (2009) Schistosomiasis and liver fibrosis. Parasite Immunol 31 (11), 656-63.
- 388 9. Skelly, P.J. (2013) The use of imaging to detect schistosomes and diagnose schistosomiasis.
- 389 Parasite Immunol 35 (9-10), 295-301.
- 390 10. Olveda, D.U. et al. (2014) Utility of Diagnostic Imaging in the Diagnosis and Management
- 391 of Schistosomiasis. Clin Microbiol 3 (2).
- 392 11. Cheung, H. et al. (1996) The imaging diagnosis of hepatic schistosomiasis japonicum
 393 sequelae. Clin Radiol 51 (1), 51-5.
- 12. Fung, H.S. et al. (2009) Hepatic schistosomiasis. Hong Kong Med J 15 (1), 75-6.
- 13. Goldwire, F.W. et al. (2012) A case of turtleback liver. Clin Gastroenterol Hepatol 10 (4),
- 396 A24.

14. Li, Y. et al. (2011) Severe hepatosplenic schistosomiasis: clinicopathologic study of 102
cases undergoing splenectomy. Hum Pathol 42 (1), 111-9.

399 15. Richter, J. et al., A Practical Guide to the Standardized Use of Ultrasonography for the
400 Assessment of Schistosomiasis-related Morbidity, Ultrasound in schistosomiasis- Second
401 International Workshop Niamey, Niger, 1996.

402 16. Huber, A. et al. (2015) State-of-the-art imaging of liver fibrosis and cirrhosis: A
403 comprehensive review of current applications and future perspectives. Eur J Radiol Open 2,
404 90-100.

405 17. Martinez, S.M. et al. (2011) Noninvasive assessment of liver fibrosis. Hepatology 53 (1),
406 325-35.

407 18. Passos, M.C. et al. (2009) Ultrasound and CT findings in hepatic and pancreatic
408 parenchyma in acute schistosomiasis. Br J Radiol 82 (979), e145-7.

409 19. Fataar, S. et al. (1985) CT of hepatic schistosomiasis mansoni. AJR Am J Roentgenol 145410 (1), 63-6.

411 20. Manzella, A. et al. (2008) Schistosomiasis of the liver. Abdom Imaging 33 (2), 144-50.

412 21. Monzawa, S. et al. (1993) Schistosomiasis japonica of the liver: contrast-enhanced CT

413 findings in 113 patients. AJR Am J Roentgenol 161 (2), 323-7.

414 22. Nepal, P. et al. (2019) Multisystem imaging review of human schistosomiasis:
415 characteristic imaging findings. Clin Imaging 54, 163-171.

416 23. Yokoo, T. et al. (2015) Evaluation of Liver Fibrosis Using Texture Analysis on Combined-

417 Contrast-Enhanced Magnetic Resonance Images at 3.0T. Biomed Res Int 2015, 387653.

418 24. Juluru, K. et al. (2017) Diagnostic accuracy of intracellular uptake rates calculated using

419 dynamic Gd-EOB-DTPA-enhanced MRI for hepatic fibrosis stage. J Magn Reson Imaging 45 (4),

420 1177-1185.

421 25. Lambertucci, J.R. et al. (2004) Magnetic resonance imaging and ultrasound in 422 hepatosplenic schistosomiasis mansoni. Rev Soc Bras Med Trop 37 (4), 333-7.

26. Feier, D. et al. (2016) The diagnostic efficacy of quantitative liver MR imaging with
diffusion-weighted, SWI, and hepato-specific contrast-enhanced sequences in staging liver
fibrosis--a multiparametric approach. Eur Radiol 26 (2), 539-46.

426 27. Dragoteanu, M. et al. (2008) Staging of portal hypertension and portosystemic shunts
427 using dynamic nuclear medicine investigations. World J Gastroenterol 14 (24), 3841-8.

428 28. Kwee, S.A. et al. (2018) PET/CT with (18)F Fluorocholine as an Imaging Biomarker for

- 429 Chronic Liver Disease: A Preliminary Radiopathologic Correspondence Study in Patients with
- 430 Liver Cancer. Radiology 287 (1), 294-302.
- 431 29. Petroianu, A. et al. (2006) Late follow-up of patients submitted to subtotal splenectomy.
 432 Int J Surg 4 (3), 172-8.
- 433 30. Brandt, C.T. et al. (2012) Splenosis after splenectomy and spleen tissue autoimplantation:

434 Late followup study. J Indian Assoc Pediatr Surg 17 (3), 104-6.

435 31. Ye, S. et al. (2014) F-18 FDG hypermetabolism in mass-forming focal pancreatitis and old

436 hepatic schistosomiasis with granulomatous inflammation misdiagnosed by PET/CT imaging.

437 Int J Clin Exp Pathol 7 (9), 6339-44.

438 32. de Carvalho, B.T. et al. (2016) Increased Hepatic Arterial Blood Flow Measured by Hepatic

- Perfusion Index in Hepatosplenic Schistosomiasis: New Concepts for an Old Disease. Dig Dis
 Sci 61 (7), 2118-26.
- 441 33. De Cock, K.M. (1986) Hepatosplenic schistosomiasis: a clinical review. Gut 27 (6), 734-45.

442 34. Costa Lacet, C.M. et al. (2016) Schistosomal portal hypertension: Randomized trial

443 comparing endoscopic therapy alone or preceded by esophagogastric devascularization and

444 splenectomy. Ann Hepatol 15 (5), 738-44.

- 35. Barata, C.H. et al. (1999) Abdominal ultrasound in acute schistosomiasis mansoni. Br J
 Radiol 72 (862), 949-52.
- 36. Voieta, I. et al. (2010) Imaging techniques and histology in the evaluation of liver fibrosis
 in hepatosplenic schistosomiasis mansoni in Brazil: a comparative study. Mem Inst Oswaldo
 Cruz 105 (4), 414-21.
- 450 37. Zhang, Y.N. et al. (2019) Liver fibrosis imaging: A clinical review of ultrasound and magnetic
 451 resonance elastography. J Magn Reson Imaging.
- 452 38. Esmat, G. et al. (2013) Fibroscan of chronic HCV patients coinfected with schistosomiasis.
- 453 Arab J Gastroenterol 14 (3), 109-12.
- 454 39. Ramzy, I. et al. (2017) Impact of old Schistosomiasis infection on the use of transient
- 455 elastography (Fibroscan) for staging of fibrosis in chronic HCV patients. Acta Trop 176, 283-456 287.
- 457 40. Carvalho Santos, J. et al. (2018) Liver ultrasound elastography for the evaluation of 458 periportal fibrosis in schistosomiasis mansoni: A cross-sectional study. PLoS Negl Trop Dis 12
- 459 (11), e0006868.
- 460 41. Veiga, Z.S.T. et al. (2017) Transient elastography evaluation of hepatic and spleen stiffness
- 461 in patients with hepatosplenic schistosomiasis. Eur J Gastroenterol Hepatol 29 (6), 730-735.
- 462 42. Wu, S. et al. (2018) Evaluation of transient elastography in assessing liver fibrosis in
- 463 patients with advanced schistosomiasis japonica. Parasitol Int 67 (3), 302-308.
- 464 43. Ma, X. et al. (2016) Spleen Stiffness Is Superior to Liver Stiffness for Predicting Esophageal
- 465 Varices in Chronic Liver Disease: A Meta-Analysis. PLoS One 11 (11), e0165786.
- 466 44. Yoshioka, K. et al. (2008) Transient elastography: Applications and limitations. Hepatol Res
- 467 38 (11), 1063-8.

468 45. Ichikawa, S. et al. (2015) Comparison of the diagnostic accuracies of magnetic resonance
469 elastography and transient elastography for hepatic fibrosis. Magn Reson Imaging 33 (1), 26470 30.

46. Huwart, L. et al. (2006) Liver fibrosis: non-invasive assessment with MR elastography. NMR
Biomed 19 (2), 173-9.

473 47. Chou, C.T. et al. (2017) Prospective Comparison of the Diagnostic Performance of Magnetic

474 Resonance Elastography with Acoustic Radiation Force Impulse Elastography for Pre-operative

- 475 Staging of Hepatic Fibrosis in Patients with Hepatocellular Carcinoma. Ultrasound Med Biol 43
- 476 (12), 2783-2790.
- 477 48. Chen, J. et al. (2017) Diagnostic Performance of MR Elastography and Vibration-controlled
- 478 Transient Elastography in the Detection of Hepatic Fibrosis in Patients with Severe to Morbid
 479 Obesity. Radiology 283 (2), 418-428.
- 480 49. Imajo, K. et al. (2016) Magnetic Resonance Imaging More Accurately Classifies Steatosis
- 481 and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease Than Transient Elastography.
- 482 Gastroenterology 150 (3), 626-637.e7.
- 483 50. Park, C.C. et al. (2017) Magnetic Resonance Elastography vs Transient Elastography in
- 484 Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients With Biopsy-
- 485 Proven Nonalcoholic Fatty Liver Disease. Gastroenterology 152 (3), 598-607.e2.
- 486 51. Taouli, B. et al. (2007) Diffusion-weighted MRI for quantification of liver fibrosis:
- 487 preliminary experience. AJR Am J Roentgenol 189 (4), 799-806.
- 488 52. Yang, L. et al. (2018) Staging liver fibrosis with DWI: is there an added value for diffusion
 489 kurtosis imaging? Eur Radiol 28 (7), 3041-3049.
- 490 53. Chow, A.M. et al. (2012) Liver fibrosis: an intravoxel incoherent motion (IVIM) study. J
- 491 Magn Reson Imaging 36 (1), 159-67.

492 54. Yu, J.S. et al. (2010) Double contrast-enhanced MRI of viral hepatitis-induced cirrhosis:
493 correlation of gross morphological signs with hepatic fibrosis. Br J Radiol 83 (987), 212-7.

494 55. Bahl, G. et al. (2012) Noninvasive classification of hepatic fibrosis based on texture 495 parameters from double contrast-enhanced magnetic resonance images. J Magn Reson 496 Imaging 36 (5), 1154-61.

497 56. Ramachandran, P. et al. (2019) Assessment of liver T1 mapping in fontan patients and its
498 correlation with magnetic resonance elastography-derived liver stiffness. Abdom Radiol (NY)
499 44 (7), 2403-2408.

500 57. Luetkens, J.A. et al. (2018) Quantification of Liver Fibrosis at T1 and T2 Mapping with 501 Extracellular Volume Fraction MRI: Preclinical Results. Radiology 288 (3), 748-754.

502 58. Wang, H.Q. et al. (2019) Assessing liver fibrosis in chronic hepatitis B using MR extracellular
503 volume measurements: Comparison with serum fibrosis indices. Magn Reson Imaging 59, 39504 45.

505 59. Zissen, M.H. et al. (2013) Contrast-enhanced CT quantification of the hepatic fractional
506 extracellular space: correlation with diffuse liver disease severity. AJR Am J Roentgenol 201
507 (6), 1204-10.

60. Polasek, M. et al. (2012) Molecular MR imaging of liver fibrosis: a feasibility study using rat
and mouse models. J Hepatol 57 (3), 549-55.

510 61. Hoad, C.L. et al. (2015) A study of T(1) relaxation time as a measure of liver fibrosis and

the influence of confounding histological factors. NMR Biomed 28 (6), 706-14.

511

512 62. Banerjee, R. et al. (2014) Multiparametric magnetic resonance for the non-invasive 513 diagnosis of liver disease. J Hepatol 60 (1), 69-77.

514 63. Liang, J. et al. (2018) Using IVIM-MRI and R2 Mapping to Differentiate Early Stage Liver

515 Fibrosis in a Rat Model of Radiation-Induced Liver Fibrosis. Biomed Res Int 2018, 4673814.

516 64. Zhao, F. et al. (2012) MR T1rho as an imaging biomarker for monitoring liver injury 517 progression and regression: an experimental study in rats with carbon tetrachloride 518 intoxication. Eur Radiol 22 (8), 1709-16.

519 65. Noren, B. et al. (2008) Separation of advanced from mild fibrosis in diffuse liver disease
520 using 31P magnetic resonance spectroscopy. Eur J Radiol 66 (2), 313-20.

521 66. Traussnigg, S. et al. (2017) Ultra-high-field magnetic resonance spectroscopy in non-

522 alcoholic fatty liver disease: Novel mechanistic and diagnostic insights of energy metabolism

523 in non-alcoholic steatohepatitis and advanced fibrosis. Liver Int 37 (10), 1544-1553.

524 67. Ganc, R.L. et al. (2010) Small-bowel lesions caused by portal hypertension of schistosomal

- 525 origin: a capsule endoscopy pilot study. Gastrointest Endosc 71 (4), 861-6.
- 68. Baekby, M. et al. (2017) Hepatosplenic schistosomiasis: playing hide-and-seek with an
 elusive parasite. BMJ Case Rep 2017.

528 69. Koh, T.S. et al. (2008) Hepatic metastases: in vivo assessment of perfusion parameters at

529 dynamic contrast-enhanced MR imaging with dual-input two-compartment tracer kinetics

530 model. Radiology 249 (1), 307-20.

531 70. Frohlich, E. et al. (2015) Dynamic contrast-enhanced ultrasound for quantification of tissue

532 perfusion. J Ultrasound Med 34 (2), 179-96.

533 71. Leporq, B. et al. (2012) 3D-liver perfusion MRI with the MS-325 blood pool agent: a

noninvasive protocol to asses liver fibrosis. J Magn Reson Imaging 35 (6), 1380-7.

535 72. Ronot, M. et al. (2010) Liver fibrosis in chronic hepatitis C virus infection: differentiating

536 minimal from intermediate fibrosis with perfusion CT. Radiology 256 (1), 135-42.

537 73. Chen, B.B. et al. (2012) Dynamic contrast-enhanced magnetic resonance imaging with Gd-

538 EOB-DTPA for the evaluation of liver fibrosis in chronic hepatitis patients. Eur Radiol 22 (1),

539 171-80.

74. Palaniyappan, N. et al. (2016) Non-invasive assessment of portal hypertension using
quantitative magnetic resonance imaging. J Hepatol 65 (6), 1131-1139.

542 75. Bradley, C.R. et al. (2018) Multi-organ assessment of compensated cirrhosis patients using
543 quantitative magnetic resonance imaging. J Hepatol 69 (5), 1015-1024.

76. Zhang, J. et al. (2013) Gamna-Gandy bodies of the spleen detected with susceptibility
weighted imaging: maybe a new potential non-invasive marker of esophageal varices. PLoS
One 8 (1), e55626.

547 77. Li, C. et al. (2013) Magnetic resonance susceptibility-weighted imaging versus other 548 imaging modalities in detecting splenic siderotic lesions. PLoS One 8 (9), e73626.

549 78. Bezerra, A.S. et al. (2007) Chronic hepatosplenic schistosomiasis mansoni: magnetic

resonance imaging and magnetic resonance angiography findings. Acta Radiol 48 (2), 125-34.

551 79. Bezerra, A.S. et al. (2008) Differentiating cirrhosis and chronic hepatosplenic 552 schistosomiasis using MRI. AJR Am J Roentgenol 190 (3), W201-7.

553 80. Balassy, C. et al. (2014) Susceptibility-weighted MR imaging in the grading of liver fibrosis:

a feasibility study. Radiology 270 (1), 149-58.

555 81. Andrade, Z.A. et al. (1997) An experimental approach to the pathogenesis of "pipestem"

556 fibrosis (Symmers' fibrosis of the liver). Mem Inst Oswaldo Cruz 92 (5), 699-706.

557 82. Sarin, S.K. et al. (1991) Hyperdynamic circulation in a chronic murine schistosomiasis 558 model of portal hypertension. Hepatology 13 (3), 581-4.

559 83. Stuker, F. et al. (2011) Fluorescence molecular tomography: principles and potential for

560 pharmaceutical research. Pharmaceutics 3 (2), 229-74.

561 84. Krautz-Peterson, G. et al. (2009) Imaging schistosomes in vivo. Faseb j 23 (8), 2673-80.

562 85. Salem, N. et al. (2010) In vivo imaging of schistosomes to assess disease burden using

563 positron emission tomography (PET). PLoS Negl Trop Dis 4 (9).

- 564 86. Holtfreter, M.C. et al. (2011) Confocal laser scanning microscopy for detection of 565 Schistosoma mansoni eggs in the gut of mice. PLoS One 6 (4), e18799.
- 566 87. Fritzsche, C. et al. (2012) Confocal laser scanning microscopy, a new in vivo diagnostic tool
- 567 for schistosomiasis. PLoS One 7 (4), e34869.
- 568 88. Suff, N. and Waddington, S.N. (2017) The power of bioluminescence imaging in 569 understanding host-pathogen interactions. Methods 127, 69-78.
- 570 89. Mezzanotte, L. et al. (2017) In Vivo Molecular Bioluminescence Imaging: New Tools and
- 571 Applications. Trends Biotechnol 35 (7), 640-652.
- 572 90. Davies, S.J. et al. (2005) In vivo imaging of tissue eosinophilia and eosinopoietic responses
- to schistosome worms and eggs. Int J Parasitol 35 (8), 851-9.
- 574 91. Harvie, M.C.G. et al. (2019) Live imaging of collagen deposition during experimental
- hepatic schistosomiasis and recovery: a view on a dynamic process. Lab Invest 99 (2), 231-243.
- 576 92. Maezawa, K. et al. (2018) Real-time observation of pathophysiological processes during
- 577 murine experimental Schistosoma japonicum infection using high-resolution ultrasound
- imaging. Trop Med Health 46, 1.
- 579 93. Cheng, P.C. et al. (2013) Evaluating the potential of a new isotope-labelled glyco-ligand for
- 580 estimating the remnant liver function of schistosoma-infected mice. Parasite Immunol 35 (3-
- 581 4), 129-139.
- 582 94. Kosaka, M. et al. (2000) In vivo NMR micro-imaging of kidney and liver of mouse at 9.4 T.
- 583 Jpn J Physiol 50 (4), 463-7.
- 584 95. Masi, B. et al. (2015) In Vivo MRI Assessment of Hepatic and Splenic Disease in a Murine
 585 Model of Schistosomiasis [corrected]. PLoS Negl Trop Dis 9 (9), e0004036.
- 586 96. Schuppan, D. et al. (2018) Liver fibrosis: Direct antifibrotic agents and targeted therapies.
- 587 Matrix Biol 68-69, 435-451.

- 588 97. Suk, K.T. (2014) Hepatic venous pressure gradient: clinical use in chronic liver disease. Clin
 589 Mol Hepatol 20 (1), 6-14.
- 590 98. Bonnard, P. et al. (2015) Comparison of liver biopsy and noninvasive techniques for liver
- fibrosis assessment in patients infected with HCV-genotype 4 in Egypt. J Viral Hepat 22 (3),
- 592 245-53.
- 593 99. Kardorff, R. et al. (2003) Validation of ultrasonography for hepatic schistosomiasis using a
 594 porcine Schistosoma japonicum model. Acta Trop 85 (3), 315-23.
- 595 100. Standley, C.J. et al. (2013) Intestinal schistosomiasis in chimpanzees on Ngamba Island,
- 596 Uganda: observations on liver fibrosis, schistosome genetic diversity and praziquantel
- 597 treatment. Parasitology 140 (3), 285-95.
- 101. Liang, X.L. and Yuan, J.Y. (2013) Effect of Chinese herbal compound on liver fibrosis in
 rabbits with schistosomiasis by B-ultrasound. Asian Pac J Trop Med 6 (8), 658-62.
- 600

602 HIGHLIGHTS 603 604 • Liver fibrosis and portal hypertension in HSS may lead to variceal bleeding. Fibrogenesis in HSS differs from fibrogenesis of other etiology and requires specific 605 • 606 and sensitive markers covering fibrosis heterogeneity. Currently no imaging markers 607 are specific for HSS. USG is the leading imaging modality for HSS diagnosis, but other diagnostic imaging 608 • 609 techniques can quantify liver fibrosis. Quantitative markers of HSS (collagen, iron and calcium deposition, microvascular 610 • 611 density and flow) became accessible by medical imaging modalities. 612 Semiquantitative and quantitative imaging markers for the assessment of vascular and hemodynamic alterations constitute valuable markers for staging, prognosis and 613 614 treatment response. Preclinical imaging studies of HSS contribute to the development of clinically 615 • transferable markers sensitive to granulomatous inflammation and mild fibrosis. 616 617 618 619 **GLOSSARY** Arterial spin labelling (ASL): Quantitative microvascular perfusion MRI technique relying 620 621 on magnetically labeled arterial blood water molecules as endogenous tracer. 622 **Bioluminescence imaging (BLI):** whole-animal imaging method requiring the introduction of 623 a bioluminescent reporter gene (e.g. firefly luciferase gene) fused to a gene of interest. When the luciferase substrate is injected to the animals, its oxidation results into detectable light 624 emission. 625

626 **Contrast agents (CA):** mostly intravenously injected small molecules, which have the capacity 627 to enhance tissue contrast by modifying signal intensity upon accumulation. MRI CAs: 628 paramagnetic agents modifying the relaxation of neighbouring water protons. CT CAs contain 629 atoms with high atomic number increasing local photoelectric absorption. USG CAs: gas-630 containing microbubbles.

631 Deoxy-2-(¹⁸F)fluoro-D-glucose: a non-metabolizable glucose derivative used as radiotracer to
632 assess glucose uptake in activated cells with PET imaging.

Diffusion MRI: unique imaging modality capable of probing tissue microstructure by
 measuring the water diffusivity which is hindered by biological barriers (*e.g.* cell membranes).

Dynamic contrast enhancement (DCE): following intravenous injection of a CA bolus,
different phases of signal changes occur that are analysed using a pharmacokinetic model. The
main phases are the arterial, portal venous and parenchymal phase in chronological order
providing information about microvascular hemodynamics and CA distribution volume.

639 Elastography: method allowing the quantification of tissue stiffness (resistance to640 deformation) following the propagation of a mechanical strain or shear wave.

Fluorescence molecular tomography (FMT): whole-animal imaging method requiring the injection of a fluorescent dye and irradiation with an excitation laser to generate light emission. Intravoxel incoherent motion (IVIM): a mathematical model distinguishing two contributions to the total tissue diffusivity in diffusion MRI: the microvascular (pseudodiffusivity D* weighted by the perfusion fraction f_{IVIM}) and the extravascular diffusivity D.

Magnetic resonance spectroscopy (MRS): a spectroscopic modality allowing to identify and
to quantify biochemical molecules by analysing the resonance frequency of electromagnetic
waves emitted by atomic nuclei with magnetic properties such as ¹H and ³¹P.

650 **Quantitative susceptibility mapping (QSM):** a parametric map of the tissue magnetic 651 susceptibility generated by the presence of para- and diamagnetic compounds and obtained by 652 deconvolution of the magnetic field distributions in T_2^* weighted MRI

653 **Relaxometry:** measurement of magnetic relaxation time constants describing the return to 654 equilibrium of excited nuclei (longitudinal T_1 , (true) transverse T_2 , (observed) transverse T_2^* ,

655 mixed $T_1\rho$. Magnetic relaxation is affected by molecule mobility and environment.

656 Voxel: volume element equivalent to a three-dimensional pixel.

657

658 Box 1. Liver fibrosis and portal hypertension in hepatosplenic schistosomiasis

659 Liver fibrogenesis is a wound-healing process activated by an inflammatory trigger and perpetuated by chronic inflammation. In schistosomiasis, a moderate Th1 response occurs, 660 followed by a shift to a strong Th2 response elicited by egg antigens. The eggs become 661 662 surrounded by immune cells. IL13 stimulates hepatic stellate cells (HSCs), the major ECM-663 producing cells, serving as vitamin A reservoirs and modulating vascular resistance and 664 sinusoidal blood flow. Sinusoids are fenestrated vessels receiving blood from terminal hepatic 665 arterioles and portal venules and delivering oxygen and nutrients to hepatocytes. Quiescent 666 HSCs located in the space of Disse separating sinusoidal endothelial cells from adjacent 667 hepatocytes and containing connective tissue trans-differentiate into phenotype-like myofibroblasts with increased contractile properties. They lose their vitamin A-containing lipid 668 669 droplets and secrete fibrous collagens, fibronectin and proteoglycans, together with matrix 670 metalloproteinases (MMPs) degrading ECM and tissue inhibitors of metalloproteinases 671 (TIMPs) regulating their proteolytic activity. The imbalance between ECM synthesis and 672 degradation progressively leads to replacement of liver tissue by a fibrous scar (fibrosis), 673 resulting in increased liver stiffness and distorted vascular architecture. Fibrosis is potentially 674 reversible, even in advanced stages. The therapeutic strategies explored to reverse fibrosis

target either the inhibition of fibrogenetic mechanisms or fibrolysis but clinical validation is
needed [96]. Grading scales for fibrosis based on histology (*e.g.* METAVIR score) or serum
markers exist but are not specific for schistosomiasis. Cirrhosis is the end-stage of liver fibrosis
and is characterized by regenerative nodule formation, distorted hepatic vasculature, portal
hypertension and liver dysfunction.

Portal hypertension is the main complication of liver fibrosis and is defined by an elevation of 680 681 the hepatic venous pressure gradient (HVPG) above 5 mmHg. A value of 10 mmHg is 682 indicative of clinically patent PH with a high risk of developing varices [97]. In HSS, periportal 683 fibrosis and granulomatous thrombophlebitis lead to progressive presinusoidal blood flow 684 obstruction (terminal portal venules level) and increased hepatic resistance causing PH. PH is complicated by congestive splenomegaly, formation of Gamna-Gandy bodies containing iron 685 686 and calcium inclusions, varices, destruction of the main portal vein branches despite the development of portosystemic collateral blood flow that may partly decompress the portal 687 688 system and at end-stage by life-threatening variceal bleeding. Gastrointestinal bleeding is often the first clinical sign of PH. The management of PH may be pharmacological with the 689 690 prophylactic administration of β-blocker propanolol, or surgical with portacaval shunt, varice 691 devascularization and splenectomy, distal splenorenal shunt, or with endoscopic sclerotherapy 692 or ligation.

693

694

695 696

OUTSTANDING QUESTIONS

Some patients progress to severe HSS, while patients with strong immunologic
 modulation capacity develop less severe (intestinal or hepatointestinal) variants of
 the chronic disease. Can imaging examinations of hepatic manifestations of acute
 schistosomiasis have prognostic potential?

- How reliable is the non-invasive imaging assessment of fibrosis at early stages of
 the disease?
- Can we disentangle confounding factors to quantitative fibrosis markers (*e.g.* comorbidities, inflammation, iron overload)?
- Is a detailed classification equivalent to the Niamey USG classification (made for *S. mansoni* infection) needed for *S. japonicum* HSS?
- Should the Niamey USG classification be refined to include novel measurable
 markers by more advanced USG equipment (*e.g.* hemodynamics, vascular
 morphology, microbubble contrast enhancement, DCE)?
- Will the establishment of new guidelines and standardized protocols for imaging
 modalities other than USG be of diagnostic and prognostic utility?
- What is the (multiparametric) imaging protocol best suited for reliable diagnosis and
 staging of HSS patients?
- Will the ASL technique and the newly-developed DCE-USG technique allow the
 assessment of hemodynamic alterations in HSS?
- 716

Table 1. General features of clinical abdominal imaging modalities

	USG	СТ	MRI	Scintigraphy+ SPECT	PET	Endoscopy/Laparoscopy	
Portability	Yes	No	No	No	No	Portable equipment used in surgical setting	
Cost of equipment	≈ 30k \$	≈ 1M \$	>1M \$	γ-camera ≈ 0.5M \$	PET+CT≈ 2M \$	< 25k \$	
Invasiveness	No*	No*	No*	Yes	Yes	Yes, anesthesia required	
Scanning/exam	Real-time imaging / 5 -	30 s / 10 min**	5 / 30 min**	30 min / 4 h	20 min/ radionuclide	Real-time imaging/ 1-2 h for	
time	20 min	50 57 10 1111	5750 mm	50 mm7 + m	injected 1 h before	preparation	
	Propagation of pulses of			Internal irradiating	Internal irradiating		
	ultra-high frequency (1	External irradiating	Absorption and reemission of	method involving the	method involving the		
Basic principle /	to 20 MHz) acoustic	tomographic method using X-	radiofrequency electromagnetic waves by nuclear magnetic	injection of labelled	injection of labelled	Introduction of flexible or rigid tubes into internal hollow	
type of	US reflection at tissue	ray photon	resonance of tissue hydrogen when	(radiotracers) and	(radiotracers) and	organs or cavities conducting	
i aulation-tissue	interfaces with differing			based on the detection	based on the		
interaction	impedances and their	obtain image contrast based on	magnetic field. Image contrast is obtained by magnetic relaxation,	of the emitted γ -ray	detection of γ-ray	endoluminal images of epithelium.	
	diffusion in tissue parenchyma provide	the attenuation	local susceptibility differences and	photons after distribution.	photons emitted in the annihilation		

	morphological	coefficients of the	water motion due to flow,		process between	
	information in	tissues.	diffusion or tissue deformation.		positrons from the	
	brightness (B) mode.				radiotracer with	
	The Doppler frequency				electrons from tissue.	
	shift of the wave					
	reflected by blood cells					
	provides hemodynamic					
	information.					
	Anatomical imaging	Anatomical	Multiparametric anatomical	Functional /	Functional /	
Principal	(tissue interfaces,	imaging	imaging	physiological imaging	physiological	Anatomical imaging of tissue
imaging	echogenicity, texture)	Perfusion imaging	Functional/physiological imaging	Metabolic imaging	imaging	surfaces
applications	Functional imaging	Image-guided	Metabolic imaging	Image-guided	Metabolic imaging	Image-guided intervention
	Image-guided intervention	intervention	Image-guided intervention	intervention	Image-guided	
					intervention	
	CEUS with injection of		CA: non-specific extracellular			
Use of contrast	microbubbles as	CA: mainly non	gadolinium chelates for perfusion	PT: 99mTa labellad	RT: ¹⁸ F, ¹⁵ O, ¹³ N, ¹¹ C	Topically or systemically
agents (CA)	reticuloendothelial or	cA. manny non-	imaging and parenchymal contrast	moloculos most	labelled molecules	administered terreted fluorescent
or radiotracers	blood pool CA for the		enhancement,	molecules most	(ie: ¹⁸ F 2-Deoxy	CA for malageled hubbers
(RT)	characterization of focal	containing agents	hepatocyte-specific gadolinium	widely used	Glucose)	CA for molecular endoscop
	liver lesions, vascular		and			

	imaging and therapy		manganese chelates taken up by			
	monitoring		functioning hepatocytes only,			
			superparamagnetic iron oxide			
			(SPIO) particles targeting Kupffer			
			cells			
		0.3 to 1 mm				
Spatial	0.3 to 1.5 mm	depending on X-	0.5 to 3 mm depending on	5 to 12 mm depending	4 to 10 mm	< 0.1 mm depending on comera
resolution	depending on US	ray tube	acquisition time, magnetic field	on collimator and	depending on	watriv
(range)	frequency	dimensions and	strength and gradient coils	detector system	detector size	maurx
		detector size				
	1 to 30 cm depending on					
Penetration	US frequency, US probe	Limitless	Limitless	Limitless	Limitless	Superficial
depth	can be inserted into		Linitiess	Emittess	Linitiess	Superneta
	gastrointestinal tract					
Soft tissue						
contrast	Good	Medium	Excellent	NA	NA	Visual contrast
Vascular	AV: 2D angiography	AV: 2D and 3D	AV: 2D and 3D angiography			AV: limited to superficial
imaaina	Av. 2D, anglography,	angiography,	A v. 2D and 5D, anglography,	HD : blood flow		A V. minued to supernetar
maging	venography. HD: blood	venography. HD:	venography. HD: blood flow,		HD: blood flow	mucosal vessels, improved with
-Anatomy of	flow, blood volume,	blood flow blood	blood volume, velocity, perfusion.			narrow band imaging (higher
vessels (AV)	velocity,	volume, velocity,	CA injection not necessary			relative intensity of blue light)

-Hemodynamics	using Color encoded	arterial, venous and				
(HD)	Doppler, Power Doppler	perfusion phases,				
	(B-flow) or CEUS	using CA injection				
Organ volumetry	Multiplanar 2D imaging, volumetric analysis with 3D option	Axial 2D and 3D imaging	Multiplanar 2D and 3D imaging	2D and 3D imaging	3D but requires CT or MRI for anatomical location	Size estimation from organ surface view (images, videos)
Fibrosis assessment	Organ surface morphology, parenchymal echogenicity, elastometry or elastography	Morphology, texture analysis	Morphology, texture analysis, hepatocyte specificCA, relaxometry , diffusion MRI, elastography, ³¹ P-MRS	^{99m} Tc-labelled sulphur colloid particles	¹⁸ F fluorocholine	Organ surface morphology
Detection of splenic siderotic nodules	Hyperechogenic parenchymal foci, acoustic shadowing if calcified	Attenuation dependent on calcification, hypodense on contrast enhanced CT	Hypointense lesion on T ₁ w MRI, T ₂ w MRI, SWI, even after CA administration	No	No	No
Theranostic applications	Use of high intensity focussed ultrasounds (HiFu) for abdominal cancer treatment	(Preclinical research)	(Preclinical research)	Yttrium for liver cancers	(Preclinical and clinical research)	Theranostic capsule endoscopy (research) Fluorescence imaging endoscopy with nanoparticles (research)

					Few scanners	
				Main applications in	available, main	
	Operator dependent.	Long scan times, sensitivity to		oncology,	application in	
				Co-registration with	-FF	
	qualitative signal yielding	Allergic risk to	motion, absolute contraindications	CT or MRI often	oncology	
	only relative echogenicity,	Iodine based CA	exist, precautions regarding	necessary for better	Co-registration with	Qualitative images limited to
	few images are usually	Iounic-based CA	radiofrequency energy absorption	necessary for better	CT or MRI often	Quantau ve images innited to
	saved, limited field of	observed in up to	are required, possible interference	anatomical	necessary for better	surface of the organ or cavity
Limitations	view decreasing image	0.7%, repeated	with vital medical electronic	localization of	anatomical	Sedation or anesthesia required,
	view, decreasing image	exposure to	with vital medical electronic	radiotracers,	anatonnear	surgical team needed, infectious
	quality and spatial	ionising radiations	devices, CA with rare adverse	cumulative exposure	localization,	risk
	resolution with depth,	n at maximum dad	reactions (<0.01%) but	to internal	cumulative exposure	
	acoustic shadowing by	not recommended,	contraindicated in patients with	to internal	to internal	
	gas, gallstones and bone		renal insufficiency	(radiotracers) and	(radiotracers) and	
	0,0		5	external (CT) ionizing		
				radiation	external (C1)	
					ionizing radiation	

* non-invasive technique in the absence of contrast agent injection; ** depending on protocols; CEUS = contrast enhanced ultrasound; NA= not applicable; $T_1w = T_1$ -

weighted MRI; $T_2w = T_2$ -weighted MRI, US = ultrasound.

Table 2. Assessment of human HSS morbidity with abdominal imaging modalities

Imaging findings in hepatosplenic schistosomiasis	Disease stage	USG	СТ	MRI	Scintigraphy / SPECT	РЕТ	Endoscopy
Schistosome visualisation	Acute stage Chronic stage	In combination with endoscopy	No	No	No	No	No
Granulomatous inflammation	Chronic stage	Yes Echogenic structure	With and without CA	Anatomical MRI	Yes	¹⁸ FDG	Yes (laparoscopy)
Liver fibrosis (Symmers pipestem fibrosis)	Chronic stage	Yes, standard patterns, measurement of portal vein, gall bladder and fibrosis of second order branches	Measurement of portal vein, gall bladder and fibrosis of portal vein branches	Measurement of portal vein, gall bladder and fibrosis of portal vein branches	No	No	In advanced stage fibrosis visible at the liver surface by laparoscopy
Portal hypertension	Chronic stage	Portal vein diameter, blood flow and velocity Doppler USG	Portal phase after CA injection, detection of vessel dilation	Anatomical MRI	hepatic angioscintigraphy with 99mTc-labelled sulphur colloid particles	No	Yes, qualitative (laparoscopy)

Hepatomegaly	Acute stage Chronic stage	Qualitative evaluation and organ axis measurements, no volumetric analysis without 3D option	Yes, volumetric analysis	Yes, volumetric analysis	Qualitative	No	Yes, qualitative (laparoscopy)
Splenomegaly	Acute stage Chronic stage (severe HSS)	Qualitative evaluation and organ main axis measurement, no volumetric analysis without 3D option	Yes, volumetric analysis	Yes, volumetric analysis	Yes, volumetric analysis	No	Yes, qualitative (laparoscopy)
Gall bladder abnormalities	Chronic stage	Yes, wall thickness measurement	Yes, wall thickening and inflammation visible	Yes, wall thickening and inflammation visible	No	No	Yes, if reaching the gall bladder surface
Esophageal varices	Chronic stage (severe HSS)	Yes with special probe	Yes, venography	Yes, venography	No	No	Yes, gold standard
Visceral collaterals	Chronic stage (severe HSS)	USG angiography, Doppler USG	Angiography with CA	Angiography	No	No	Yes, qualitative (laparoscopy)
Splenic siderotic nodules	Chronic stage	Hyperechogenic parenchymal foci, acoustic shadowing if calcified	Attenuation dependent on calcification, hypodense on contrast enhanced CT	Hypointense lesion on T ₁ -w MRI, T ₂ -w MRI, SWI, even after CA administration	No	No	No
Ascites	Chronic stage (severe HSS)	Anechoic fluid	Hypodense with respect to liver parenchyma	Anatomical MRI	No	No	Yes, qualitative (laparoscopy)

CT= computed tomography; MRI= magnetic resonance imaging; PET= positron emission tomography; SPECT= Single-photon emission computed tomography; $T_1w=T_1$ -weighted MRI; $T_2w=T_2$ -weighted MRI; USG = Ultrasonography.

Table 3. Assessment of liver fibrosis in HSS with elastography¹

References	Comorbidities	Parasite strain	Population characteristics	Elastographic method	Additional	Main findings	Limitations
					Imaging		
					modalitie(s)		
[40]	None	S. mansoni	-358 Brazilian patients, among them	Point shear wave	USG with a 6C1	Differentiation	USG and
			86 with mild periportal fibrosis	elastography, ARFI	MHz transducer	between mild and	elastography
			(Niamey C pattern) and 272 with		for USG and	advanced periportal	performed by the
			advanced periportal fibrosis		elastography	fibrosis	same sonographer
			(Niamey D, E, F patterns)				
[42]	None	S. japonicum	-106 Chinese patients with		USG	-No correlation	No USG-based
			advanced schistosomiasis and no	Transient elastography,	classification	between LSM and	classification of
			current infection, among them 80	FibroScan	into 5 grades,	USG grading but good	liver fibrosis
			patients without comorbidities		Doppler USG,	correlation with	(Niamey patterns)
			(blood tests with biochemical		histology	histology	
			assessment of liver function and			-LSM superior to	
			fibrosis, percutaneous liver biopsy)			blood serum analysis	
			-Conclusive results obtained on 73			for detection of	
			patients (METAVIR score: 3 F0, 11			fibrosis and cirrhosis	
			F1, 22 F2, 24 F3, 13 F4)			and predictive of	
						fibrosis in patients	

						with advanced	
						schistosomiasis	
						japonica	
[41]	None	S. mansoni	-77 Brazilian patients: 30 with	Transient elastography,	USG with	- Increased LSM	- Absence of severe
			hepatosplenic schistosomiasis (24%	FibroScan	Doppler-	values in patients with	fibrosis (e.g.
			Niamey B pattern,		fluxometry,	schistosomiasis	patterns E or F)
			28% Niamey C pattern, 48%		ultrasound color	compared to controls	- differentiation of
			Niamey D pattern), 30 patients with		Doppler	-Increased spleen	schistosomiasis
			HCV cirrhosis and 17 controls			stiffness, comparable	patients from
						to that of cirrhotics	cirrhotic patients
						_increased spleen	by LSM could be
						stiffness correlated	biased
						with portal	
						hypertension	
[39]	HCV	Unknown, S.	-352 Egyptian patients with chronic	Transient elastography,	USG	-No difference in liver	No USG-based
		<i>mansoni</i> most	HCV hepatitis (no decompensated	FibroScan		stiffness among	classification of
		likely	cirrhosis, no HCC): 122 controls,			groups	liver fibrosis
			122 with positive antischistosomal			-Best correlation	(Niamey patterns)
			antibodies and			between METAVIR	
			without periportal tract thickening,			score and LSM in	

			108 with positive antischistosomal			patients with HCV	
			antibodies and			only	
			periportal tract thickening			-Only higher	
			-Liver biopsies and METAVIR			antischistosomal	
			scores available			antibody titres reduce	
						the correlation	
						between METAVIR	
						score and LSM	
[98]	HCV	Unknown, S.	-312 Egyptian patients with HCV	Transient elastography,	No	No influence of	Very small number
		<i>mansoni</i> most	genotype 4, among them 36 with	FibroScan		positive	of patients with
		likely	positive schistosomiasis serology,			schistosomiasis	schistosomiasis
			and 4 with hepatic schistosomiasis			serology on	lesions
			lesions detected on liver biopsy			elastography results	
[38]	HCV	Unknown, S.	-231 Egyptian patients with chronic	Transient elastography,	No	Positive schistosomal	No USG-based
		<i>mansoni</i> most	HCV, among them 67 patients	FibroScan		serology impairs	classification of
		likely	presenting positive schistosomal			correlation between	liver fibrosis
			serology			FibroScan results and	(Niamey patterns)
			-Liver biopsies and METAVIR			METAVIR score	
			scores: 31 F0-F1, 13 F2, 14 F3 and 9			(more obvious in F2	

*Transient elastography and Point shear wave elastography are strictly speaking no imaging modalities since LSM is performed in a point at a particular depth. Transient elastography uses a one-dimensional USG signal for guidance, while Point shear wave elastography relies on 2D USG for determining the measurement point. ARFI = acoustic radiation force imaging; HCV = Hepatitis C virus; HCC = hepatocellular carcinoma; LSM= Liver Stiffness Measurement; USG = Ultrasonography.

Table 4. Preclinical imaging studies of schistosomiasis

References	Imaging modalities	Animal model and	Parasite, number	Observation	Assessment of	Main findings	Potential
	and methods	groups	of cercariae and	period	pathogenic		applications
			mode of infection		features		
[91]	BLI, endogenous	Male and female B6.Coll	S. japonicum (SjC,	From week 4 to	-Collagen deposition	-Dynamic assessment	-Assessment of
	expression of luciferase	1A-luc+ mice (C57BL6/J	Chinese origin, 35	10 post infection	with BLI and	of collagen deposition	antifibrotic drug
	under a collagen promotor	background)	cercariae) and SjP	for SjC mice, and	comparison with	before and after PZQ	effects in infected
		SjC mice (n=12), SjP mice	(Philippines origin, 14	from week 4 to 11	histology	treatment	mice
		(n=14)	cercariae)	post infection for			
		SjC mice treated with PZQ		SjP			
		(n=10), SjP mice treated					
		with PZQ (n=10)					
		Control group (n=5)					
[92]	USG, classic (18–4 MHz	5-week old infected	S. japonicum	Up to 13 weeks	-Morphometry of	-Visualisation of live	-Studies of new
	human probe) and high-	BALB/C female mice	(Yamanashi strain), 25	(n=12) and one	spleen and liver, signs	worms in portal vein	anti-parasitic drugs
	resolution (50 MHz probe,	(n=22) and controls	cercariae (n=12) and	year (n=10) post	of PH,	-Real-time evaluation	on worms,
	resolution 30 µm)	(number unknown)	10 cercariae (n=10),	infection	intestinal wall	of schistosomiasis	longitudinal
			percutaneous route		thickening,	impact on digestive	preclinical studies
						organs	(therapy, molecular

					echogenic patterns of		mechanisms of
					liver fibrosis		disease, transfer to
							the clinical setting)
[95]	MRI @11.75T, 2D	6-week old CBA/J female	S. mansoni,	2, 6 and 10 weeks	-Liver and spleen	-Detection of indirect	-Longitudinal
	anatomical MRI with and	mice, infested mice (n=12)	30 cercariae,	post infection	volumetry, and PH	signs of PH	studies of
	without Gd-DOTA	and controls (n=12)	percutaneous route		assessment with	-Quantification of	antifibrotic drug
	injection				anatomical MRI	splenomegaly and	effects, mechanistic
	Relaxometric studies (T ₂				-Fibrosis assessment	hepatomegaly	studies on genes or
	mapping, T ₂ * mapping)				with relaxometry and	-Identification of T ₂	immune molecules
	comparison with histology				histology	relaxation time as a	involved in
						marker for liver	fibrogenesis
						fibrosis	-Transfer to the
							clinical setting
[93]	MicroSPECT/CT	6 to 8-week old BALB/C	S. mansoni (Puerto	Imaging at 1, 4,	-Liver inflammation,	-Identification of	-Longitudinal
	with injection of 188Re-	male mice, divided in 3	Rican strain), 100	24 and 48h post	necrosis and fibrosis	various levels of	studies of
	OCTAM	groups of infected mice and	cercariae,	injection of		remnant liver function	antifibrotic drug
		one control group (n=7-10	percutaneous route	188Re-OCTAM,		in different stages of	effects, mechanistic
		per group)		9, 12 and 18		the disease	studies on genes or
				weeks post			immune molecules
				infection			involved in
							fibrogenesis

[85]	micoPET using ¹⁸ FDG +	6-week old female nude	S. mansoni, number of	5-6 weeks post	-Localization and	- ¹⁸ FDG fixed by S	-Studies of new
	FMT with near-infrared	mice (nu/nu)	cercariae unknown,	infection	quantification of	<i>mansoni</i> worms	anti-parasitic drug
	imaging agent	Infected mice (n=35) and	percutaneous route		schistosome worms	-In vivo quantification	effects on worms
	MRI @7T for T ₂ -weighted	controls (n=4), 6 mice				of the worm burden	-In vivo parasite
	images with contrast agent,	treated with PZQ				with ¹⁸ FDG PET	detection in humans
	comparison with histology						
[84]	FMT with near-infrared	6 to 8-week old female	S. mansoni (Puerto	5 weeks (S.	-Localization and	-New method to	-Studies of new
	imaging agent	BALB/c mice (exact	Rican strain), 100 or	Mansoni), 8	quantification of	detect, quantify and	anti-parasitic drug
		number unknown)	50 cercariae per	weeks (S.	schistosome worms	localize worms	effects on worms
			mouse, S. hematobium,	<i>Hematobium</i>) and			
			25 cercariae per mouse	6 weeks (S.			
			and S. Japonicum, 25	Japonicum) post			
			cercariae per mouse,	infection			
			percutaneous route				
[90]	BLI, genetically encoded	EPX334-luc or EPX339-	S. mansoni, 50	Over 12-week	-Eosinophilia and	-Detection and	-Study of molecules
	luciferase (luc) reporter	luc mice and EPX-luc	cercariae,	period post	eosinopoiesis	quantification of	modulating
	driven by an eosinophil	hemizygous mice as	subcutaneous route	infection		eosinophilia and	eosinophilia and
	peroxidase (EPX)	controls (age and exact				eosinopoiesis in	eosinopoiesis in
	promoter, intraperitoneal	number unknown)				schistosomiasis	schistosomiasis
	injection of luciferase					-First in vivo	
	substrate luciferin					description of	

						eosinopoietic	
						response to	
						schistosomes	
[94]	MRI @9.4T, anatomical	10 to 20-week old BALB/C	S. mansoni, 150	Followed for 13	-Assessment of liver	-Patchy pattern in the	-Anatomical MRI
	T ₁ , T ₂ , T ₂ *-weighted MRI,	infected mice and controls	cercariae,	weeks post	disease and	liver related to	for the assessment
	no contrast agent	(exact number unknown)	subcutaneous route	infection	involvement of	fibrosis after 6 weeks	of liver disease in
					intrahepatic bile ducts	of infection	preclinical studies
[99]	USG with a	12-week old female and	S. japonicum, 1000	Imaged 12 weeks	-Assessment of HSS	-Enlarged liver	-Validation of the
	system for human imaging	castrated male pigs (Danish	cercariae of Chinese	after infection	disease, comparison	Diffuse parenchymal	swine model of
	(multifrequent convex	landrace x Duroc and or	origin.		of USG findings with	alterations	schistosomiasis as a
	array probe of 3.5/4.3/5.0	Hampshire crossbreeds)	Route of injection not		histology	-Echogenic portal	good model of
	MHz)	Infected pigs (n=9) and	documented.			thickening	human HSS
		uninfected controls (n=10)				-Enlarged portal vein	
						diameter	
[100]	Portable USG	8 semi-captive	S. mansoni (naturally	USG included in	-Assessment of	-Detection of a	-Detection of
		chimpanzees (Uganda),	infected animals)	the annual health	intestinal disease and	spectrum of fibrosis	fibrosis patterns
		infected by S. mansoni,		assessment of	progression toward	stages including mild	identical to those
		under PZQ treatment but		infected animals	HSS.	disease, pipestem	described in humans
		still excreting schistosome			-Parasitological	fibrosis and occluding	(Niamey protocol)
		eggs			assessment (urine and	fibrosis.	
					stools)		

					-DNA schistosome	-DNA schistosome	Probable zoonosis
					barcoding	diversity	(chimpanzees,
							humans, snails)
[101]	USG (B mode)	24 male New-Zealand	S. japonicum, 100	-Treatment started	-Assessment of HSS	Validation of the	Assessment of
		rabbits infected with S.	cercariae,	18 weeks post	in liver (liver	rabbit model of HSS	antifibrotic drug
		japonicum used for the	percutaneous route	infection,	diameter, PV inner	obtained with S.	effects in a good
		assessment of the anti-			diameter, echogenic	japonica	model of the human
		fibrotic effects of Chinese		-Weekly USG	septa forming		disease resulting
		traditional medicine		from week 13	mosaics, echogenic	Beneficial effects of	from S. japonicum
				until week 28	spots)	traditional Chinese	infection
		-6 animals received PZQ			-Assessment of serum	medicines on liver	
		-6 animals received Radix			markers of fibrosis	fibrosis	
		astragali and Salvia			and liver function		
		miltiorrhiza			-Comparison of the		
		-6 animals received Radix			effects of traditional		
		astragali and Angelica			Chinese medicines to		
		sinensis			PZQ on liver fibrosis		
		-6 animals received Radix					
		astragali, Salvia					
		miltiorrhiza, Angelica					
		sinensis and PZQ					

Abbreviations: BLI = bioluminescent imaging; CT= computed tomography; EPX= eosinophil peroxidase promoter; FMT= Fluorescence molecular tomography; LSM= Liver

Stiffness Measurement; luc= luciferase; MRI= magnetic resonance imaging; PET= positron emission tomography; PH = portal hypertension; PV= portal vein; PZQ=

praziquantel; SPECT= Single-photon emission computed tomography; USG = Ultrasonography.

- 2

3

4 Figure 1, Key Figure. Schematic representations of typical USG images in HSS and 5 corresponding patterns based on Niamey classification. A. Temporal progression of HSS. 6 **B.** Illustration of the different stages of HSS with Niamey classifications patterns (top row) and corresponding schematic representations of USG images (bottom row). The right oblique 7 8 ultrasound probe orientation allows visualisation of the hepatic hilar area with the portal vein 9 (PV) and surrounding vessels. This view allows detection of periportal fibrosis (pattern D to 10 Ec) and measurement of PV diameter as well as evaluation of hypertension (dashed line in D, 11 E and F patterns). Pattern B (p. B) also named "Starry sky" corresponds to echogenic spots in liver parenchyma caused by inflammation and fibrosis around granuloma. Pattern C (p. C) 12 13 shows echogenic signals around portal branches and represents a moderate stage of fibrosis. 14 Acute or/and asymptomatic phases are assigned to B and C patterns. Large fibrosis areas in parenchyma, described as "patches", are associated with E pattern. Fibrosis extension to the
 liver periphery from patches was described as "Bird's claw" and assigned to F pattern. C. Dc
 and EC are examples of combined patterns. D. Right echographic oblique view presented in B.