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Biodiversity, Shapley value and phylogenetic trees: some
remarks

Hubert Stahn1

Abstract
This paper explores the main differences between the Shapley values of a set of taxa 
introduced by Haake et al. (J Math Biol 56:479–497, 2007. https://doi.org/10.1007/
s00285-007-0126-2) and Fuchs and Jin (J Math Biol 71:1133–1147, 2015. https://
doi.org/10.1007/s00285-014-0853-0), the latter having been found identical to the 
Fair Proportion index (Redding and Mooers in Conserv Biol 20:1670–1678, 2006. 
https://doi.org/10.1111/j.1523-1739.2006.00555.x). In line with Shapley (in: Kuhn, 
Tucker (eds) Contributions to to the theory of games, volume II, annals of 
mathematics studies 28, Princeton University Press, Princeton, 1953), we identify 
the cooperative game basis for each of these two classes of phylogenetic games and 
use them (i) to construct simple formulas for these two Shapley values and (ii) to 
compare these different approaches. Using the set of weights of a phylogenetic tree 
as a parameter space, we then discuss the conditions under which these two values 
coincide and, if they are not the same, revisit Hartmann’s (J Math Biol 67:1163–
1170, 2013. https://doi.org/10.1007/s00285-012-0585-y) convergence result. An 
example illustrates our main argument. Finally, we compare the species ranking 
induced by these two values. Considering the Kendall and the Spearman rank 
correlation coefficient, simulations show that these rankings are strongly correlated. 
These results are consistent with Wicke and Fischer (J Theor Biol 430:207–214, 
2017. https://doi.org/10.1016/j.jtbi. 2017.07.010), who reach similar conclusions 
with a different simulation method.
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1 Introduction

In recent years, biodiversity conservation programs have been placing increasing 
emphasis on a notion from cooperative game theory: the Shapley value.1 Shapley 
(1953), asked a very simple question: assuming that a group of individuals shares a 
common goal whose outcome is measurable, how can we evaluate the contribution 
of each individual to this specific objective? Where conservation programs are con-
cerned, this question becomes: how can we evaluate the contribution of a species to 
overall biodiversity and how can we organize a conservation policy under a limited 
budget (Weitzman 1998) by targeting specific species?

To answer this question from a game theoretical point of view, Shapley (1953) 
looks at the outcome that each sub-group can achieve by itself, i.e. the characteristic 
function, and deduces, under several axioms, a unique imputation rule which 
specifies the individual contributions. These axioms depict a set of acceptable 
restrictions on the imputation rule. He assumes that (i) the outcome of the largest 
group is attributed to the members (efficiency), (ii) two individuals who contribute in 
the same way to each particular subgroup receive the same reward (symmetry) and 
(iii) an individual with a zero contribution to each subgroup receives nothing (null-
player). He also introduces a more technical, but nevertheless important, assumption 
(iv) which states that the imputation rule is additive with respect to the characteristic 
functions. This means that the rewards obtained in a game resulting from the sum of 
two characteristic functions is the sum of the rewards linked to each of these 
characteristic functions.

If we now move back to biodiversity conservation problems, this Shapley metric 
provides an estimate of the contribution of one particular species to the overall phy-
logenetic diversity of a set of taxa. Its application simply requires the construction of 
the characteristic function of this game, i.e. the biodiversity index that a subset of taxa 
achieves by itself. The answer to this question can be found in Faith’s (1992) seminal 
contribution. Each set of taxa has a phylogenetic diversity measure whose definition 
can be applied recursively in order to obtain the biodiversity index of each subgroup. 
The Shapley axiomatic does the rest. It provides a measure of the contribution of each 
species to the global biodiversity index.

This biodiversity measure, which gives rise to several applications, was also studied 
from a theoretical point of view (Haake et al. 2007; Hartmann 2013; Fuchs and Jin 
2015; Wicke and Fischer 2017). However, comparing the early contribution of Haake 
et al. (2007) with the more recent work of Fuchs and Jin (2015) yields the impression 
that they are working with two different Shapley values. Wicke and Fischer (2017) 
provide a discussion of these different definitions. Of course, the first paper considers 
unrooted trees while the second introduces rooted trees. But this difference is not 
crucial, since any rooted binary tree can always be transformed into an equivalent 
unrooted tree by deleting the root and its two incident edges, and re-connecting the

1 For recent applications see for instance Cadotte et al. (2010), Martyn et al. (2012), Redding and Mazel 
(2014), Volkmann et al. (2014), Jensen et al. (2016).



two vertices with a new edge. So if the same operator turning a phylogenetic tree
into a characteristic function is applied, the uniqueness of the Shapley imputation
would induce the same values. This clearly suggests that these two papers do not use
the same characteristic function. Notably, they do not use the same definition of the
phylogenetic diversity of a subgroup. This issue, envoked by Crozier et al. (2005)
and Faith (2006), is related to the inclusion of the root in the computation of this
phylogenetic diversity. Actually, Haake et al. (2007) consider the subtree spanned by
the sub-group of taxa, while Fuchs and Jin (2015) include the root in this sub-group.
This clearly raises several questions. What is the real difference between these two
Shapley values? Can we quantify this difference, and under which restrictions do the
two values coincide? Since Fuchs and Jin (2015) show that their Shapley value is
equivalent to the Fair Proportion index (Redding and Mooers 2006), is the Shapley
value introduced byHaake et al. (2007) close to the Fair Proportion index, as suggested
by Hartmann (2013)? Furthermore when used in a prioritization problem, do these two
values predict drastically different rankings or are they, as suggested by Wicke and
Fischer (2017), reasonably correlated?

This paper attempts to answer these questions. To do so, we perform a preliminary
step in which we explicitly provide simple formulas for these two Shapley values, as in
Haake et al. (2007) but unlike Fuchs and Jin (2015), who simply show the equivalence
to the Fair Proportion index. While this step might appear redundant, our approach,
based on Shapley’s original proof, provides a unified method which simplifies com-
parisons. Actually, there are three steps to his argument. He first constructs a linearly
independent family of cooperative games which spans the set of all games. He then
shows that each member of this family induces, under axioms (i)–(iii), a unique dis-
tribution of the individual contributions. Finally, he extends his result to all games by
observing, under axiom (iv), that the imputation rule is a linear operator. Our approach
uses the same rationale. We identify the basis of the subspace of phylogenetic games,
compute the contribution to biodiversity of each taxon for games that are part of this
basis and extend, by linearity, this measure to the set of all phylogenetic games. This
method has several advantages.

It first provides a simple way to compute these two Shapley values by pointing out
the differences between the two approaches. Haake et al. (2007) use unrooted trees and
therefore do not, by construction, include the root in the computation of the phyloge-
netic diversity of a set of taxa,while Fuchs and Jin (2015),who use rooted trees, include
it. This basic distinction leads to two different subsets of potential characteristic func-
tions, hence to two different bases in the game space and to two distinct Shapley values.
This computation exercise also recovers, using adifferentmethod, the equality between
the Shapley value and the Fair Proportion index obtained by Fuchs and Jin (2015).

Our method also provides a natural parametrization of the two sets of potential
characteristic functions. In fact, the two bases that we identify are mainly related to
the split structure of the tree, while the potential characteristic functions are obtained
by a linear combination of the components of these bases, the weights being those for
each edge of the phylogenetic tree under consideration. This means, under the linear-
ity assumption, that the two Shapley values are linear in weight, which incidentally
provides a natural way to compute the difference and to compare the two values. We
notably identify the linear subspace of weights for which the two Shapley values are



the same. We even show that this linear subspace intersects the interior of the positive
orthant, meaning that the result extends to the case in which the weights are assumed
to be non-negative. When the two Shapley values are different, we revisit the result
of Hartmann (2013), who suggests that the contribution of each edge to individual
biodiversity converges, as the number of taxa increases, to the contribution of each
edge to the Fair Proportion index. This convergence result was revisited more recently
by Fuchs and Paningbatan (2019). They consider a random tree model generated by
a β-splitting model and show that the correlation between these two values goes to 1
as the number of taxa increases.

Finally, a direct computation of these two Shapley values also enables us to examine
the species ranking they induce, especially their degree of correlation when the two
metrics are known to be different. This problem is more empirical and requires sim-
ulations. Due to Hartmann’s result (2013), we only consider trees with a low number
of leaves and randomly select the split structures for each set of species. Weights are
also chosen randomly but in the subset in which the two Shapley values are known to
be different. We then compute the rank correlation coefficients between the species
ranking induced by the two Shapley values. We especially consider the Tau statis-
tic (Kendall 1938) and the Rho statistic (Spearman 1904). A kernel estimate of the
distributions of these correlation coefficients suggests that the rankings are strongly
correlated. These simulation results support those of Wicke and Fischer (2017), who
reach the same conclusion with a different method.

Our argument will be organized as follows. Section 2 reviews the main notations
concerning phylogenetic trees and recalls Shapley’s result. Section 3 presents a simple
example illustrating the main steps of the argument. Sections 4 and 5 are devoted to
an explicit derivation of the Shapley value for phylogenetic trees when, respectively,
the phylogenetic diversity is or is not independent of the root. Section 6 compares the
two Shapley values and shows under which conditions they are the same. Section 7
explores the impact of the species ranking provided by the two metrics in the case in
which they are known to be different. Section 8 concludes the present manuscript.

2 Notations and preliminary results

In this section, we briefly review the notion of phylogenetic trees and recall the main
results related to the notion of the Shapley value.

2.1 Phylogenetic trees

A phylogenetic tree, T , of n taxa is a weighted binary tree whose set I = {1, . . . n}
of leaves is identified with the n taxa. Its graph (V , E, w (·)) is composed of (i) a set
V of vertices, v ∈ V , including the n taxa, (ii) a set E of edges which describes the
adjacent vertices e = {

v, v′} ∈ E with v �= v′, and (iii) a map w : E → R which
assigns a weight to each edge e ∈ E . Being a tree, this graph is connected and free
of cycles so that there exists a unique path

{
v → v′} ⊂ E between two vertices. The

number of vertices adjacent to vertex v is called the degree of v, deg(v). The degree of
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each taxon, i.e. of an external vertex, is 1. If the degree of all the other vertices called
internal is 3, the tree is said to be an unrooted binary tree. If there exists at most one
vertex of degree 2, called the root, ρ, while the others are either of degree 1 or 3, the
tree is said to be a rooted binary tree.

Each unrooted binary tree is usually non-oriented and contains (2n−3) edges. This
tree can be split into two subtrees by removing one edge e. This induces a partition
of the set of leaves/taxa, se = {

Ie | Īe
}
. We call ST = {se}e∈E the split structure of a

tree T . Now let S be any set of (2n − 3) different bipartitions of I . This set is called
a pairwise compatible split struture if for each s = {

I | Ī} and s′ = {
I ′ | Ī ′} at least

one of these sets, I ∩ I ′,I ∩ Ī ′, Ī ∩ I ′ or Ī ∩ Ī ′ is empty. In this case by the Buneman
theorem (1971) and its consequences for phylogenetics (Semple and Steel 2003), the
split equivalence theorem tell us that an unrooted binary tree can be characterized
by its pairwise compatible split structure ST = {se}e∈E . In contrast, a rooted binary
tree is usually oriented, since there exists a root ρ, and contains (2n − 2) edges. The
orientation makes it possible to associate with each edge e the set Ie of leaves/taxa
descending from this edge. This set is called the cluster of edge e.

2.2 Cooperative games and Shapley value

Let us now consider sub-groups of the set, I = {1, . . . n}, of taxa. Each sub-group of
taxa or coalition, C , belongs to 2I , the set of 2n subsets of I . By convention, ∅ and I
are respectively called the empty and the grand coalition. Cooperative games assign a
score to each coalition, i.e. an additive measure, which evaluates the benefit that this
group can achieve by itself. This characteristic function v : 2I → R associates each
coalition C with a real, v(C). By convention, the image of the empty set is zero, i.e.
v(∅) = 0. Given this characteristic function, these games aim to propose an imputation
φv : I → R measuring the contribution, φ(i), of each individual to the score, v(I ),
of the grand coalition. Since the set of potential imputations is large, Shapley (1953)
adds additional restrictions on this mapping. He first requires that this imputation
distributes the wealth obtained by the grand coalition, implying that nothing is lost.
This efficiency axiom says that:

Axiom 1 (Efficiency)
∑

i∈Iφv(i) = v(I ).

In addition to this axiom, Shapley (1953) requires that two individuals who contribute
in the same way to every coalition obtain the same imputation. This symmetry axiom
is given by:

Axiom 2 (Symmetry) If for all C ⊆ I\ {i, j}, v (C ∪ {i}) = v (C ∪ { j}) then φv(i) =
φv( j).

He also assumes that an individual contributing to no coalition receives no payment.
In fact, he says:

Axiom 3 (Null Player) If for all C ⊆ I\ {i}, v (C ∪ {i}) = v (C) then φv(i) = 0.

Finally, Shapley (1953) adds a somewhat more technical assumption. He requires that
the imputation obtained from the sum of two characteristic functions simply be the
sum of the two initial imputations:



Axiom 4 (Additivity) For all v1, v2, and all i ∈ I , φ(v1+v2)(i) = φv1(i) + φv2(i).

Under these four axioms, he shows that:

Proposition (Shapley 1953) There exists a unique imputation rule, Shv(i), called the
Shapley value which satisfies these four axioms.

His proof is essentially based on the idea that the space of characteristic functions
can be spanned by a family of linearly independent games (winning coalitions) with
the property that each of these characteristic functions induces, under Axioms 1–3, a
unique imputation. Since these imputations also satisfy a scalar multiplication prop-
erty, the additivity axiom extends this preliminary result, in a unique way, from this
independent family of games to the set of all characteristic functions. Finally, he sup-
plements his main result by providing one of the most popular ways to compute this
value2 using an average value of the marginal contribution of each individual to the
different coalitions, i.e.:

Shv(i) =
∑

C⊆I ,i∈C
(|C|−1)!(n−|C|)!

n! (v (C) − v (C\{i})) (1)

The probability distribution used in this computation is based on the idea that individu-
als are randomly ordered. Given his rank, player i forms a coalition with the previously
ranked players and receives a gain corresponding to his marginal contribution to the
coalition formed. The probability that when he enters he will find coalitionC\{i} there
already is (|C|−1)!(n−|C|)!

n! .

3 A preliminary example

This illustration is built on two very simple trees involving a set of three taxa, I =
{1, 2, 3}. The first tree, T u , is unrooted while the second, T r , has a root. To spare
some notations, we identify, for the moment, each edge with the split induced by
the removal of this edge and assign a weight to each split. Knowledge of these two
elements provides all the information relevant to our illustration. The tree, i.e. the
split structure, is taken as given and the weights are used as parameters. Figure 1
summarizes these choices.

Let us now move to the game space. Since I = {1, 2, 3}, the set of all coalitions
(i.e. the subsets of taxa) is given by:

2I = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} (2)

where ∅ and {1, 2, 3} are called the empty and the grand coalition. A characteristic
function v : 2I → R can therefore by viewed as a vector (v (C))C∈2I ∈ R

8 with,
by convention, v(∅) = 0. In other words, the set of potential characteristic functions
studied by Shapley (1953) is, in this example, a linear subspace of dimension 7 in R

8.

2 For other expressions of the Shapley value see for instance Kleinberg and Weiss (1985) or Rothblum 
(1988).



Fig. 1 Unrooted and rooted tree with associated weights and splits

But in phylogenetics, these characteristic functions are deduced from trees by using
a phylogenetic diversity measure. For the unrooted trees, this measure, PDu(C), is
given by the sum of the weights of the edges contained in the minimal subtree spanned
by coalition C while, for the rooted trees, this quantity, PDr (C), is the sum of the
weights, this time on the minimal subtree spanned by coalition C and the root ρ.
To compute these two vectors (PDu(C))C∈2I and (PDr (C))C∈2I , we maintain the
ordering of the coalitions given in Eq. (2). In this case, these quantities write:

(
PDu(C)

)
C∈2I =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0

w1 + w2

w1 + w3

w2 + w3

w1 + w2 + w3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
(
PDr (C)

)
C∈2I =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
w1 + w4

w2 + w4

w3

w1 + w2 + w4

w1 + w3 + w4

w2 + w3 + w4

w1 + w2 + w3 + w4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3)

Taking the weights as parameters, we also observe that the game spaces Pu and Pr

associated with, respectively, unrooted and rooted trees are generated by the following
bases of characteristic functions:

Pu =
〈

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
1
1
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

{1|2,3}

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
1
0
1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

{2|1,3}

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
0
1
1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

{3|1,2}

〉

and Pr =
〈

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1
0
0
1
1
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

{1|2,3}

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
1
0
1
0
1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

{2|1,3}

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
1
0
1
1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

{3|1,2}

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1
1
0
1
1
1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

{1,2|3}

〉

(4)

We even observe that each vector composing these bases is associated with a particular
split which characterizes the topology of each tree. To understand this, remember that
each split is obtained by removing an edge, say e0. We can therefore take the inital
tree structure, either in the unrooted or in the rooted case, and set all the weights to



0, except for edge e0 whose weight is 1, and compute characteristic function b(e0)
associated with this new tree by taking the suitable PD function.3 By repeating the
argument for each element of the split structure of the two trees, we find the two bases
of Eq. (4). This means that the dimension of the characteristic function space can be
related to the number of splits or edges and is respectively 3 and 4 for Pu and Pr .
This clearly shows that these game subspaces differ somewhat, depending on whether
trees are unrooted or rooted.

When we move to the computation of the Shapley values, it becomes important to
remember that the Shapley operator is a linear operator from the game space into the
value space, hereR

3. Thismeans thatweonlyneed to compute the images of the vectors
composing each basis to obtain what Haake et al. (2007) called the transformation
matrices. We later provide simpler formulas to compute these values; however, at that
point, the reader can simply use the Shapley value given by Eq. (1). In our example,
these transformation matrices are:

MTu = 1

6

⎡

⎣
4 1 1
1 4 1
1 1 4

⎤

⎦ and MTr = 1

2

⎡

⎣
2 0 0 1
0 2 0 1
0 0 2 0

⎤

⎦ (5)

where, for instance, the first column of, say, MTu is composed of the Shapley values
of taxon i = 1, . . . , 3 obtained with the characteristic function associated with the
split {1 | 2, 3}. Moreover, by the linearity of the Shapley operator, the Shapley values
of taxon i = 1, . . . , 3 for the two phylogenetic trees depicted in Fig. 1 are:

(
Shu(i)

)3
i=1 = 1

6

⎛

⎝
4w1 + w2 + w3
w1 + 4w2 + w3
w1 + w2 + 4w3

⎞

⎠ and
(
Shr (i)

)3
i=1 = 1

2

⎛

⎝
2w1 + w4
2w2 + w4

2w3

⎞

⎠ (6)

Let us now compare these two Shapley values. This calls for equivalent trees. This
is why we introduce, in line with Wicke and Fischer (2017), the notion of an unrooted
rooted tree. This operation associates each rooted tree with an equivalent unrooted
tree. This new tree, T ur , is obtained by deleting the two incident edges to the root
and by replacing these missing edges by a single edge whose weight is the sum of
the weights of the two initial edges. In our example (Fig. 1), the unrooted rooted tree
is obtained by taking the unrooted tree and replacing w3 by w′

3 = (w3 + w4). This
means that the Shapley values of our taxa for the equivalent unrooted rooted tree are:

(
Shur (i)

)3
i=1 = 1

6

⎛

⎝
4w1 + w2 + (w3 + w4)

w1 + 4w2 + (w3 + w4)

w1 + w2 + 4 (w3 + w4)

⎞

⎠ = 1

6

⎡

⎣
4 1 1 1
1 4 1 1
1 1 4 4

⎤

⎦

︸ ︷︷ ︸
MTur

⎛

⎜⎜
⎝

w1
w2
w3
w4

⎞

⎟⎟
⎠ (7)

3 To perform this computation, take, for instance, our unrooted tree and the split {1 | 2, 3} associated with
the removal of the edge of weight w1. If we set  w1 = 1 and w2 = w3 = 0 in this tree and apply the 
PDu (C) function given in Eq. (3), we obtain the first vector of the basis of Pu [Eq. (4)].



The transformation matrix MTur associated with an unrooted rooted tree is, in our
example, obtained by duplicating the last column of MTu [see Eq. (6)]. Moreover,
since MTur and MTr are now two matrices of the same dimension, we can say that:

(
Shur (i)

)3
i=1 − (

Shr (i)
)3
i=1 =

⎛

⎝1

6

⎡

⎣
4 1 1 1
1 4 1 1
1 1 4 4

⎤

⎦ − 1

2

⎡

⎣
2 0 0 1
0 2 0 1
0 0 2 0

⎤

⎦

⎞

⎠

⎛

⎜⎜
⎝

w1
w2
w3
w4

⎞

⎟⎟
⎠ (8)

= 1

3

⎡

⎢⎢
⎣

−1 1
2

1
2 −1

1
2 −1 1

2 −1

1
2

1
2 −1 2

⎤

⎥⎥
⎦

︸ ︷︷ ︸
A

⎛

⎜⎜
⎝

w1
w2
w3
w4

⎞

⎟⎟
⎠ (9)

The two Shapley values are therefore the same for all vectors of weights which belong
to the kernel of A. Moreover, since both Shapley values satisfy the efficiency axiom,
we have that ε′

3 · A = 0, where ε3 denotes the vector of R
3 with all entries equal to 1.

This means that the kernel is given by the weights satisfying:
[−1 1

2
1
2 −1

](
w1
w2

)
+
[ 1

2 −1
1
2 −1

](
w3
w4

)
= 0 (10)

⇔
(

w1
w2

)
=
[
1 −2
1 −2

](
w3
w4

)
(11)

At this point, we can conclude that, in our example, the Shapley values computed on
a rooted tree or on its associated unrooted rooted tree are the same on a subset of
weights of dimension 2 satisfying Eq. (11). The reader will even note that the weights
(1, 1, 3, 1) satisfy this condition, meaning that the result remains true if the weights
are assumed to be non-negative. The set ker(A) ∩ R

4+ simply becomes a polytope of
dimension 2.

In the rest of this manuscript, we first re-examine the construction of a Shapley
value successively for unrooted and rooted trees. We then introduce unrooted rooted
trees to compare these values. Finally, we perform simulations to explore how the
species rankings change when the two Shapley values are known to be different.

4 Shapley value for unrooted trees

In this case, the phylogenetic diversity, PDu(C), of a coalition C ∈ 2I is given by the
sum of the weights of the edges contained in the minimal subtree spanned by coalition
C . Since there exists, for any tree, a unique path, {i → j} ⊆ E which joins each pair
{i, j} of taxa, the edges of this subtree are simply given by Eu

C = ∪{i, j}⊆C {i → j},
the union of all paths joining two taxa in coalition C , and the phylogenetic diversity
of a coalition C becomes:

PDu(C) = ∑

e∈Eu
C

w(e) (12)



Let us now identify the function PDu(C), for C ∈ 2I , as the characteristic function
of a cooperative game and denote byPu the set of all characteristic functions obtained
by changing the weights while keeping the tree unchanged. This set, Pu , is obviously
a subset of the set of all characteristic functions of cooperative games explored by
Shapley (1953). We even claim that Pu is a linear subspace of dimension (2n − 3)
corresponding to the number of edges of an unrooted binary tree with n leaves. The
intuition behind this result is quite simple. Since the tree structure remains unchanged,
we can introduce a family of (2n − 3) new phylogenetic trees. Each of these trees,
say of type Te, is associated with a given edge e ∈ E and has the property that the
weight of edge e is w(e) = 1, while for all e′ �= e, w(e′) = 0. With this property, the
phylogenetic diversity, bue (C), of a coalition C associated with tree Te is either 0 or 1
and, from Eq. (12), it is immediate that this quantity is 1 if and only if there exist two
taxa in C connected by a path containing edge e. More formally, we can say that:

bue (C) =
{
1 if there exists {i, j} ⊆ C with e ∈ {i → j}
0 otherwise

(13)

Moreover, we know that the removal of edge e from the tree causes the tree to split
into two subtrees isolating two subsets of taxa. This partition se = {

Ie | Īe
}
produces

a new interpretation of Eq. (13) mainly based on the set of taxa. In fact, if there exists a
path between two elements ofC which contains e, this also means that coalitionC has
a non-empty intersection with both subsets composing the partition se, i.e. Eq. (13)
becomes:

bue (C) =
{
1 if Ie ∩ C �= ∅ and Īe ∩ C �= ∅
0 otherwise

(14)

It is also immediate that the family,
{
bue
}
e∈E ⊂ Pu , of characteristic functions has the

property that for each C ∈ 2I :

PDu(C) = ∑

e∈E
w(e)bue (C) (15)

This last formula is typically a new reading of the split decomposition property of
phylogenetic diversity (see for instanceMinh et al. (2009), or Volkmann et al. (2014)).
In fact, we simply say that each element of the split structure generates a characteristic
function in the game space and that the linear combination of these characteristic
functions spans the game space. We can even go a step further by showing that:

Lemma 1
{
bue
}
e∈E ⊂ Pu is a basis of the linear set Pu. Moreover, the dimension of

Pu is (2n − 3).

Proof Let (αe)e∈E be a vector of scalars in R
2n−3 which satisfies:

∑

e∈E
αeb

u
e (C) = 0 for all C ∈ 2I (16)



Now select an edge e with induced split
{
Ie | Īe

}
. If this edge is internal, construct

the partition {E1 | e | E2} of the set of edges which isolates e and the non-empty sets
of edges, E1 and E2, associated with the subtrees, respectively, spanned by Ie and
Īe. In this case, we observe that: (i) for each e′ ∈ E1, the associated split

{
Ie′ | Īe′

}

has the property that Ie′ ⊂ Ie so that, by Eq. (14), bue′(Ie) = 1, (ii) for each e′ ∈ E2

the associated split
{
Ie′ | Īe′

}
verifies Ie ⊂ Ie′ so that bue′(Ie) = 0 and finally (iii)

bue (Ie) = 0 since Ie cannot intersect Īe. It follows from Eq. (16) that:

∑

e′∈E
αe′bue′(Ie) = ∑

e′∈E1

αe′ = 0 (17)

By a symmetric argument, Eq. (16) also implies that:

∑

e′∈E
αe′bue′( Īe) = ∑

e′∈E2

αe′ = 0 (18)

Moreover, if we consider the grand coalition, Eq. (14) says that ∀e′ ∈ E , bue′(I ) = 1.
It follows from Eq. (16):

∑

e′∈E
αe′bue′(I ) = ∑

e′∈E
αe′ = 0 (19)

By combining Eqs. (17), (18) and (19), we obtain that αe = 0. This argument applies
for each internal edge. Moreover, if our selected edge, e, is external we observe that
E2 = ∅ and E1 = E\ {e}. This means, in the previous argument, that point (ii) and
Eq. (18) are vacuous but Eqs. (17) and (19) now imply that αe = 0. Since the previous
point is independent of selection of edge e, we can, by repeating the argument for all
e ∈ E , conclude that (αe)e∈E = 0. �
Remark 1 From Eq. (14), it can be seen that the basis vector

(
bue (C)

)
C∈2I , associated

with edge e when restricted to coalitions, C , composed of two taxa {a, b} ∈ I2 ⊂ 2I ,

corresponds to the splitmetricσ e =
(
σ e{a,b}

)

{a,b}∈I2
associatedwith edge e extensively

studied by Bandelt and Dress (1992). It is, in particular, known that the family {σ e}e∈E
of split metrics associated with a tree forms a family of (2n − 3) linearly independent
vectors (see, for instance,Desper andGascuel 2005). This result provides an alternative
proof of Lemma 1.

The next step in our analysis is the construction of the Shapley value, Shuv(i), of a
taxon i ∈ I , using the decomposition of PDu(·) provided by Eq. (15). This requires a
preliminary step consisting in computing the Shapley value, Shubue (i), of a taxon i ∈ I
for each characteristic function, bue (·) composing the basis of the game space. By the
standard Shapley formula [see Eq. (1)], this quantity is:

Shubue (i) =
∑

C⊆I ,i∈C
(|C|−1)!(n−|C|)!

n!
(
bue (C) − bue (C\{i})) (20)



Let us now concentrate on the marginal contribution
(
bue (C) − bue (C\{i})) of taxon i

to coalitionC . This quantity belongs, a priori, to {−1, 0, 1}. But bue (C) = 0 obviously
implies by Eq. (14) that bue (C\{i}) = 0, meaning that this marginal contribution is
either 0 or 1. Moreover, using Eq. (14) again, if i ∈ Ie, this quantity is equal to 1 if and
only if C\{i} is non-empty and a subset of Īe, while if i ∈ Īe, this occurs if and only
if the non-empty set (C\{i}) ⊆ Ie. We now need a combinatorial analysis to identify
the number of occurrences of these cases, concluding after simplification that:

Lemma 2 If
{
Ie | Īe

}
denotes the split associated with edge e, the Shapley value of

taxon i ∈ I for the characteristic function bue (·) is:

Shubue (i) =
(

Ii∈Ie

∣∣ Īe
∣∣

n |Ie| + (
1 − Ii∈Ie

) |Ie|
n
∣∣ Īe

∣∣

)

with Ii∈Ie =
{
1 if i ∈ Ie
0 otherwise

(21)

Proof Let us first observe that Eq. (20) can also be written as:

Shubue (i) =
∑

C⊆I\{i}
|C|!(n−|C|−1)!

n!
(
bue (C ∪ {i}) − bue (C)

)

︸ ︷︷ ︸
=Δe

(22)

Let us now assume that i ∈ Ie. In this case Eq. (14) says that Δe = 1 if and only if
C ⊆ Īe and C �= ∅. To verify this point, note that (i) if C �= ∅ and C ⊆ Īe, then
bue (C) = 0 and bue (C ∪ {i}) = 1 since i ∈ Ie so that Δe = 1 and (ii) if not, either
C intersects both Ie and Īe so that be (C) = be (C ∪ {i}) = 1, or C ⊂ Ie which
implies that bue (C) = bue (C ∪ {i}) = 0, i.e. in both cases Δe = 0. This preliminary
observation clearly says that the terms composing Shbue (i) are different from 0 if and

only if C ⊆ Īe and C �= ∅. Let us now observe that (i) there exist

(∣∣ Īe
∣∣

|C |
)
potential

choices of a subset of c = |C | elements in Īe and (ii) the size of this subset, C , can be
c = 1, . . . ,

∣∣ Īe
∣∣. It follows that the Shapley value becomes:

Shubue (i) =
∣∣ Īe

∣∣∑

c=1

c!(n−c−1)!
n!

(∣∣ Īe
∣∣

c

)
=

∣∣ Īe
∣∣!

n!

∣∣ Īe
∣∣∑

c=1

(n−c−1)!
( Īe−c)!

=
∣∣ Īe

∣∣!(n−∣∣ Īe
∣∣−1)!

n!

∣∣ Īe
∣∣∑

c=1

(
n − c − 1

n − ∣∣ Īe
∣∣ − 1

)
(23)

Moreover, an iterative use of the Pascal formula gives:

Shubue (i) =
∣∣ Īe

∣∣!(n−∣∣ Īe
∣∣−1)!

n!
(

n − 1

n − ∣∣ Īe
∣∣

)
(24)

and since |Ie| + ∣∣ Īe
∣∣ = n, we have:
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Shubue (i) =
∣∣ Īe

∣∣

n
(
n − ∣∣ Īe

∣∣) =
∣∣ Īe

∣∣

n |Ie| (25)

Finally, if i ∈ Īe we simply need to apply the same argument by replacing Īe by Ie.

This gives Shubue (i) = |Ie|
n
∣∣ Īe

∣∣ and, combining both results, Eq. (21) follows. �
To go a step further, let us observe that Eq. (20) is homogeneous of degree 1 with

respect to the characteristic function bue (·), meaning that multiplying bue (·) by any
scalar α ∈ R, yields ∀i ∈ I , Shα·bue (i) = α · Shα·bue (i). Since the construction of the
Shapley value also requires additivity (see Axiom 4), it follows that:

ShuPDu (i) = Shu(∑

e∈E
w(e)bue

)(i) = ∑

e∈E
w(e)Shubue (i) (26)

Since
{
bue
}
e∈E is a basis ofPu,weeven say that this imputation rule is unique,meaning

that there exists a unique function which attributes to each phylogenetic characteristic
function PDu(·) individual contributions to biodiversity.4 To conclude this discussion,
we can say that:

Proposition 1 Let T u be an unrooted phylogenetic tree with n leaves whose split
structure is given by ST u = {{

Ie | Īe
}
e∈E

}
. Under the standard Shapley approach

based on Axioms 1, 2, 3 and 4 , the Shapley value of species i is given by:

ShuT u (i) =
∑

e∈E
w(e)

(

Ii∈Ie

∣∣ Īe
∣∣

n |Ie| + (
1 − Ii∈Ie

) |Ie|
n
∣∣ Īe

∣∣

)

︸ ︷︷ ︸
mTu
i,e

with Ii∈Ie =
{
1 if i ∈ Ie
0 otherwise

(27)

The previous proposition also shows that, for a given tree Tu , the relation between
the Shapley value

(
ShuT u (i)

)n
i=1 and the weights is linear and is given by the so-called

Shapley transformation matrix, MTu =
[
mTu

i,e

]

i∈I
e∈E

of dimension (n, 2n−3). In partic-

ular, if c(i, e) denotes the number of taxa that are on the same side of a split, se, as taxon
i and f (i, e) denotes its complement (i.e. f (i, e) = n− c(i, e)), we reached, with a
different proof, the formula proposed byHaake et al. (2007) or Volkmann et al. (2014),
the latter highlighting the importance of the split structure. In other words, we can say:

Corollary 1 (Haake et al. 2007, Th. 4) The Shapley operator is linear in weights, i.e.
ShuT u (·) = MTu · w(·) and the (i, e)th entry of the Shapley transformation matrix,
MTu , of dimension (n, 2n − 3) is given by:

4 This result is not in contradiction with Haake et al. (2007), Th. 6., stating that several weighting structures
can induce the same Shapley value. Our uniqueness result simply says that the imputation rule is unique
but not that this map is injective.



mTu

i,e = f (i, e)

n × c(i, e)
for i ∈ I and e ∈ E (28)

This linearity property, which is less clear from the early definition of the Shapley
value [see Eq. (1)], comes from (i) the linear decomposition of the characteristic
function of the PDu game with respect to the weights, and (ii) the linearity of the
Shapley operator as a function mapping the set of characteristic functions into the
imputation space (i.e. the vector of Shapley values). These two properties combined
show that the Shapley transformation map introduced by Haake et al. (2007) is a linear
operator with respect to the weights (for a further discussion on the transformation
matrix see Wicke and Fischer 2019) and then the following Remark 2:

Remark 2 In line with Haake et al. (2007), we observe that the Shapley transformation
matrix,MTu , is related to the topology of the tree. In fact a column of this matrix
is the Shapley imputation associated with one element of our basis

{
bue
}
e∈E , i. e.(

mTu

i,e

)n

i=1
= Shubue (·). Moreover, each of the games composing this basis is related to

a given element of the split structure of the tree.

5 Shapley value for rooted trees

To capture the main distinctions between Shapley values computed on unrooted and
rooted trees, let us now perform the same kind of analysis for rooted trees. The main
difference appears at the beginning: the definition of the phylogenetic diversity of a
coalition is not exactly the same. This induces a different game space with, naturally,
different bases and therefore different Shapley values.

Let us first turn back to the definition of phylogenetic diversity of a coalition in the
case of rooted trees. This measure remains the sum of the weights along a subtree,
but this sum is now computed on the minimal subtree spanned by coalition C and the
root, ρ. This means that the relevant edges are those belonging to any path, {ρ → i},
from the root to a taxon i ∈ C . If Er

c = ∪i∈C {ρ → i} denotes this set of edges, this
new characteristic function writes:

PDr (C) = ∑

e∈Er
c

w(e) (29)

Both this function, PDr (·) and the subset, Pr , of characteristic functions obtained 
by changing the weights are completely different from PDu(·) and Pu introduced in 
the previous section. For instance, any coalition, {i}, formed by a single taxon i ∈ I 
now has a non-zero phylogenetic diversity. Moreover Pr is expected to be a linear 
subspace of dimension (2n − 2), since any rooted binary tree with n leaves contains 
(2n − 2) edges.

Appart from the Shapley value itself, the method of construction remains the same. 
We now consider a family of size (2n − 2) of rooted trees each with a unit weight 
assigned to a specific edge and zero elsewhere. But the derivation of the characteristic
functions 

{
bre(·)

}
e∈E induced by these trees changes. For a coalition C , bre(C) is now



equal to 1 if and only if at least one path from the root to a taxon i ∈ C contains edge
e ∈ E , i.e.:

bre(C) =
{
1 if there exists i ∈ C with e ∈ {ρ → i}
0 otherwise

(30)

Since the tree is rooted, each edge e ∈ E can also be associated with the cluster Ie ⊂ I ,
which contains the subset of all taxa descending from this edge. This observation again
leads to a simpler definition of the family

{
bre(·)

}
e∈E , since claiming the existence of a

path from the root to a taxon i ∈ C containing edge e amounts to claiming that coalition
C has a non-empty intersection with cluster Ie. It follows that bre(C) becomes:

bre(C) =
{
1 if C ∩ Ie �= ∅
0 otherwise

(31)

and it can be shown that:

Lemma 3
{
bre
}
e∈E ⊂ Pr is a basis of the linear set Pr . Moreover, the dimension of

Pr is (2n − 2).

Proof Let (αe)e∈E be a vector of scalars in R
2n−2 such that:

∑

e∈E
αeb

r
e(C) = 0 for all C ∈ 2I (32)

To show that (αe)e∈E = 0, we proceed by induction, starting from the leaves and
moving back to the root of the tree. So let us denote by ei the external edge leading
to leaf i ∈ I and let Ie be the cluster induced by each edge e ∈ E . From Eq. (31),
bre (I\ {i}) = 0 if and only if (I\ {i}) ∩ Ie = ∅. This only occurs if Ie = {i}, that is
for the cluster associated with edge ei . We can therefore say, by Eq. (32), that:

∑

e∈E
αeb

r
e (I\ {i}) =

∑

e∈E\{ei }
αe = 0 (33)

With a similar argument as in the unrooted case [see Eq. (19)], we can say that∑
e∈Eαe = 0 and we immediately conclude that αei = 0 for all brei (·) associated

with an external edge, ei .
Now let us consider an internal edge e whose cluster is Ie, let us denote by Es the
subset of edges contained in the subtree which follows edge e, and let us assume that
for all e′ ∈ Es , αe′ = 0. To extend our result by induction, we now need to compute
bre′

(
Īe
)
for all e′ ∈ E . From Eq. (31), bre′

(
Īe
) = 0 if and only if

(
Īe
) ∩ Ie′ = ∅. This

situation only occurs if Ie′ ⊆ Ie, i.e. for clusters associated with edges e′ ∈ Es . From
Eq. (32) estimated at C = Īe, we can therefore say that:

∑

e′∈E
αe′bre′

(
Īe
) =

∑

e′∈E\{Es∪{e}}
αe′ = 0 (34)



By using again the fact that that
∑

e∈Eαe = 0 and since we have assumed that for all

es ∈ Es , αes = 0, we get
∑

e′∈E\Es
αe′ = 0. Comparing with Eq. (34), we conclude

that αe = 0.
Using this argument by induction, we can say that (αe)e∈E = 0. �

The next step consists in computing of the Shapley values for each characteristic
functionbre(·) as inEq. (20)wherebre(·) replaces bue (·). It is immediate that themarginal
contribution

(
bre (C) − bre (C\{i})) of taxon i to coalitionC is again either 0 or 1, since

bre(C) = 0 always implies that bre(C\{i}) = 0. Moreover, if i /∈ Ie, the path {ρ → i}
never meets edge e, meaning that i ′s marginal contribution to any coalition is always
0. In the opposite case, i.e. i ∈ Ie, this taxon has a unit marginal contribution if and
only if the rest of coalition C is included in Īe (the subset C\{i} could be empty). It
remains, by a combinatorial argument, to identify the number of cases in which this
last situation occurs and to reach the conclusion that:

Lemma 4 If Ie denotes the cluster associated with edge e, the Shapley value of taxon
i ∈ I for the characteristic function bre(·) is:

Shbre (i) = Ii∈Ie
1

|Ie| with Ii∈Ie =
{
1 if i ∈ Ie
0 otherwise

(35)

Proof As in the proof of Lemma 2, we now need to identify the cases in which Δe of
Eq. (22) is equal to one (when, of course, bue (·) is replaced by bre (·)).
Let us first assume that i ∈ Ie. From Eq. (31), (i) bre (C ∪ {i}) = 1 for any C ⊆ I\ {i}
and (ii) bre (C) = 0 if and only if C ⊆ Īe (C being possibly empty), meaning that

Δe = 1 if and only if C ⊆ Īe. Moreover, there again exist

(∣∣ Īe
∣∣

|C |
)
potential choices of

a subset of c = |C | elements in Īe but now c = 0, . . . ,
∣∣ Īe

∣∣ since C can be empty. The
Shapley value is therefore:

Shbre (i) =
∣∣ Īe

∣∣∑

c=0

c!(n−c−1)!
n!

(∣∣ Īe
∣∣

c

)
=

∣∣ Īe
∣∣!

n!

∣∣ Īe
∣∣∑

c=0

(n−c−1)!
( Īe−c)!

=
∣∣ Īe

∣∣!(n−∣∣ Īe
∣∣−1)!

n!

∣∣ Īe
∣∣∑

c=0

(
n − c − 1

n − ∣∣ Īe
∣∣ − 1

)
(36)

By adapting the previous iterative Pascal formula [see Eq. (24)], we obtain:

Shbue (i) =
∣∣ Īe

∣∣!(n−∣∣ Īe
∣∣−1)!

n!
((

n − 1

n − ∣∣ Īe
∣∣

)
+
(

n − 1

n − ∣∣ Īe
∣∣ − 1

))

= 1
n

( ∣∣ Īe
∣∣

(n−∣∣ Īe
∣∣)

+ 1

)
= 1

|Ie| (since |Ie| + ∣∣ Īe
∣∣ = n) (37)

Now assume that i ∈/ Ie. In this case, either bre (C) = 1 or 0 depending on whether 
C ∩ Ie �= ∅ or not; but adding i to C makes no difference anyway, since i ∈/ Ie. It



follows from the null player axiom (see Axiom 3) that Shbre (i) = 0. By combining
the two results, we get Eq. (35). �

We observe, with the same argument as in the preceding section, that the Shapley
value is still a linear operator on Pr and we can conclude that:

Proposition 2 Let T r be a rooted phylogenetic tree with n leaves whose cluster struc-
ture is given by CT r = {Ie}e∈E . Under the standard Shapley approach based on
Axioms 1, 2, 3 and 4, the Shapley value of species i is given by:

ShrT r (i) =
∑

e∈E

Ii∈Ie
|Ie| w(e) with Ii∈Ie =

{
1 if i ∈ Ie
0 otherwise

(38)

This expression can even be simplified. Due to the presence of the indicator function
Ii∈Ie , the sum only runs over the set of edges, e, whose cluster, Ie, contains taxon i .
Moreover, it is straightforward to verify that this set can be identified with the set of
all edges contained in the path {ρ → i}. This means that the Shapley value is the sum
along {ρ → i} of the weights associated with these edges divided by De = |Ie|, the
number of taxa descending from each of these edges. But this is the definition of the
Fair Proportion index introduced by Redding and Mooers (2006).

Corollary 2 (Fuchs and Jin 2015, Th. 1) The Shapley value of an individual in a rooted
binary tree T r is equal to the Fair Proportion index, i.e.

ShrT r (i) =
∑

e∈{ρ→i}

w(e)

De
= FPr

T r (i) (39)

To conclude this section on the Shapley values of rooted trees, we will briefly look
at the notion of transformation matrices again.

Remark 3 For rooted trees, the transformation matrix Mr
Tr is given by the (n, 2n − 2)

matrix Mr
Tr =

[
Ii∈Ie|Ie|

]

i∈I ,e∈E [see Eq. (38 )], column e being the Shapley imputation

induced by the PDr game defined by the basis vector
(
bre (C)

)
C∈2I [see Eq. (35)].

The Shapley imputation is given by
(
ShrT r (i)

)
i∈I = Mr

Tr · (w(e))e∈E . Finally, this
matrix Mr

Tr is deduced from the topological structure of the tree, precisely, from the
cluster structure contrary to the unrooted case where the slipt structure matters.

6 Comparing the two Shapley values

This comparison calls for identical trees, however the two Shapley values are typically
defined on different trees (i.e. unrooted vs rooted). To overcome this problem, we
introduce, in line with Wicke and Fischer (2017), the notion of unrooted rooted trees.
The idea is the following. We start with a rooted phylogenetic tree T r = (V , E, w (·))
and transform the two edges incident to the root, say e1 and e2, into a single edge, say



e′
1 whose weight is the sum of the weights of the initial incident edges, i.e. w(e′

1) =
w(e1) + w(e2). The new tree

T ur = (
V \ {ρ} , (E\ {e1, e2}) ∪ {

e′
1

}
,
(
(w (e))e∈E\{e1,e2} , w(e′

1)
))

(40)

is called the unrooted rooted tree induced by the rooted tree T r . The construction of
the rooted Shapley values on T r directly follows from Eq. (38), while the unrooted
Shapley value on T ur can be written as:

Proposition 3 The unrooted Shapley value, ShuT ur (i), of an unrooted rooted tree, T ur ,
is

ShuT ur (i) =
∑

e∈E
w(e)

(

Ii∈Ie

∣∣ Īe
∣∣

n |Ie| + (
1 − Ii∈Ie

) |Ie|
n
∣∣ Īe

∣∣

)

(41)

where E, w (·) and s = {{
Ie | Īe

}}
e∈E are the edges, weights and split structure of

the rooted tree, T r

Proof From Eq. (27), the unrooted Shapley value on T ur is :

ShuT ur (i) = w(e′
1)

(

Ii∈Ie′1

∣∣∣ Īe′1

∣∣∣

n
∣∣∣Ie′1

∣∣∣
+
(
1 − Ii∈Ie′1

)
∣∣∣Ie′1

∣∣∣

n
∣∣∣ Īe′1

∣∣∣

)

︸ ︷︷ ︸
m

+
∑

e∈E\{e1,e2}
w(e)

(

Ii∈Ie

∣∣ Īe
∣∣

n |Ie| + (
1 − Ii∈Ie

) |Ie|
n
∣∣ Īe

∣∣

)

(42)

Now let us denote by
{
Ie1 | Īe1

}
and

{
Ie2 | Īe2

}
the split structures associated with

edges e1 and e2 of the rooted tree T r , with the first component corresponding to the
cluster of each edge. Since these edges are incident to the root, Ie1 = Īe2 . Moreover,

if
{
Ie′

1
| Īe′

1

}
denotes the split associated with e′

1 in T ur we can say, w.l.o.g., that

Ie1 = Ie′
1
. It follows that:

m = Ii∈Ie1
∣∣ Īe1

∣∣

n
∣∣Ie1

∣∣ +
(
1 − Ii∈Ie1

) ∣∣Ie1
∣∣

n
∣∣ Īe1

∣∣ =
(
1 − Ii∈Ie2

) ∣∣Ie2
∣∣

n
∣∣ Īe2

∣∣ + Ii∈Ie2
∣∣ Īe2

∣∣

n
∣∣Ie2

∣∣

Since w(e′
1) = w(e1) + w(e2) and, T r , T ur have identical weights and splits except

for edges e1 and e2, Eq. (41) is satisfied. �
To compare the two values, let us now compute their difference, given by:

∀i ∈ I , Δsh(i) = ShuT ur (i) − ShrT r (i)

= 1
n

∑

e∈E
w(e)

(

−Ii∈Ie + (
1 − Ii∈Ie

) |Ie|∣∣ Īe
∣∣

)

(43)



Since both Shapley operators are linear with respect to the weight vector, w =
(w(e))e∈E , the difference, Δsh = (Δsh(i))i∈I , shares the same property and can
be written as:

Δsh = 1
n A · w, the generic term of A being ai,e =

{−1 if i ∈ Ie
|Ie|∣∣ Īe

∣∣ otherwise (44)

where A is a (n, 2n − 2) matrix.
The properties of this matrix are crucial to understanding the difference between

these two Shapley values. First, note that both values satisfy efficiency (see Axiom 1).
This implies that:

Proposition 4 The image, 〈A〉, of the linear operator A is orthogonal to εn ∈ R
n, the

vector in which all entries are equal to 1. It follows that the rank of matrix A is at most
(n − 1).

Proof From Axiom 1, we know that the sum over the taxa of the Shapley values is
always equal to the phylogenetic diversity of the grand coalition I , i.e.

∑
i∈I ShrT r (i) =

vT r (I ), and
∑

i∈I ShuT ur (i) = vT ur (I ). Moreover, a rooted tree and its associated
unrooted rooted tree share the same phylogenetic diversity, i.e. vT r (I ) = vT ur (I ).
It follows that

∑
i∈IΔsh(i) = 0 regardless of the weight vector. From Eq. (44), we

conclude that ε′
n · A = 0 or that 〈A〉 is orthogonal to εn ∈ R

n which means that
rank(A) ≤ n − 1. �

This orthogonality property has an additional consequence. We can claim that it is
impossible to find a system of weights,w = (w(e))e∈E , which satifies either Aw < 0
or Aw > 0, without contradicting ε′

n · A = 0. In other words, it is impossible to have
for all i , ShuT ur (i) ≥ ShrT r (i) or ShuT ur (i) ≤ ShrT r (i)with at least one strict inequality,
meaning that neither the unrooted nor the rooted Shapley value dominates the other.

Since
∑

i∈IΔsh(i) = 0, the previous Lemma also suggests that one component of
Δsh is redundant. We dismiss the last component of this vector and call Δ̃sh the new
difference vector. Let us now denote by Eext and Eint the sets of relevant external and
internal edges and by en the edge incident to taxon n. After a suitable reordering of
the edges (i.e. the columns of A and the weight space) Δ̃sh can be written as:

(
Δ̃sh(i)

)

i=I\{n} =

1
n

⎡

⎢⎢
⎣
[
ai,e

]
i=I\{n},e∈Eext\{en}︸ ︷︷ ︸

=Bext

| [ai,en
]
i=I\{n}︸ ︷︷ ︸

=Ben

| [ai,e
]
i=I\{n},e∈Eint︸ ︷︷ ︸
=Bint

⎤

⎥⎥
⎦ · w (45)

It remains to prove that the (n − 1, n − 1) matrix Bext is invertible in order to claim
that:



Proposition 5 A is a linear mapping of rank (n − 1). Its kernel, also of dimension
(n − 1), is given by the weights, w ∈ R

2n−2, which satisfy:

(w(e))e∈Eext\{en)

= n−1
n

(
In−1 + εn−1 · (εn−1)

′) · [Ben � Bint
] ·

(
w(en)
(w(e))e∈Eint

)
(46)

with In−1 the identity matrix of R
n−1 and εn−1 the vector of Rn−1 in which all entries

are equal to 1.

Proof The kernel, ker(A), of A satisfies Aw = 0. But we know that, for the vector
εn ∈ R

n , (εn)
′ · A = 0, meaning that the last equation in Aw = 0 is redundant. It

follows from Eq. (45) that:

w ∈ ker(A) ⇔ [
Bext | Ben | Bint

] ·
⎛

⎝
(w(e))e∈Eext\{en}
w(en)
(w(e))e∈Eint

⎞

⎠ = 0 (47)

Let us now concentrate on the (n − 1, n − 1) matrix Bext . To construct this matrix,
we need to return to the early definition of the generic term aie of the matrix A [see
Eq. (44)] and observe, since we are looking at external edges, that Ie = {i}. It follows
that:

Bext =

⎡

⎢⎢⎢⎢
⎣

−1 1
n−1 · · · 1

n−1

1
n−1

. . .
. . .

...

...
. . .

. . . 1
n−1

1
n−1 · · · 1

n−1 −1

⎤

⎥⎥⎥⎥
⎦

= − n
n−1

(
In−1 − 1

n εn−1 · (εn−1)
′) (48)

with In−1 the identity matrix of R
n−1 and εn−1 the unit vector of R

n−1. Moreover,
since (εn−1)

′ · εn−1 = n − 1, a simple computation shows that:

(
In−1 − 1

n εn−1 · (εn−1)
′) · (In−1 + εn−1 · (εn−1)

′) = In−1 (49)

It follows that (Bext )
−1 = − n−1

n

(
In−1 + εn−1 · (εn−1)

′). Eq. (46) of Proposition 5
directly follows from the block decomposition provided by Eq. (47). This also shows
that dim (ker(A)) = n − 1. �

The previous Lemma shows that the two Shapley values are the same on a sub-
set of weights of dimension (n − 1) as long as there are no restrictions on the set
of weights. Usually, however, these weights are assumed to be non-negative. So if
ker(A) ∩ R

2n−2+ = {0}, the previous result is of no real interest. The next lemma
shows that this is not the case. We even go a step further by proving that:

Proposition 6 The kernel of A intersects the interior of the positive orthant, i.e. 
ker(A) ∩ R2n−2 �= ∅. The relative interior of ker(A) ∩ R2n−2 is therefore also of 
dimension n

++
− 1. 

++



Proof This result follows from Farkas’ Lemma, in particular from Stiemke’s alterna-
tive, which states that either (i) there existsw ∈ R

2n−2 satisfying Aw = 0 andw � 0,
or (ii) there exists x ∈ R

n satisfying x ′A > 0. We show that (ii) is impossible. We
begin with the matrix A given by Eq. (44) and reorganize the columns such that the n
first columns correspond to external edges. The matrix becomes [Aext | Aint ]. Since
x ′A > 0 assume first that x ′Aext > 0. From Eq. (44), this amounts to saying that for
all i = 1, . . . , n

− xi + 1

n − 1

n∑

j=1
j �=i

x j ≥ 0 with at least one strict inequality (50)

or, equivalently, that for all i = 1, . . . , n,

1

n

n∑

j=1

x j ≥ xi with at least one strict inequality (51)

Summing over i gives
∑n

j=1 x j >
∑n

j=1 xi , an impossibility.
Since x ′A > 0, consider now the complementary case given by x ′Aext = 0 and

x ′Aint > 0. The first condition and Eq. (51) say that for all i = 1, . . . , n, 1n
∑n

j=1 x j =
xi so that each xi is equal to the same value λ = 1

n

∑n
j=1 x j . In other words, we have

x = λεn with εn the vector of R
n in which all entries are equal to 1. Moreover, since

x ′A > 0, there exists an internal edge e and a column, aeint , in Aint which satisfies
λε′

n · aeint > 0. But by Proposition 4, ε′
n · aeint = 0, which is again an impossibility. �

The next remark summarizes this first discussion so far.

Remark 4 For a given tree structure, we can say that:

(i) neither the unrooted rooted nor the rooted Shapley value induces a higher eval-
uation of the contribution to biodiversity for all taxa,

(ii) the two Shapley values are identical on a linear subset of dimension (n − 1) of
weights satisfying Eq. (46),

(iii) the previous result extends to non-negative weights but the subset on which these
values are the same becomes a polytope of dimension (n − 1),

(iv) for the other weights, at least two taxa with different Shapley values exist.

In line with Hartmann (2013), let us now compare the contribution of the weight
of an edge to each Shapley value. This contribution is straightforward for the rooted
Shapley value. Since the latter is equal to the Fair Proportion index, each edge only
contributes to its descendants, Ie, in a proportion, 1

|Ie| , inverse to their number. For an
unrootedShapley value [seeEq. (27)], the sharing rule for theweight associatedwith an
edge is totally different. Each edge contributes to the Shapley value of each taxon under
a two-step sharing rule. First, the weight is shared out between the descendants and
the non-descendants: the descendants as a whole group receive a quantity proportional
to the number of non-descendants, n−|Ie|

n , and vice-versa. These overall amounts are



then uniformly shared out among the members of each group. To summarize, we can
say:

Proposition 7 The contribution of the weight, w(e), of an edge, e ∈ E, to the two
Shapley values of taxon i ∈ I is summarized in the following:

i ∈ Ie i /∈ Ie

ShuT ur (i) 1
|Ie|

(
n−|Ie|

n

)
1

n−|Ie|
( |Ie|

n

)

ShrT r (i) 1
|Ie| 0

(52)

As a consequence, we immediately observe that:

Corollary 3 (Hartmann 2013, Th. 1) As the number of taxa n → ∞, the contribution
of an edge e to the rooted and unrooted Shapley values becomes the same.

7 Comparing the ordering induced by the two Shapley values

Up to now, Proposition 4 tells us that the two Shapley values are equal, and in fact
equal to the Fair Proportion index, on a linear subset of weights of dimension n−1, this
subset being largely related to the split structure of the tree under consideration. But
this makes us wonder what happens when the weight structures do not belong to this
set. In particular, if we consider prioritization programs, do these two Shapley values
induce drastically different species rankings or are they fairly similar? To answer
this question, we proceed, like Wicke and Fischer (2017), by simulations5 and reach
similar conclusions: both rankings are strongly correlated. Our method is nevertheless
different.

Contrary to Wicke and Fischer (2017), we do not generate a set of trees using an
underlying random tree model, e.g. a pure birth process like the Yule model or a birth-
death process. Our simulation method essentially builds on our previous results. Our
preliminary example makes it clear that the computation of both Shapley values only
requires three pieces of information: the number of taxa, the split structure and the
weights. We fix the number of taxa respectively at 16, 32 and 64. We then construct a
split structure by randomly splitting the set of species into two subsets, and recursively
split each of these subsets into two new subsets until we reach singletons. Finally, we
assign a random weight to each element of the split structure. The weight choice
however satisfies two requirements. We ensure, using Proposition 5, that the two
Shapley values induce different imputation vectors and we normalize the sum of the
weights to 1 to eliminate redundant rankings.6 We then compute for each randomly-
selected split structure both transformation matrices, using Eq. (52) of Proposition 7,
and use the randomly-chosenweights to obtain the unrooted rooted and rooted Shapley
imputation vectors.

5 The Matlab R2018a codes are available in an electronic supplement material associated with this 
manuscript (see Supplementary Material).
6 More precisely, this second restriction follows from the fact that the two Shapley values are linear in 
weights, meaning that if we multiply the weight structure by any λ >  0 we obtain the same ranking.



Table 1 Main characteristics of the Kendall and Spearman coefficients

Kendall
16 species

Spearman
16 species

Kendall
32 species

Spearman
32 species

Kendall
64 species

Spearman
64 species

Mean .8182 .9121 .9013 .9720 .9464 .9913

Median .8333 .9441 .9113 .9824 .9514 .9948

SD .1125 .0919 .0539 .0303 .0268 .0099

Fig. 2 Kernel Density estimates: Kendal and Spearman rank correlation

The rankings induced by these two imputations are compared with some classical
statistical tools, the Kendall (1938) and the Spearman (1904) rank correlation coef-
ficients. Our first statistic essentially captures the inversions of elements in the two
rankings, while the second highlights differences in the position of an element in each
ranking. But in any case, if both statistics are close to 1, the two rankings are considered
as strongly (positively) correlated.

Looking at trees with 16, 32 and 64 leaves, and randomly selecting 5000 trees in
each case, we obtain 2 × 3 sets of 5000, respectively, Kendall and Spearman rank
correlation coefficients associated with trees with respectively, 16, 32 and 64 species.
The main characteristics of these distributions are summarized in Table 1.
These results clearly suggest that the two rankings induced by the two Shapley values
are largely correlated and, as expected (see Hartmann 2013), the degree of correlation
increaseswith the number of species. This intuition is confirmed by a kernel estimation
of the density of these different distributions (see Fig. 2).

8 Concluding remarks

The purpose of this paper was to explore the main differences between the Shap-
ley values for a taxon introduced by Haake et al. (2007) and Fuchs and Jin (2015).
Although these two metrics are based on the same Shapley axiomatic, they do not
use the same definition of phylogenetic diversity: the former does not include the root
in the subtree while the latter does. This induces two different subsets of potential



characteristic functions and different Shapley values. To illustrate this, we explicitly
compute the Shapley values in both cases by identifying, in linewith Shapley, the bases
of the two different sets of characteristic functions. This gives us the opportunity to
formally compare the two values and to identify for each phylogenetic tree a set of
weights for which these quantities are identical. This clearly raises a second question
where prioritization problems are concerned. Although the two Shapley values are
different, do they induce a similar ranking for the different species? To answer this
question, we simulate alternative situations and show that the Kendall and Spearman
rank correlation coefficients are both close to 1. Bearing inmind that the Shapley value
introduced by Fuchs and Jin (2015) is equal to the Fair Proportion index constructed
by Redding andMooers (2006), this suggests that the latter, simpler index can be used
in prioritization problems.
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