SUPPLEMENTARY INFORMATION

Impact of ocean acidification on the metabolome of the brown macroalgae Lobophora rosacea from New Caledonia

Julie GAUBERT^{1,2*}, Riccardo RODOLFO-METALPA², Stéphane GREFF³, Olivier P. THOMAS⁴, Claude E. PAYRI²

¹ Sorbonne Universités, Collège Doctoral, F-75005 Paris, France.

² UMR ENTROPIE (IRD, UR, CNRS), Institut de Recherche pour le Développement, B.P. A5, 98848 Nouméa Cedex, Nouvelle-Calédonie.

³ Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR 7263 CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d'Endoume, rue de la Batterie des Lions, 13007 Marseille, France.

⁴ Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland.

*corresponding author, julieg1907@gmail.com

Present address: Muséum National d'Histoire Naturelle, UMR BOREA, MNHN-CNRS-UCN-UPMC-IRD-UA, Station Marine de Concarneau, 29900 Concarneau, France.

FIGURES

Figure S1. Map of the collected sites (Bouraké and Ricaudy) in the southwest lagoon of Nouméa, New Caledonia
Figure S2. Picture of <i>Lobophora rosacea</i> at Ricaudy site. The alga is growing attached to the bedrock by a basal mound of hairs niched beneath <i>Acropora spp</i> . branches
Figure S3 . Phylogenetic tree reconstruction of 20 <i>Lobophora</i> species using Bayesian inference (BI) implemented in MrBayes v3.2, using the chloroplast marker psbA. Voucher numbers of <i>L. rosacea</i> collected at Ricaudy (control pH) and Bouraké (low pH) are indicated
Figure S4. Principal component analysis (PCA) score plots of the methanol extracts of <i>Lobophora rosacea</i> metabolome from control (Ricaudy) and low pH (Bouraké)
Figure S5. Venn diagram test of <i>Lobophora rosacea</i> MeOH extracts from algae sampled at Ricaudy (control pH) vs Bouraké (low pH)
Figure S6 . Macroalgal bioactivities (as gamma units) boxplots in MeOH extracts according to pH condition in the New Caledonian lagoon: Bouraké (low pH) <i>vs</i> Ricaudy (control pH) ($n = 8$, Wilcoxon rank sum test, $p = 0.13$).
Figure S7. Venn diagrams on <i>Lobophora rosacea</i> MeOH extracts at t0 and t14 (algae exposed to control vs low pH conditions) during the <i>ex situ</i> experiment

TABLES

 Table S1. Seawater temperature and pH measured in control and low pH tanks from t0 to t14 for aquaria experiment. Carbonate chemistry parameters were calculated with CO2Sys (Lewis & Wallace, 1998) using mean total alkalinity (TA), salinity (35), temperature (T) and pH.

 Table S2. Lobophora rosacea ions responsible for the discrimination between low pH (Bouraké) and control pH (Ricaudy) conditions. RT = retention time (s). The mSigma (mS) value is a measure for the goodness of fit between experimental mass and isotopic pattern with theoretical ones: lower is the mS, better is the annotation.

 8

Figure S1. Map of the collected sites (Bouraké and Ricaudy) in the southwest lagoon of Nouméa, New Caledonia.

Figure S2. Picture of *Lobophora rosacea* at Ricaudy site. The alga is growing attached to the bedrock by a basal mound of hairs niched beneath *Acropora spp*. branches.

Figure S3. Phylogenetic tree reconstruction of 20 *Lobophora* species using Bayesian inference (BI) implemented in MrBayes v3.2, using the chloroplast marker psbA. Voucher numbers of *L. rosacea* collected at Ricaudy (control pH) and Bouraké (low pH) are indicated.

Figure S4. Principal component analysis (PCA) score plots of the methanol extracts of *Lobophora rosacea* metabolome from control (Ricaudy) and low pH (Bouraké).

Figure S5. Venn diagram test of *Lobophora rosacea* MeOH extracts from algae sampled at Ricaudy (control pH) *vs* Bouraké (low pH).

Figure S6. Macroalgal bioactivities (as gamma units) boxplots in MeOH extracts according to pH condition in the New Caledonian lagoon: Bouraké (low pH) *vs* Ricaudy (control pH) (n = 8, Wilcoxon rank sum test, p = 0.13).

Figure S7. Venn diagrams on *Lobophora rosacea* MeOH extracts at t0 and t14 (algae exposed to control vs low pH conditions) during the *ex situ* experiment.

days	T (°C)	TA (μmol.kg ⁻¹)	рН	pCO2 (µatm)	HCO3 ⁻ (μmol.kg ⁻¹)	СО3 ²⁻ (µmol. kg ⁻¹)	CO ₂ (µmol. kg ⁻¹)	ΩCa	ΩAr
Control pH tanks									
0 (t0)	24.0 ± 0.1	2328 ± 4	8.14 ± 0.02	311 ± 17	1723 ± 22	246 ± 8	9 ± 1	5.92 ± 0.19	3.89 ± 0.13
1	23.9 ± 0.1	2337 ± 6	8.15 ± 0.01	304 ± 11	1721 ± 16	251 ± 4	9	6.03 ± 0.1	3.96 ± 0.06
2	23.8 ± 0.1	2337 ± 6	8.16 ± 0.01	289 ± 10	1704 ± 16	258 ± 5	8	$\boldsymbol{6.19} \pm \boldsymbol{0.11}$	4.07 ± 0.07
3	23.7 ± 0.1	2337 ± 6	8.13 ± 0.01	316 ± 10	1739 ± 14	244 ± 4	9	5.85 ± 0.1	3.84 ± 0.07
4	23.7 ± 0.1	2345 ± 8	8.15 ± 0.02	299 ± 19	1724 ± 25	253 ± 11	9 ± 1	6.09 ± 0.26	4.00 ± 0.17
5	23.6 ± 0.1	2351 ± 5	8.13 ± 0.03	317 ± 27	1749 ± 30	246 ± 13	9 ± 1	5.90 ± 0.31	3.88 ± 0.20
6	23.8 ± 0.1	2349 ± 7	8.11 ± 0.02	343 ± 17	1773 ± 21	235 ± 8	10 ± 1	5.65 ± 0.18	3.71 ± 0.12
7	24.0 ± 0.3	2347 ± 9	8.11 ± 0.04	338 ± 43	1763 ± 47	238 ± 19	10 ± 1	5.73 ± 0.46	3.76 ± 0.31
8	24.3 ± 0.4	2342 ± 2	8.14 ± 0.07	314 ± 71	1723 ± 81	253 ± 34	9 ± 2	6.07 ± 0.81	4.00 ± 0.54
9	23.6 ± 0.1	2342 ± 2	8.09 ± 0.01	353 ± 8	1782 ± 7	228 ± 3	10	5.49 ± 0.07	3.60 ± 0.05
10	24.3 ± 0.2	2337 ± 7	8.18 ± 0.04	273 ± 31	1675 ± 50	270 ± 17	8 ± 1	6.49 ± 0.41	4.27 ± 0.27
11	23.6	2341 ± 4	8.09 ± 0.01	359 ± 12	1787 ± 9	226 ± 5	11	5.43 ± 0.12	3.56 ± 0.08
12	23.5 ± 0.1	2345 ± 9	8.10 ± 0.01	345 ± 11	1777 ± 8	232 ± 6	10	5.57 ± 0.14	3.66 ± 0.09
13 (t14)	24.1 ± 0.1	2345 ± 9	8.10 ± 0.01	346 ± 7	1770 ± 10	235 ± 2	10	5.64 ± 0.06	3.71 ± 0.04
Acidified condition	: tanks pH 7.6	5							
0 (t0)	24.0 ± 0.1	2333 ± 1	7.66 ± 0.04	1135 ± 126	2089 ± 24	100 ± 9	33 ± 4	2.40 ± 0.22	1.58 ± 0.15
1	24.1 ± 0.1	2335 ± 4	7.66 ± 0.03	1118 ± 71	2088 ± 10	101 ± 5	32 ± 2	2.43 ± 0.13	1.60 ± 0.08
2	24.0 ± 0.1	2335 ± 4	7.66 ± 0.03	1131 ± 69	2091 ± 9	100 ± 5	33 ± 2	2.40 ± 0.12	1.58 ± 0.08
3	24.0 ± 0.2	2335 ± 4	7.63 ± 0.02	1217 ± 63	2105 ± 9	94 ± 5	35 ± 2	2.26 ± 0.12	1.48 ± 0.08
4	23.6 ± 0.1	2337 ± 9	7.62 ± 0.03	1248 ± 97	2114 ± 9	91 ± 7	37 ± 3	2.19 ± 0.16	1.44 ± 0.11
5	23.9 ± 0.1	2348 ± 12	7.63 ± 0.03	1214 ± 105	2116 ± 19	95 ± 7	35 ± 3	2.28 ± 0.17	1.50 ± 0.11
6	23.9 ± 0.1	2340 ± 10	7.65 ± 0.04	1176 ± 106	2103 ± 15	97 ± 8	34 ± 3	2.34 ± 0.2	1.53 ± 0.13
7	24.5 ± 0.3	2333 ± 10	7.67 ± 0.03	1105 ± 83	2079 ± 11	104 ± 8	32 ± 3	2.50 ± 0.2	1.64 ± 0.13
8	24.6 ± 0.1	2335 ± 9	7.63 ± 0.06	1225 ± 175	2100 ± 19	96 ± 12	35 ± 5	2.32 ± 0.28	1.53 ± 0.18
9	23.8 ± 0.1	2335 ± 9	7.71 ± 0.06	993 ± 138	2064 ± 30	111 ± 13	29 ± 4	2.67 ± 0.31	1.75 ± 0.20

Table S1. Seawater temperature and pH measured in control and low pH tanks from t0 to t14 for aquaria experiment. Carbonate chemistry parameters were calculated with CO2Sys (Lewis & Wallace, 1998) using mean total alkalinity (TA), salinity (35), temperature (T) and pH.

10	24.1 ± 0.3	2337 ± 12	7.68 ± 0.01	1081 ± 27	2083 ± 13	104 ± 1	31 ± 1	2.50 ± 0.02	1.65 ± 0.01
11	23.8 ± 0.1	2342 ± 12	7.64 ± 0.02	1182 ± 49	2107 ± 10	96 ± 4	35 ± 1	2.31 ± 0.09	1.52 ± 0.06
12	23.6 ± 0.1	2347 ± 13	7.66 ± 0.03	1134 ± 87	2104 ± 4	99 ± 7	33 ± 3	2.39 ± 0.17	1.57 ± 0.11
13 (t14)	24.2 ± 0.1	2347 ± 13	7.65 ± 0.03	1163 ± 91	2104 ± 25	99 ± 6	34 ± 3	2.39 ± 0.13	1.57 ± 0.09

Seawater carbonate chemistry

Sixty mL of seawater were collected twice a week from each aquarium, filtered at 0.45 μ m (GF/F Whatman) and stored in the dark at 4°C to avoid biological alteration. The pH was measured at 0.1 mL increments of 0.01 N HCl at 25°C using a Metrohm titration system (848 Titrino Plus). For each sample, three 20 mL sub-samples were analyzed. Total alkalinity (*A*T) was calculated from the Gran function applied to pH variations from 4.2 to 3.0 as mEq L⁻¹ from the slope of the HCl volume *versus* pH curve. Data were corrected by titrations of *A*T standards provided by A.G. Dickson. For each experimental treatment, the parameters of the carbonate system [*p*CO₂, CO₃²⁻, HCO³⁻, and saturation state of aragonite (Ω arag)] were calculated from pH_T, mean *A*T, temperature and mean salinity (35) using the free-access CO2SYS package (Pierrot and Wallace 2006).

name	m/z.	RT	err ppm	mS	ion	ion formula		
low pH - Bouraké								
M284T395	284.1857	395	3.4	8.4	$[M+H]^+$	$C_{15}H_{26}NO_4$		
M305T395	305.1148	395	-4.5	57.5	$[M+H]^+$	$C_{15}H_{17}N_2O_5$		
M344T543	344.3157	543	-2.9	17.6	$[M+NH_4]^+$	$C_{20}H_{42}NO_3$		
M378T646	378.3576	646	-	-	-	-		
M496T514	496.2906	514	2.8	20.5	$[M+H]^+$	$C_{26}H_{42}NO_8$		
M505T476	505.2539	476	-	-	-	-		
M536T527	536.3797	527	1	6.8	$[M+H]^+$	$C_{27}H_{54}NO_9$		
M555T641	555.466	641	-	-	-	-		
M563T492	563.3186	492	-	-	-	-		
M579T479	579.2812	479	-	-	-	-		
M589T504	589.24459	504	-	-	-	-		
M598T638	598.4889	638	-	-	-	-		
M599T475	599.3179	475	-	-	-	-		
M600T488	600.34155	488	-	-	-	-		
M605T566	605.2397	566	-0.3	55.2	$[M+H]^+$	$C_{35}H_{33}N_4O_6$		
M644T635	643.5192	635	-	-	-	-		
control pH -	Ricaudy							
M119T599	119.0855	599	-	-	-	-		
M299T504	299.2367	504	-2.7	28.5	$[M+H]^+$	$C_{21}H_{31}O$		
M315T455	315.2319	455	-0.1	24.6	$[M+H]^+$	$C_{21}H_{31}O_2$		
M316T583	316.2634	583	1.5	7.6	$[M+NH_4]^+$	$C_{21}H_{34}NO$		
M317T456	317.2474	456	0.2	5.9	$[M+H]^+$	$C_{21}H_{33}O_2$		
M318T600	318.2786	600	-0.9	13.8	$[M+NH_4]^+$	$C_{21}H_{36}NO$		
M334T515	334.274	515	0	6.3	$[M{+}NH_4]^{\scriptscriptstyle +}$	C ₂₁ H ₃₆ NO ₂ (lobophorenol B)		
M335T506	335.1971	506	6.1	37.5	[M+Na] ⁺	$C_{21}H_{28}NaO_2$		
M336T524	336.2896	524	0.4	14	$[M+NH_4]^+$	C ₂₁ H ₃₈ NO ₂ (lobophorenol C)		
M340T566	340.2634	566	-0.8	31.9	$[M+NH_4]^+$	$C_{23}H_{34}NO$		
M343T551	343.2606	551	6.9	60.1	$[M+H]^+$	$C_{23}H_{35}O_2$		
M345T499	345.2422	499	-1	35.5	$[M+H]^+$	$C_{22}H_{33}O_3$		
M345T495	345.2436	495	-0.6	11.5	$[M+H]^+$	$C_{22}H_{33}O_3$		
M353T457	353.2086	457	0.1	56	$[M+Na]^+$	$C_{21}H_{30}NaO_3 \\$		
M355T463	355.2242	463	2.2	171.7	$[M+Na]^+$	$C_{21}H_{32}NaO_3 \\$		
M361T478	361.2373	478	-1.7	59.8	$[M+H]^+$	$C_{22}H_{33}O_4$		
M361T450_2	361.2557	450	-8.2	20.6	$[M+H]^+$	$C_{26}H_{33}O$		
M363T470	363.253	470	2.2	21.1	$[M+H]^+$	$C_{22}H_{35}O_4$		
M368T484	368.2347	484	-4.4	249.1	$[M+H]^+$	$C_{22}H_{30}N_3O_2$		
M373T485	373.1904	485	-	-	-	-		
M373T456	373.2142	456	-	-	-	-		
M409T437	409.2116	437	3	133.8	$[M+H]^+$	$C_{24}H_{29}N_2O_4$		

Table S2. *Lobophora rosacea* ions responsible for the discrimination between low pH (Bouraké) and control pH (Ricaudy) conditions. RT = retention time (s). The mSigma (mS) value is a measure for the goodness of fit between experimental mass and isotopic pattern with theoretical ones: lower is the mS, better is the annotation

M413T449	413.183	449	-	-	-	-	
M438T478	438.285	478	0.1	16	$[M+NH_4]^+$	$C_{24}H_{40}NO_6$	
M459T477	459.2119	477	0.1	16	$[M+H]^+$	$C_{29}H_{31}O_5$	
M496T464	496.3632	464	1.6	44.9	$[M+H]^+$	$C_{28}H_{50}NO_6$	
M516T368	516.3169	368	-	-	-	-	
M520T458	520.3635	458	2.2	37.2	$[M+H]^+$	$C_{30}H_{50}NO_6$	
M526T491	526.293	491	2.4	81.9	$[M+H]^+$	$C_{34}H_{40}NO_4 \\$	
M528T490	528.3543	490	-	-	-	-	
M536T404	536.3714	404	-	-	-	-	
M550T593	550.4315	593	-	-	-	-	
M578T788	578.4769	788	-	-	-	-	
M596T496	596.3308	496	-	-	-	-	
M602T506	602.4615	506	-	-	-	-	
M625T557	625.2655	557	0.7	62.7	$[M+H]^+$	$C_{35}H_{37}N_4O_7$	
M815T705	814.5459	705	-	-	-	-	

name	m/z	RT	err ppm	mS	ion	ion formula
t0 samples - low pH						
M401T324	401.262	324	-	-	-	-
M430T455	430.2023	455	-1.7	53.5	$[M+H]^+$	$C_{27}H_{28}NO_4$
M432T461	432.2178	461				
M467T329	467.3016	329	-	-	-	-
M511T332	511.3277	332	-	-	-	-
t0 samples - control	рН					
M318T600	318.2786	600	-0.9	13.8	$[M+NH_4]^+$	$C_{21}H_{36}NO$
M331T516	331.2089	516	-	-	-	-
M336T524	336.2896	524	0.4	14	$\left[M+NH_4\right]^+$	C ₂₁ H ₃₈ NO ₂ (lobophorenol C)
M345T499	345.2422	499	-1	35.5	$[M+H]^+$	$C_{22}H_{33}O_3$
M363T470	363.253	470	2.2	21.1	$[M+H]^+$	$C_{22}H_{35}O_4$
M438T478	438.285	478	0.1	16	$[M+NH_4]^+$	$C_{24}H_{40}NO_6$
M459T477	459.2119	477	0.1	16	$[M+H]^+$	$C_{29}H_{31}O_5$
t14 samples - low pl	H					
M288T454	288.2533	454	0.2	n.a	$[M+NH_4]^+$	$C_{16}H_{34}NO_3$
M316T496	316.2846	496	-0.2	40.6	$[M+NH_4]^+$	$C_{18}H_{38}NO_3$
M344T543	344.3157	543	-2.9	17.6	$[M+NH_4]^+$	$C_{20}H_{42}NO_3$
M438T574	438.3803	574	3.4	40.1	$[M+H]^+$	$C_{24}H_{48}N_5O_2\\$
M510T644	510.4366	644	-1.6	125.6	$[M+H]^+$	$C_{28}H_{56}N_5O_3$
M527T570	527.435	570	-	-	-	-
M555T641	555.466	641	-	-	-	-
M598T638	598.4889	638	-	-	-	-
M644T635	643.5192	635	-	-	-	-
M659T564	658.5103	564	-	-	-	-

Table S3. *Lobophora rosacea* ions responsible for the discrimination between low pH and control pH conditions, at the beginning (t0) and the end (t14) of the aquaria experiment. RT = retention time (s). The mSigma (mS) value is a measure for the goodness of fit between experimental mass and isotopic pattern with theoretical ones: lower is the mS, better is the annotation