Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings - Aix-Marseille Université Access content directly
Journal Articles Nature Communications Year : 2019

Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings

Abstract

Recent super-resolution microscopy studies have unveiled a periodic scaffold of actin rings regularly spaced by spectrins under the plasma membrane of axons. However, ultrastructural details are unknown, limiting a molecular and mechanistic understanding of these enigmatic structures. Here, we combine platinum-replica electron and optical super-resolution micro-scopy to investigate the cortical cytoskeleton of axons at the ultrastructural level. Immunogold labeling and correlative super-resolution/electron microscopy allow us to unambiguously resolve actin rings as braids made of two long, intertwined actin filaments connected by a dense mesh of aligned spectrins. This molecular arrangement contrasts with the currently assumed model of actin rings made of short, capped actin filaments. Along the proximal axon, we resolved the presence of phospho-myosin light chain and the scaffold connection with microtubules via ankyrin G. We propose that braided rings explain the observed stability of the actin-spectrin scaffold and ultimately participate in preserving the axon integrity.

Domains

Neurobiology
Fichier principal
Vignette du fichier
s41467-019-13835-6.pdf (31.57 Mo) Télécharger le fichier
Origin : Publication funded by an institution
Loading...

Dates and versions

hal-02423801 , version 1 (26-12-2019)

Licence

Attribution

Identifiers

Cite

Stéphane Vassilopoulos, Solène Gibaud, Angélique Jimenez, Ghislaine Caillol, Christophe Leterrier. Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings. Nature Communications, 2019, 10 (1), ⟨10.1038/s41467-019-13835-6⟩. ⟨hal-02423801⟩
116 View
53 Download

Altmetric

Share

Gmail Facebook X LinkedIn More