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Genetic diversity and its value: conservation genetics meets economics

Noël Bonneuil1 · Raouf Boucekkine2,3

Abstract
Does drawing economic benefit from nature impinge on conservation? This has been a subject of controversy in the 
litera-ture. The article presents a management method to overcome this possible dilemma, and reconcile conservation 
biology with economics. It is based on recent advances in the mathematical theory of dynamic systems under viability 
constraints. In the case of a one-locus two-allele plant coexisting with a one-locus two-allele parasite, the method 
provides a rule for deciding when and to what extent the resistant or the susceptible strain should be cultivated, in the 
uncertain time-varying presence of the parasite. This is useful for preventing the fixation of the susceptible allele—and 
thereby limiting the plant’s vulnerability in the medium term, should the parasite reappear. The method thus provides an 
aid to decision for economic and ecology-friendly profitability.
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Introduction

Preserving genetic diversity corresponds to maintaining the 
proportions of alleles within a certain range. An allele is 
a variant expression of a gene, which itself is a locus of 
DNA. Different alleles of a same gene may have different 
properties, notably in terms of susceptibility or resistance 
to parasites.

Calls to “halt biodiversity loss” and “conserve and sus-
tainably use the oceans, seas and marine resources” are now 
on the United Nations’ “Goals for Sustainable Development” 
agenda. Sustaining genetic diversity raises the question of 
genetic diversity’s economic value, a question made intricate 

by the presence of both quantitative and qualitative facets 
(Ten Kate and Laird 2004). The economic literature on bio-
diversity and the related measurement methods are abun-
dant (Nijkamp et al. 2008). They may be controversial: for 
example, Spash (2015) denounces the use of economics as 
a way to legitimize destruction under the cover of rational-
izing nature conservation by building trade-offs which ulti-
mately favor developers to the detriment of conservation. 
Conversely, Meinarda et al. (2016) argue that economics 
are diverse and that monetary valuation would be beneficial 
to conservation biologists. Edwards and Abivardi (1998) 
include pest control in ecosystem services, and argue that 
economic analysis can contribute to conservation goals and 
to the preservation of biological and genetic diversity.

We contribute to the debate by presenting a method of 
managing genetic diversity that gives priority to preservation 
while taking advantage of it economically. We describe how 
an optimal economic return can be obtained while preserv-
ing allelic polymorphism in a typical one-locus two-allele 
plant coexisting with a one-locus two-allele parasite. The 
mathematics of maintaining a differential system within a 
closed set was pioneered by Perron (1915) and Nagumo 
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(1942). These authors characterized the directions a system 
must take so as to remain within a given set. The topic was 
developed in biological contexts by Bonneuil (1998, 2003, 
2012a) and Bonneuil and Saint-Pierre (2000, 2002), and in 
economics by Bonneuil (1994a, b, 2010) and Bonneuil and 
Boucekkine (2014, 2016).

We build on Bonneuil (2012b), who reconciled optimal-
ity and maintenance within a given set, so as to define and 
compute the set of “C-viable” optima, which are optima for 
an inter-temporal criterion attained by a trajectory remain-
ing within a given set, here identified as polymorphism. In 
doing so, we will translate what this key property means in 
terms of genetic distance. We no longer situate the ques-
tion of genetic diversity combined with economic rationality 
at equilibria, but in transient time, which is the time most 
suited to describing restless systems such as biological ones.

Theoretical biology has indeed much focused on equilib-
ria, reducing the problem of genetic diversity to the question 
of the ultimate preservation of alleles under the joint action 
of migration and selection (references in Bonneuil 2012a). 
Here, we argue that the economic value defining genetic 
diversity is the maximal inter-temporal benefit obtained by 
harvesting each allelic form of the plant, while remaining in 
a given range over time, and this while fitness values vary 
unpredictably, due to the weather, stress, fluctuations of the 
environment, and genetic heterogeneity (Pianka 1978).

Concerning the economics of genetics, in the “Noah’s ark 
problem,” species are valued both by their genetic distances 
and by their utility, reflecting “aesthetic and existence values” 
(Weitzman 1998). Brock and Xepapadeas (2003) developed 
on Heal (2000), who considered genetic diversity as a com-
modity: a species is “desirable” for the services it can render 
to humankind. Instead of defining the value of genetic diver-
sity by a function based on pairwise distances between spe-
cies’ DNA (Weitzman 1992, 1993; Solow et al. 1993), which 
is a technique borrowed from geneticists (e.g. Slatkin and 
Hudson 1991), they computed the value of genetic diversity 
as the Bellman value function of optimal resource manage-
ment at the steady state. This function gives the cumulated 
payoff to be expected at the time horizon and resulting from 
the initial conditions and from the decision sequence made 
from now until the time horizon. The optimal value func-
tion is obtained with the optimal decision sequence, and then 
depends only on the initial conditions. We give an explicit 
formula in Eq. (1). In their model of a one-locus diallelic 
two-species case, Brock and Xepapadeas (2003) postulated 
that the mortality rate of each plant is a function of the pro-
portion of one of the two alleles. They assumed random mat-
ing and fixed survival probabilities. To maximize an inter-
temporal economic criterion under biological dynamics, they 
situated themselves at the optimal steady state. 

However, as Law and Morton (1996, p. 763) pointed 
out, “it is not clear that local asymptotic stability is an 

appropriate condition for coexistence, for species may coex-
ist without tending to an equilibrium point” (Williamson 
1987; Hastings 1988); and the “dynamics close to an interior 
equilibrium point are not the main issue for coexistence.” 
Fitness values vary, and polymorphism may not converge. 
Moreover, observing a state x0, whose coordinates are the 
frequencies of the various alleles, there is no reason that x0 
should correspond to a steady state. The economic value 
then corresponds not to x0, but, at best, to the steady state 
which could be attained starting from x0 and assuming that 
fitness values are constant. This is the analytical gap we wish 
to fill here: extend Brock and Xepapadeas’s (2003) project of 
associating the value function, but with each possible state 
x0 and by allowing fitness values to vary over time. We inno-
vate by considering out-of-equilibrium dynamics, which are 
realistic when dealing with population genetics. To do this, 
we use the adequate mathematics of dynamic systems under 
C-viability constraints (Aubin 1991).1

We refrain from postulating ad hoc mechanisms, of
which we have no knowledge (for as Morin and Lawler 
1995, p. 511 put it, “community ecology has a long tradi-
tion of conjectures”). We do not fix mortality rates, but take 
the possible fluctuations of these rates as participating in 
the uncertainty inherent in the variation of fitness values, 
for which we specify only their membership of some closed 
set. Brock and Xepapadeas (2003) also ignored the state con-
straints of having sufficient density above which the plant is 
to perpetuate itself and within which the allele distribution 
is “sufficiently” diverse. We shall specify state constraints, 
to be included in the maximization program.

We use the concept of “C-viability kernel” and “C-cap-
ture-viability kernel” to revisit the economic value of genetic 
diversity. The C-viability kernel is the set of all initial states 
from which there exists at least one trajectory remaining in 
the set of state constraints up to the time horizon (possibly 
infinite). The C-capture–viability kernel is the set of all ini-
tial states from which there exists at least one trajectory that 
remains in the set of state constraints up to the time horizon 
and attains a given set at that time. Alleles no longer have to 
be at the steady state, but instead their frequencies can vary 
under time-varying fitness values. So we are no longer in the 
context of the convergence of the (genetic) system towards 
a steady state, although the C-viability kernel may include 
steady states, but we focus on the process in transient time. 
To say it again, the sustainability of a system that varies over 
time amounts to identifying its C-viability kernel, which is 

1 The term “viability analysis” has been used to address probabil-
istic estimates of population survival or extinction (Beissinger and 
McCullough 2002; Morris and Doak 2002; Wengera et  al. 2017). 
Here, we refer to the term used in control theory (Aubin 1991). To 
avoid confusion, we use the term “C-viability” (as in Bonneuil and 
Saint-Pierre 2000, 2002).
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the set of states from which there is a chance of perpetuating 
the system, whereas a steady state may not be polymorphic 
as desired and a system may fluctuate while however pre-
serving genetic diversity.

We present the genetic dynamic for the plant and its para-
site, the equilibria, the basics of C-viability theory and the 
theoretical procedure yielding the viable maxima. We show 
the role played by the parameters and how viability con-
straints modify the interplay between the various associa-
tions between the parasite and plant alleles.

We build the dynamic set comprising all initial condi-
tions from which there exists at least one optimal trajectory 
preserving genetic diversity. This set, called “C-capture-
viability kernel,” provides regulation rules stipulating how 
the resistant and the susceptible strains must, at each time, 
be either spared or harvested. We then provide the harvest 
rates to apply as determined by this set, making them endog-
enous (rather than postulating some ad hoc endogeneity and 
then testing its capacity to produce genetic diversity and 
economic optimality). We establish how this set varies with 
the determinants (such as carrying capacity, population size, 
and costs of fitness and of being diseased), leading us then to 
characterize the effects of these covariates on genetic diver-
sity and economic value in a general time-varying setting. 
A genetic distance, although it hides the influence of each 
component of the value function, has been used to measure 
diversity (Brock and Xepapadeas 2003). We show that, for 
a low prevalence of the infective parasite, the value func-
tion is higher when the genetic distance is small. When the 
infective parasite is sufficiently abundant, the value function 
is higher when the distance is high, which corresponds to 
equal proportions of the resistant and susceptible alleles. 
The distance may be used to set the initial conditions of the 
genetic diversity of the plant, considering the initial preva-
lence of the parasite.

Model

Intertemporal maximal benefit under genetic 
dynamic

We borrow from Moreno-Gàmez et al. (2013) for the genetic 
dynamic. Host and parasite are haploid with discrete genera-
tions. The host has two alleles, resistance (allele “RES”), in 
frequency Rt at discrete-time generation t,  and susceptibility 
(allele “res”), in frequency rt. The parasite has two alleles, 
infectivity (allele “INF”) in frequency at and non-infectivity 
(allele “ninf”) in frequency At.

As in Nuismer and Otto (2005) or Tellier and Brown 
(2011), each generation of the host encounters the parasite at 
random with probability �. Infective parasites harbor a cost 
of virulence b. Leonard (1977) reports several consistent 

case studies where this cost is estimated. Non-infective para-
sites do not bear this cost, but if they encounter a resistant 
host they have a cost c of not being able to infect it. It corre-
sponds to the plant’s successful resistance to the parasite and 
therefore to the reduction by a factor c of the reproduction 
of the infective allele of the parasite (Leonard 1977; Tellier 
and Brown 2011). Leonard (1977) estimates this cost c to 
be very close to 1, which is the value we take, as Tellier and 
Brown (2007) did. For the host, being diseased has a cost 
s,  equal to the reduction in the plant’s reproductive fitness 
when being diseased. This occurs when the host has the 
susceptibility allele (res) and the parasite has the virulence 
allele (INF) (Tellier and Brown 2011).

Resistant hosts encountering parasites trigger a resistance 
reaction that incurs a cost of fitness cf , irrespective of whether 
the defense is successful or not. Burdon and Thrall (2003) 
report a controversy as to whether fitness costs of resistance 
are necessary for the maintenance of resistance and virulence 
gene polymorphisms. Most models of genes include fitness 
costs associated with host resistance and pathogenic virulence 
genes. As the genetic dynamics are continuous in all parame-
ters, the case cf = 0 is the limit case of small cf . When hosts 
do not encounter the parasite, which happens with probability 
1 − �, resistant hosts have a cost c∗

f
. This corresponds to the 

basal cost of harboring the allele for resistance. Thus, 
cf = c∗

f
+ �, where � ≥ 0 is the cost of activating and express-

ing the defense genes, which are triggered by plant cells when 
they recognize pathogens during attacks by a pathogen (Gu 
et al. 2002). Parasites that do not encounter hosts do not sur-
vive, regardless of their genotypes. The fitness values of hosts 
and parasites are summarized in Table 1. All the costs and the 
encounter rate are assumed to be constant over time. The effect 

Table 1  Fitness values of hosts and parasites for the gene-for-gene 
model in a single population. Reproduced from Moreno-Gàmez et al. 
(2013)

� Disease prevalence; alleles for host resistance (RES) and suscepti-
bility (res); alleles for pathogen non-infectivity (ninf) and infectivity
(INF), b cost of virulence, c cost of inability to infect the allele RES
of the host, cf  cost of fitness when a resistance reaction is triggered,
c∗
f
 cost of fitness to resistant hosts that do not encounter a pathogen, s

cost of being diseased, t generation n.a. not applicable

Disease 
prevalence

Genotype frequency Fitness

Host Parasite Host Parasite

� RES ( Rt) ninf ( At) 1 − cf 1 − c

INF ( at) (1 − cf )(1 − s) 1 − b

res ( rt) ninf ( At) 1 − s 1
INF ( at) 1 − s 1 − b

1 − � RES ( Rt) 1 − c∗
f

n.a.
res ( rt) 1 n.a.
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of the resistance of the host is to reduce the fitness of the non-
infective parasite, passing from 1 to 1 − c, but at a cost u.

In the case where there are several generations of parasites 
per host generation, if there is pure allo-infection (the para-
site was not born on the plant it infects), the behavior of the 
model is the same as for one generation (Tellier et al. 2014). 
Allo-infection involves many plant pathogens (Barrett 1980) 
and the single-generation model is easier to study. Postulating 
several generations of the parasite per host generation requires 
rethinking the model. The single-generation model we present 
is a reference, where the search for stability as in Tellier et al. 
(2014) or for maintenance in a given set defining genetic diver-
sity as we do here is not confused by a complicated effect such 
as several generations of parasites per host generation.

The program for maximizing the economic benefit while 
preserving genetic diversity at time horizon T is:

where � ≥ 0 is a discount rate used to reflect the preference 
for the present (a harvest today is worth more than a harvest 
tomorrow Henderson 2008), hR

t
 the harvest rate of the resist-

ant allelic form RES at frequency Rt at time t,  and hr
t
 the 

harvest rate of the susceptible allelic form res at frequency 
rt. The state variables are governed by the dynamics

where, at time t, KRr is the carrying capacity, �H the fixed 
growth rate of the host, and �P

t
 the growth rate of the para-

site, taken as varying unpredictably within a closed set 
[�P

min
, �P

max
], so that the control variables are:

and the perturbation is:

The state is x(t) ∶= (Rt, rt,At, at), the control variable 
u(t) ∶= (hR

t
, hr

t
), and the perturbation v(t) ∶= �P

t
. The state 

constraints are:

(1)max
hRt , h

r
t

T∑
t=0

e−�t
(
hR
t
Rt + hr

t
rt
)
,

(2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Rt+1 = Rt(KRr − Rt − rt)(1 + �H)(1 − hR
t
)

×
�
�(1 − cf )(At + (1 − s)at)

+ (1 − �)(1 − cf + �)
�
=∶ f1(xt, u)

rt+1 = rt(KRr − Rt − rt)(1 + �H)(1 − hr
t
)

×
�
�(1 − s)(At + at) + 1 − �

�
=∶ f2(xt, u)

At+1 = At�
�
(1 − c)Rt + rt

�
(1 + �P

t
) =∶ f3(xt, u)

at+1 = at�(1 − b)(1 + �P
t
)(Rt + rt) =∶ f4(xt, u),

(3)hR
t
∈ [0, 1], hr

t
∈ [0, 1],

(4)�P
t
∈
[
�P
min

, �P
max

]
.

where pmin and pmax are threshold values defining genetic 
diversity, Rmin and rmin thresholds defining minimal abun-
dance under which the allele RES or the allele res is consid-
ered to be rare. Our definition of genetic diversity by a mere 
interval of variation for Rt

rt
 is simply a translation of “not too 

little,” “not too much” of each allele. It avoids more drastic 
constraints (such as Rt

rt
= 1 ), which are inadequate in a time-

varying environment.
Equation (2) is of the Lotka–Volterra type, because it 

includes a carrying capacity and compounds of hosts 
encountering parasites. However, it is complicated by the 
relationship of allele dominance within loci, by virulence 
or defense costs, and by the fact that encounters with the 
parasite have different effects, depending on the resistance or 
not and of infectivity or not. It is a development of the model 
used by Moreno-Gàmez et al. (2013), with the difference 
that we consider the population sizes of each allele instead 
of the mere proportions Rt∕rt and At∕at. Indeed, preserv-
ing genetic diversity requires that each allele is abundant 
enough. The proportion Rt∕rt results from the dynamics of 
Rt and rt. This allows us to identify “sufficient” abundance of 
Rt and rt but also “sufficient” levels of Rt∕rt or rt∕Rt as a set 
of constraints within which the system is to remain, under 
the control of harvest rates and under the attacks of the para-
site, whose population grows unpredictably (between �P

min
 

and �P
max

 ). This yields our profound difference with classical 
Lotka–Volterra models: rather than searching for asymptotic 
patterns (including equilibria or limit cycles as it is com-
monly done), we focus on maintaining the system in a given 
set and in transient time, which may be appropriate to biol-
ogy rather than a long or an infinite time, which is justified 
in physics where processes may converge quickly.

The maximization in (1) under the dynamics (2), control 
constraints {3, 4}, and state constraints (5), is done by com-
puting the upper boundary of the capture–viability kernel 
of an augmented dynamic, where the added state y(t) starts 
from the value function (Bonneuil 2012b) [Eq. (15)].

With this system, we no longer need to define genetic 
diversity by reference to equilibrium, but we do it from any 
state. By using set-valued analysis resulting from (3) and 
(4), we take full consideration of the uncertainty inherent in 
the temporal variation of the populations (for example, we 
no longer need to postulate ad hoc mortality). Our model 
combines dynamic optimization and constraints, that is, eco-
nomic benefit and genetic diversity.

(5)

⎧
⎪⎨⎪⎩

Rt ≥ Rmin,

rt ≥ rmin,

pmin ≤
Rt

rt
≤ pmax,
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Equilibrium

If the control variables hR, hr, and the perturbation �P are 
constant, then System (2) has the single equilibrium

where

This equilibrium may be located outside the set of con-
straints of (5), for example if R

∗

r∗
=

b

c−b
∉ [pmin, pmax]. In this 

case, Brock and Xepapadeas (2003) may affect a genetic 
diversity measure to the system, but computing the genetic 
diversity value for an equilibrium which is outside the set 
of constraints is contradictory. Besides, restricting genetic 
diversity as well as economic benefit to steady states is 
overly restrictive.

C‑viability theory: basic concepts

The problem {(2), (3, (5))} is equivalent to the recursive 
inclusion:

where

and

with

(6)

⎧
⎪⎪⎨⎪⎪⎩

R∗ =
b

�c(1−b)(1+�P)
,

r∗ =
c−b

�c(1−b)(1+�P)
,

A∗ =
(�−1)�2+�1

�
,

a∗ =
�2−�1

�
,

(7)

�1 =
1

�(1 − cf )

(
((KRr − R∗ − r∗)(1 + �H)(1 − hR))−1

− (1 − �)(1 − cf + �)
)
,

�2 =
1

�(1 − s)

(
((KRr − R∗ − r∗)(1 + �H)(1hR))−1

− (1 − �)
)
.

(8)

⎧⎪⎨⎪⎩

x(t + 1) ∈ F(x(t))

and

∀t = 0,… , T , x(t) ∈ K,

(9)

K =
{
x = (R, r,A, a) ∈ ℝ

4+∗ ∣ pmin ≤
R

r
≤ pmax and R

≥ Rmin and r ≥ rmin

}

(10)
F(x) =

{
(f1(x, u, v), f2(x, u, v), f3(x, u, v), f4(x, u, v)) ∣

u ∈ [0, 1]2, v ∈
[
�P
min

, �P
max

]}
,

A state x0 is said to be viable in K under F if there exists 
at least one solution x(.) of (8), starting from x(0) = x0 and 
remaining in K up to the time horizon T. A set of C-viable 
states is called a C-viability domain; and there exists a maxi-
mal C-viability domain that includes all others (Aubin 1991). 
This set is the viability kernel ViabF(K) (which is then a set 
of initial conditions):

Trajectories visiting states outside the viability kernel are 
bound to fall below their sufficiency thresholds before the time 
horizon. From C-viable states, there exists at least one trajec-
tory that remains above the threshold. To achieve this, a right 
decision in terms of harvest rates hR

t
 and hr

t
, whatever the per-

turbation �P
t
, must be taken at the right time in each C-viable 

state so as to remain in K.
The capture–viability kernel CaptF(K,C, T) at time hori-

zon T of a target-set C in K under the dynamic F is defined 
as the set of all states of K from which there exists at least 
one solution that remains in K until time T and hitting the 
target C ⊂ K at generation T:

Capture–viability kernels are computed by C-viability 
algorithms after the modification of the image F(x) of x into:

where Clos(Co(A)) designates the closure of the smallest 
convex set containing the set A. We use Bonneuil (2006)’s 
C-viability algorithm, which is also presented in Bonneuil
and Boucekkine (2016).

To obtain a viable solution which is also optimal in the 
sense of solving (1), we introduce the auxiliary variable y, 
and with it, the time variable t which now appears as a state 
variable on its own, being involved in y:

(11)(u(t), v(t) =
(
hR
t
, hr

t
, �P

t

)
∈ [0, 1]2 ×

[
�P
min

, �P
max

]
.

(12)
ViabF(K) ∶= {x0 ∣ ∃x(.), x(0) = x0 and ∀t = 0,… , T ,

x(t + 1) ∈ F(x(t)), x(t) ∈ K}.

(13)
CaptF(K,C, T) ∶= {x0 ∣ ∃x(.), x(0) = x0 and ∀t

= 0,… , T , x(t + 1) ∈ F(x(t)), x(t) ∈ K, x(T) ∈ C}

(14)
{

F(x) if x(t) ∉ C,

Clos(Co{F(x)) ∪ {0}} if x(t) ∈ C,

(15)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Rt+1 = Rt(KRr − Rt − rt)(1 + �H)(1 − hR
t
)

×
�
�(1 − cf )(At + (1 − s)at) + (1 − �)(1 − cf + �)

�

rt+1 = rt(KRr − Rt − rt)(1 + �H)(1 − hR
t
)

×
�
�(1 − s)(At + at) + 1 − �

�
At+1 = At�((1 − c)Rt + rt)(1 + �P

t
)

at+1 = at�(1 − b)(1 + �P
t
)(Rt + rt)

t(� + 1) = t(�) + 1

y(t + 1) = y(t) − e−�t(hR
t
Rt + hr

t
rt)
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where (discrete) time is denoted by � [then all state vari-
ables depend on � through the state variable t = t(�) = � ]. 
The problem has six dimensions and defines the aug-
mented set-valued dynamic F(a)(x), with state constraints 
K × [0, T] ×ℝ

+ and target C ∶= K × {T , 0}. The addition of 
the auxiliary variable y participates in the elegant procedure 
leading to locate the viable maximum on the boundary in the 
direction of high y of the capture–viability kernel associated 
with the augmented dynamic (15) (Bonneuil 2012b). For-
mally, this capture–viability kernel namely is

It comprises all maximum viable value functions y(0). The 
C-viability algorithm of Bonneuil (2006), based on the sto-
chastic minimization of the distance of trajectories start-
ing from a given state to both the set of constraints and the
target, is up to the task of dealing with six dimensions and
yielding points on its boundary in direction of high y.

For each of the 1500 simulation runs, we drew the param-
eter values uniformly from intervals centered around the val-
ues given in Tellier and Brown (2007) and Moreno-Gàmez 
et al. (2013):

– the growth rate �H ∈ [0.03, 0.07] of the host;
– the cost of fitness cf ∈ [0, 0.15];

– the cost of inability to infect the RES allele c ∈ [0.8, 1.0];

– the cost s ∈ [0.20, 0.60] of being diseased;
– the cost of virulence b ∈ [0.05, 0.35];

– the cost � ∈ [0.30, 0.70] of activating and expressing the
defense genes;

– the carrying capacity KRr ∈ [2.0, 4.0];

– the probability � ∈ [0.2, 0.4] that the host encounters the
parasite;

– the bounds �P
min

∈ [−0.05,−0.03] and �P
max

∈ [0.03, 0.05] 
of the growth rate of the parasite;

– the discount rate � ∈ [0.01, 0.03].

Results

Figure 1 shows a section of the four-dimensional C-viabil-
ity kernel ViabF(K) of the set K defined by (5) under the 
dynamic F defined in (2) and control constraints (3). It 
was built from 2500 viable points generated by Bonneuil 
(2006)’s C-viability algorithm.

From each state of this set, there exists at least one trajec-
tory preserving genetic diversity [defined by (5)] until the 
time horizon T,  but that is not necessarily economically 
optimal.

(16)CaptF(a) (K × [0, T] ×ℝ
+,K × {T , 0},T).

C‑viability and C‑viability–optimality

Figure 1 shows that the viability kernel shrinks when R0 and 
r0 increase. This is due to the constraint R∕r ≤ pmax. It also 
shows that the decrease accelerates for r0 high and A0 low, 
because an encounter with an infective parasite a0 is more 
likely. The boundary of the C-viability kernel also curves 
when approaching low values of A0 and R0, because, then, 
r0 prevails over R0 and consequently, due to the prevailing of 
the infective allele a0, most encounters are infective, render-
ing these states non-viable.

As we mentioned, Fig.  1 has no link with opti-
mality yet.  This requires the computation of 
CaptF(a) (K × [0, T] ×ℝ

+,K × {T , 0},T), whose boundary in 
direction of high y,  as we explained in the previous section, 
comprises the value functions y(0) that are both viable and 
optimal. Figure 2 shows a section (at A0 and a0 restrained to 
a narrow range) of this boundary as a function of Rt.

When the resistant allele takes low and intermediate fre-
quencies R0, the carrying capacity is not attained and, as 
expected, the value function increases. Conversely, when 
both the resistant and the susceptible alleles are abun-
dant, the value function decreases (curve associated with 
r0 ∈ [0.61, 0.74]). All curves at r0 fixed show a deceleration 
when the resistant allele increases. This corresponds to the 
decreasing return from having a less productive allele. The 
curves for r0 low are limited on their right-hand side because 
of the constraint R∕r < pmax.

Non-infective 
allele A0

Resistant allele R0

0

100

0.1 1.2
r  in [0.1, 0.23]

]6
3.

0,
32

.0
[

ni
r r  in [0.36, 0.48]     

r  in [0.48, 0.61]

r  in [0.61, 0.74]

0

0 0

0 0

Fig. 1  Section of the C-viability kernel for infective allele 
a0 ∈ [60, 80] : from each state of the C-viability kernel, there exists 
at least one trajectory that remains in the set of constraints defined 
by (5) until the time horizon, here T = 5 generations, pmin = 1∕3 and 
pmax = 3
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Figure 2 then represents the trade-off between the resist-
ant and the susceptible alleles in a parasitized and con-
strained environment.

At a reviewer’s request, Fig. 3 shows examples of tra-
jectories of the inter-temporal benefit leading to the maxi-
mal value y(0) [in fact, these trajectories were computed 

backward, in agreement to (15)]. The hierarchy of trajec-
tories is not simple with respect to the parameters, because 
it depends on the linear combination of many param-
eters ( cf , c, s, b, �P, �,KRr, and T) and initial conditions 
(  �R0A0∕S0, �R0a0∕S0, �r0A0∕S0, �r0a0∕S0, (1 − �)R0∕S0,

and S0 ), where S0 = �(R0 + r0)(A0 + a0) + (1 − �)(R0 + r0)

is the population size of plants. That is why a regression of 
y(0) on these parameters and initial conditions is necessary. 
Because of optimality, the values of the control variables 
along an optimal trajectory are entirely given by these initial 
conditions.

Economic value as a function of initial states 
and parameters

We compute 1500 points to describe the upper boundary 
of the capture–viability kernel in the direction of high y, 
for pmin = 1∕3 and pmax = 3 as a typical case. In all the 
regressions below, the coefficient of (1 − �)r is set to 0, 
because this variable is 1 minus the other proportions, so 
the coefficients of the other proportions are relative to the 
occurrence of the non-resistant plant not encountering the 
parasite, in proportion (1 − �)r, taken as reference [taking 
another reference changes the coefficients, but not the dif-
ferences (to be tested against 0) between two coefficients, 
as is usual].

The regression below (estimated with the SAS procedure 
“glm”) describes the maximal value of the economic value 
function y as a linear function of the initial values R0, r0, a0, 
and A0 of the C-viable states and the parameters, including 
the carrying capacity KRr ≥ (Rt + rt) and the mean values of 
the controls ( N = 1500, R2 = 0.75):

where the star denotes significance at the 5% level, 
standard deviations in parentheses under the coeffi-
cients, S = �(RA + Ra + rA + ra) + (1 − �)(R + r). The 

(17)

y0 = −0.68
(0.08)

∗ + 0.08
(0.06)

�R0A0∕S0 + 0.25
(0.06)

∗�R0a0∕S0

+ 0.20
(0.08)

∗�r0A0∕S0

+ 0.15
(0.07)

∗�r0a0∕S0 + 0.28
(0.11)

∗(1 − �)R0∕S0

+ 0
(ref.)

(1 − �)r0∕S0

+ 0.49
(0.02)

∗S0 + 0.04
(0.02)

∗cf + 0.004
(0.04)

c

+ 0.08
(0.02)

∗s + 0.004
(0.02)

b + 0.002
(0.02)

�P
min

− 0.001
(0.03)

�P
max

+ 0.02
(0.02)

� + 1.13
(0.02)

∗KRr + 0.00
(0.01)

� + 0.26
(0.01)

∗T ,

5.8

9.7

0.1 1.24R0

susceptible
0

[0.1, 0.23]

[0.23, 0.36]

[0.36, 0.48]

[0.48, 0.61]

[0.61, 0.74]

in:

Value function

r

Resistant

Fig. 2  Section of the capture–viability kernel for non-infective 
A0 ∈ [60, 80] and infective a0 ∈ [80, 100] showing the value func-
tion: from each state of the capture–viability kernel, there exists at 
least one trajectory that produces the maximal inter-temporal benefit 
and that remains in the set of constraints defined by (5) until the time 
horizon, here T = 5 generations

Fig. 3  Examples of optimal paths over time starting from the same 
initial state (R0, r0, a0,A0) = (0.54, 9.65, 24.75, 32.72), T  =  10 gen-
erations. From top to bottom at t = 7 : (�H , cf , c, s, b, �Pmin

, �,KRr , �) =

(0.05, 0.08, 0.86, 0.32, 0.12,−0.03, 0.06, 3.79, 0.36), (0.05, 0.10, 0.97,

0.44, 0.11,−0.02, 0.05, 3.65, 0.23), (0.04, 0.12, 0.88, 0.34, 0.10,−0.02,

0.05, 3.73, 0.37), (0.03, 0.09, 0.94, 0.38, 0.13,−0.03, 0.06, 3.36, 0.38),

(0.05, 0.11, 0.84, 0.45, 0.13,−0.03, 0.04, 3.28, 0.25), (0.06, 0.11, 0.86, 0.42,

0.08,−0.04, 0.05, 2.76, 0.27))
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hierarchy of the coefficients reflects that of the influ-
ences of the determinants, because we have normalized 
them between 0 and 1, except the coefficients associated 
with the proportions of compounds of parasite and host 
�R0A0∕S0, �R0a0∕S0, �r0A0∕S0, �r0a0∕S0, (1 − �)R0∕S0,

and (1 − �)r0∕S0, because they sum to 1. These proportions
are thus collinear and one coefficient must be set to 0; here 
we take the coefficient of (1 − �)r0∕S0 arbitrarily (the inter-
pretation does not change with the choice of the reference, 
because the effects are relative). The proportion of resistant 
hosts not encountering any parasite has a significantly lower 
effect on maximal benefit (coefficient −0.28, SD = 0.11) 
than the proportion of susceptible hosts not encountering 
any parasite (reference): resistance is a useless genetic bur-
den in the absence of encounters.

Increasing the proportion of susceptible hosts 
encountering a parasite, be it infective or not (0.15 and 
0.20, SD = 0.07 and 0.08), or increasing the propor-
tion of resistant hosts encountering infective parasites 
(0.25, SD = 0.06), increases the maximal viable ben-
efit: encountering the parasite allows diversity in RES 
and res, whereas diversity is doomed to vanish in the 
absence of the parasite. These three proportions are not 
significantly different from each other. The proportion 
of resistant hosts encountering a non-infective parasite 
is not significantly different from the effects of these 
three proportions (coefficient 0.08, SD = 0.06) consist-
ently with the maintenance of diversity, but it is also not 
significantly different from the proportion of susceptible 
hosts not encountering any parasite (reference). This is 
consistent with the fact that these two cases imply no 
disease.

Apart from the effects of proportions of combinations of 
host and parasite, the hierarchy of importance of the differ-
ent effects, because the parameters have been normalized in 
the regression, is reflected by the hierarchy of coefficients in 
absolute value: the carrying capacity KRr (1.13, SD = 0.02) 
has the major effect, followed by the population size S0 
(0.49, SD = 0.02), the time horizon (0.26, SD = 0.01), the 
cost s of the disease ( −0.08, SD = 0.02), and the cost cf  
of fitness ( −0.04, SD = 0.02). The cost � of activating and 
expressing the defense genes, the cost c of inability to infect 
RES, the cost of virulence b,  the bounds �P

min
 and �P

max
 of 

the growth rate of the parasite, and the discount rate � have 
no significant effect, which come from their relatively low 
values.

Along the optimal paths leading to the maximal value 
y0, the dependence of optimal harvest rates on state vari-
ables and other controls are estimated through “seem-
ingly unrelated” regressions, which are in fact related by 
the correlation matrix of the residuals (Zellner 1962), 

with the argument time t omitted on the right-hand side 
[ N = 1500, R2 = 0.58 for hR(t), R2 = 0.43 for hr(t)]:

for the harvest rate hR of the allele “RES”, and

for the harvest rate hr of the allele “res”. The correlation 
between the two regressions is 0.50, which indicates that the 
two harvest rates vary mostly in the same direction, which is 
consistent with the logic of producing a value function while 
maintaining R / r within the constraints.

As expected, the carrying capacity KRr again has one 
of the most important effects (0.71 and 0.63, SD = 0.01 
and 0.01) on both harvest rates (the more the plant popula-
tion can grow, the better). The more abundant the resistant 
allele, the higher its harvest rate [0.94, SD = 0.03, for 
�RA∕S; 0.70, SD = 0.02, for Ra / S;  and 0.29, SD = 0.02,
for (1 − �)R∕S—the order of the coefficients reflects the
trade-off between benefit maximization and genetic diver-
sity]. To preserve genetic diversity, the more the suscep-
tible allele res is present, the less the resistant allele RES
is harvested [ −0.75, SD  =  0.02, for (1 − �)R∕S; − 0.36

SD  =  0.02 for �Ra∕S; − 0.30, SD  =  0.03, for �RA∕S ]. 
Symmetrically, the more abundant the susceptible plant,
the more it is harvested (0.27, SD = 0.03, for �ra∕S and
0.15, SD = 0.03, for A / S,  so almost twice as likely in the
presence of the infective allele as in the presence of the
non-infective allele). This helps to eliminate the parasite
and give an additional chance to the remaining susceptible
alleles. Again, in order to maintain genetic diversity, the
more the resistant allele is present, the less the susceptible
allele is harvested (0.33, SD = 0.03, for �rA∕S and 0.22,
SD = 0.03, for �ra∕S).

The total size S of the plant population favors both harvest 
rates (0.47, SD = 0.02, for RES and 0.42, SD = 0.03, for 

(18)

hR(t) = −0.42
(0.03)

∗ − 0.14
(0.03)

∗�P + 0.94
(0.03)

∗�RA∕S + 0.70
(0.02)

∗�Ra∕S

+ 0.33
(0.03)

∗�rA∕S + 0.22
(0.03)

∗�ra∕S + 0.29
(0.02)

∗(1 − �)R∕S

+ 0.00
(ref.)

∗(1 − �)r∕S + 0.47
(0.02)

∗S − 0.08
(0.01)

∗cf − 0.02
(0.02)

c

− 0.02
(0.02)

s + 0.01
(0.01)

b − 0.03
(0.01)

∗� + 0.71
(0.01)

∗KRr + 0.00
(0.01)

� − 0.07
(0.01)

∗T ,

(19)

hr(t) = 0.18
(0.03)

∗ − 0.12
(0.03)

∗�P − 0.30
(0.03)

∗�RA∕S − 0.36
(0.02)

∗�Ra∕S

+ 0.15
(0.03)

∗�rA∕S + 0.27
(0.03)

∗�ra∕S − 0.75
(0.02)

∗(1 − �)R∕S

+ 0.00
((ref.))

(1 − �)r∕S + 0.42
(0.03)

∗S + 0.02
(0.02)

cf − 0.03
(0.02)

c

− 0.06
(0.01)

∗s + 0.003
(0.01)

b − 0.00
(0.01)

� + 0.63
(0.01)

∗KRr

+ 0.00
(0.01)

� − 0.04
(0.01)

∗T ,
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res). The higher the growth rate �P of the parasite, the lower 
the harvest rates ( −0.14, SD = 0.03, for RES and −0.12, 
SD = 0.03, for res). The higher the cost cf  of fitness to resist-
ant hosts that do not encounter a pathogen, the less these 
hosts should be harvested ( −0.08, SD = 0.01), but consist-
ently, there is no significant effect on the harvesting of sus-
ceptible alleles (0.02, SD = 0.02). The longer the time hori-
zon, the more plants should be spared ( −0.07, SD = 0.01, 
for RES and −0.04, SD = 0.01, for res). The cost s of the 
disease penalizes the susceptible allele ( −0.06, SD = 0.01), 
but consistently, not the resistant allele. Symmetrically, the 
cost � of activating and expressing defense genes penalizes 
the resistant allele ( −0.03, SD = 0.01) but not the suscepti-
ble allele. The costs c of inability to infect the virus and the 
virulence b play no significant role in harvest rates.

Along the optimal viable path, the resistant strain “RES” 
has the strongest effect (0.94, SD = 0.03) and the susceptible 
strain “res” must be spared, because it is threatened. That is 
why both harvest rates increase on the optimal path when 
“res” is more frequent (coefficients 0.33, 0.21, 0.14, and 
0.26). When “RES” increases in frequency, whatever the 
combination with the parasite (coefficients 0.93, 0.69, and 
0.28), its harvest rate increases, but, in order to preserve 
R / r,  the more fragile “res” must be spared, which implies 
that hr must decrease (coefficients −0.29,−0.36, and −0.74). 
As expected, coefficients of the population size S of plants 
and of the carrying capacity KRr are positive and significant. 
The longer the period of exploitation T,  the more the plant 
must be spared (coefficients −0.004 and −0.003). A more 
rapid population growth of the parasite leads to increased 
harvesting of both alleles (coefficients 0.24 and 0.17).

Figure 4 shows the example of an optimal trajectory 
remaining in the set of constraints K. The C-viability con-
dition demands that at each time, the direction of the sys-
tem belongs to the contingent cone of K. Figure 4 shows 
that the trajectory approaches the condition R∕r ≥ pmax at 
t = 2 as well as the condition r ≥ rmin = 0.5 : then, as the 
presented trajectory is a solution to the viable optimum, it 

remains in K and hR and hr are selected under varying �P 
such that the trajectory does not cross the boundary of K, 
here R∕r = pmax together with r = rmin. At t = 2, hr decreases 
and hR increases, allowing r to stop decreasing and R / r 
to stop increasing. Likewise, at t = 14, the harvest rate hR 
decreases and hr increases, allowing the trajectory to remain 
over the constraints R∕r = pmin and R = Rmin = 0.5. This 
Fig. 4 shows therefore a case where C-viability conditions 
(that the velocity of the system must belong to the contingent 
cone of K) interfere with optimality.

Genetic distance and value function

Brock and Xepapadeas (2003, p. 1597) quantify genetic 
diversity by means of the Shannon distance, here equal to

and the Simpson distance, here equal to

These distances are null at R = 0 or r = 0, achieve their 
maximal values at r = R, with d1 = ln(2) and d2 = 0.5, and 
their minimum values on K at d1 ≈ 0.56 and d2 = 0.375 for 
both R∕r = pmin = 1∕3 and R∕r = pmax = 3.

In (17), we saw that R0 and r0 play different roles, depend-
ing on the presence of the infective parasite. This asymmetry 
makes the Shannon or the Simpson distances ambivalent for 
characterizing the value function: a single value of a distance 
corresponds to two half-lines in (R, r),  then to high and low 
values of R0 or r0. We regress the log-value function y0 on 
the log-distance ln(d1) and the Shannon distance d1 to capture 
possible nonlinearity (all covariates normalized between 0 and 
1 to make coefficients comparable) ( N = 1500, R2 = 0.60):

(N = 1500,R2 = 0.60, “*” again denotes significance at the 
5% level, standard deviations in parentheses under the coef-
ficients), where Xmax denotes the mean of the variable X 
over the trajectory. In addition to the expected significant 
positive effects of the carrying capacity KRr and the time 
horizon T,  Eq. (22) shows that y0 is a convex function of 
distance, controlling for other covariates. The maximal value 

(20)
d1 = −R∕(R + r) ln(R∕(R + r)) − r∕(R + r) ln(r∕(R + r)),

(21)d2 = 1 − (R∕(R + r))2 − (r∕(R + r))2 = 2rR(r + R)−2.

(22)

ln(y0) = −116.95
(33.92)

∗ − 80.66
(23.70)

∗ ln(d1,max) + 123.33
(36.41)

∗d1,max

− 0.01
(0.06)

ln(d1,max)�A0

+ 0.03
(0.04)

d1,max�A0 + 0.12
(0.06)

∗ ln(d1,max)�a0 + 0.14
(0.04)

∗d1,max�a0

− 0.06
(0.55)

cf + 0.11
(0.17)

c − 0.43
(0.14)

∗s − 0.22
(0.55)

b − 1.59
(1.65)

�P
min

− 1.14
(1.05)

�P
max

− 1.22
(1.12)

� + 0.89
(0.03)

∗KRr + 0.01
(0.01)

� + 0.051
(0.002)

∗T

Fig. 4  Example of a simulated trajectory remaining within the con-
straints and approaching them. T = 20 generations
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over the Shannon distance of this maximal benefit y0 does 
not depend significantly on the frequency �A0 of encounters 
with the non-infective parasite ( −0.01, SD = 0.06, and 0.03, 
SD = 0.04), but does depend on the frequency �a0 of encoun-
ters with its infective allele (coefficients 0.12, SD = 0.06, 
and 0.14, SD = 0.04): when �a0 is low, the maximal benefit 
is higher for d1 = 1∕3 or 3, that is, on the boundary of the 
constraints, with the risk of leaving the set of constraints 
and consequently fail to comply with genetic diversity; if 
�a0 is high, then the maximal benefit is higher for d1 = ln(2), 
which corresponds to the resistant and the susceptible alleles
in the same proportions. This has the advantage of being far
from the constraints defining diversity, but �a0 must be high
enough. Thus, effective management consists, if the preva-
lence values of the plant alleles can be adjusted, of starting
from the initial conditions in RES and res in the proportions
1/3 or 3 if �a0 is low or in equal proportions if �a0 is high.
This recommendation holds only in order to maximize the
maximum benefit over �a0, when the manager makes deci-
sions based on genetic distance, which, as we mentioned,
is ambivalent, in contrast to Eq. (17), which thus should be
preferred for management.

Conclusion

The C-viability framework solves the question of measuring 
the economic value of genetic diversity out of equilibrium 
and with unpredictable prevalence of the parasite. We treated 
the host–parasite case, each having two alleles, to show 
that combining economic rationality with genetic diversity 
reveals that the presence of the infective allele of the parasite 
is necessary, and that harvest rates must be varied according 
to the growth rate of the parasite, the encounter rate, and the 
time horizon. We showed that, when the infective parasite is 
abundant, genetic diversity allows greater economic benefit.

Here we have adapted economic calculus to genetics in 
its full heterogeneity. In order to remain diverse enough, that 
is, C-viable with respect to the fixed range of variation of 
the ratio R / r,  against any variation of the parasite growth 
rate, how should farmers harvest? The answer is: remain 
on the upper boundary of the capture–viability kernel of 
K × [0, T] ×ℝ

+ with target K × {T , 0} defined in (9) under 
the dynamics (15). Then, the value function is optimal and 
genetic diversity is allowed by the maintenance of allele fre-
quencies within sufficiency constraints. The C-viable and 
optimal rates hR and hr constitute the regulation law, which 
enables the system to perpetuate itself while preserving 
genetic diversity and yielding the maximal value function.
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