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This paper presents a powerful numerical model to compute bifurcation diagrams in liquid-
vapor two-phase fluid flows in vertical heated tube. This full range two-phase model
is designed to deal with both single phase (purely liquid or purely vapor) and mixed
liquid-vapor configurations that span all flow regimes (laminar and turbulent) in forced,
mixed and natural convections. The originality of the proposed methodology is to faithfully
integrate the implicit highly nonlinear system of governing equations along branches of
steady-state solutions. This is performed by means of a continuation algorithm based on
the Asymptotic Numerical Method supplemented with Automatic Differentiation. Then,
linear stability analyses are performed at various points of interest, enabling to figure out
stability limits within the parameter space in natural circulation configurations. Markedly,
Hopf bifurcations that indicate limit-cycle occurrences are identified at low and medium
void fractions, respectively, showing the added-value of the approach to track density-wave
mechanisms and potential failure of standard application of Ledinegg stability criteria on
such cases.

1. Introduction

In-depth understanding of two-phase natural circulation systems is crucial to design reliable industrial components 
likely to be used as passive safety systems in various environments such as the next generation of nuclear reactor power 
plants [26,40]. Indeed, natural circulation or convection fluid flow sets in a gravity field provided density variations occur 
over any equal elevation plane. In most cases, density variations result from temperature, concentration or pressure differ-
ences, so the central feature of such intrinsic behavior is that fluid flows without any actuator or pump. This is the main 
reason for which natural circulation loops could be good candidates for passive safety systems. However, despite their ap-
parent simplistic design, two-phase natural circulation loops could be very difficult to optimally design over a wide range 
of operating conditions owing to the many instabilities that may develop.

As a matter of fact, boiling channels are notoriously prone to thermal-hydraulic instabilities [4,46] and density-wave 
instabilities [21] are the most common type of instabilities that occurs even in the simplest configuration of a single vertical 
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tube uniformly heated along its wall [1,28,30,55,59]. However, to design reliable passive safety systems all instabilities 
should be either avoided or at least moderated to prevent boiling crisis or dry-out. Indeed, these two effects are unavoidably 
associated with reduced heat transfer between the cooling flow and heating surfaces possibly leading to wall temperature 
elevation likely to irreversibly damage the system. Specifically, when the passive system leads to a periodic flow pattern 
resulting from a density wave mechanism [3], stability of the limit cycle should be demonstrated, which first requires to 
identify the likely related Hopf bifurcation. However, despite several decades of intense research activity, experimental or 
numerical stability analyses of boiling fluid flows are still a very challenging research area. Undeniably, these instabilities 
results from complex interplay between various physical mechanisms acting at different space and time scales [4,21,46].

To model such a wide range of instabilities from static to dynamic ones, one needs a robust and representative numerical 
model suitable to deal with subtle highly nonlinear phenomena at affordable computational costs. The governing equations 
are derived on the one hand from conservation equations (mass, momentum and energy) and on the other hand from 
constitutive relationships that provide closures leading to a solvable set of equations. Provided the multiplicity of existing 
models in the open scientific literature only few leading one-dimensional approaches for boiling channel flows are consid-
ered here. The three conservation equations can be derived for each phase (liquid and vapor), leading to six conservation 
equations. These can be combined to end up in three conservation equations for the two-phase mixture, depending on the 
ability to model interaction terms linking liquid and vapor phases across their interfaces and at solid walls [58]. These are 
the two main issues to overcome when dealing with one-dimensional boiling channel models. Homogeneous models [1,30,
55] assume no relative velocity between liquid and vapor phases. Therefore, they should be used only when the two-phase
flows that contains bubbles or drops among the continuous phases can be assumed sufficiently smoothly varying. Otherwise,
drift-flux models [28,59] are to be preferred as they account for some averaged relative velocities between vapor and liquid
phases. Countless variants using sophisticated tailored correlations have been introduced over four decades to account for
particular situations such as pattern or regime transitions [18,24,25,42,47,50]. The second main issue is related to two-phase
frictional pressure drop as it also remains a scientific question not entirely resolved yet. Numerous empirical correlations
have been proposed to cover a broad range of configurations [51,57] and surprisingly the Muller-Steinhagen constitutive
relationship [37] performs among the best, despite being one of the simplest. So, boiling channel flows involve many phe-
nomenological closures or constitutive relationships that make up the set of governing equations. Unfortunately for real life
industrial applications these governing equations translate into stiff partial differential equations (PDEs) requiring out off
the shelves specialized numerical methods and models to compute fully nonlinear base-state solutions and perform their
stability analyses.

The overall goal of stability analyses in the framework of nonlinear problems is to understand the complete behavior of 
a given system as a function of its parameters. Relevant questions are: How many steady-states are there? Are they stable 
or unstable? It is important to have the ability to compute unstable steady-states as well as stable ones, since solutions 
arising from bifurcations along unstable branches often interact with stable solutions producing otherwise inexplicable phe-
nomena. Two main numerical approaches can be used to answer some of the above questions [14]. In a first approach the 
time-dependent PDEs are discretized in space and the resulting system of ordinary differential equations (ODEs) is evolved 
forward in time for various fixed values of the parameters. This approach is the most widespread approach to investigate 
the linear stability of boiling flows in heated channels. It originates from semi-analytical models in the 1960s in which the 
linearization of PDEs governing equations to transform them into ODEs was performed thanks to Laplace transforms [30,
55], lumped parameter methods [1,47] or reduced order models [31]. These semi-analytical approaches enabled to perform 
linear stability analyses that contributed to significant breakthroughs in understanding the numerous boiling channel insta-
bilities. However, the main issue of these approaches is that the derivation of the various transfer function coefficients is 
cumbersome and can be done only under very restrictive conditions either on base-state solutions or equations for which 
the linearization is performed. The alternative approach is to discretize the steady problem to obtain a system of nonlinear 
equations and then use methods from nonlinear analyses [27,29,32] to compute paths of steady solutions and provide sta-
bility assignment using numerical continuation methods and eigenvalue information [15–17,29,48,49]. This latter approach 
enables to overcome the issue of formal derivation of transfer function coefficients, but usually at much higher computa-
tional costs compared to previous semi-analytical models.

The present work aims at contributing to a better understanding of boiling channel instabilities by the means of a nu-
merical model that takes full advantage of robust and efficient advanced semi-analytical methods based on the Asymptotic 
Numerical Method [12,13,34]. This method is particularly well-suited to highly nonlinear problems such as those encoun-
tered in boiling channels flows. This nevertheless requires the governing equations to be somehow recast in the framework 
of high-order model requirements. Indeed, continuity and derivability properties are necessary conditions to compute ac-
curately and efficiently high-order Taylor series expansions involved in the Asymptotic Numerical Method. To this aim, we 
have derived a set of drift-flux based governing equations made up of three conservation equations for the two-phase mix-
ture, supplemented with a specifically derived void fraction equation, along with general-purpose constitutive laws for the 
relative liquid-vapor velocity and two-phase pressure drop. The present approach follows the Dynamical System Theory in 
the way one first computes branches of fixed points, i.e., steady-state solutions of the governing equations, thanks to the 
high-order continuation algorithm and then use some of these fixed point solutions as base-state to perform linear stabil-
ity analyses by solving generalized eigenvalue problems. The implementation is done in the framework of the Diamanlab 
software [5,6] and the outcome is the Baccarat model, which stands for Bifurcation Analysis in a vertiCal Channel by the 
Asymptotic numeRicAl meThod. Numerical assessments of the developed model are first presented.



The paper is organized as follows. The governing equations for boiling flows in vertical heated tube are derived in 
Section 2. Then, in Section 3, the developed numerical model is presented along with numerical model assessments in 
Section 4. Finally, conclusions and future work directions are given in Section 5, followed by three appendices dedicated to 
specific parts of the developed model.

2. Governing equations

The one-dimensional model developed in this work is intended to account for two-phase flows (liquid-vapor phase-
change) in a vertical tube (length l, constant cross-section of diameter d), heated at its wall with a prescribed heat flux 
(qw ). The fluid flow can be driven by an external pressure head and\or buoyancy so that one can model various interesting 
configurations ranging from forced convection to natural circulation and from laminar to turbulent regimes.

The goals implying the way we have derived the governing equations are twofold: i) to achieve a full-range two-phase 
model that enables to deal with both single phase (purely liquid or purely vapor) and mixed liquid-vapor flows that span 
laminar and turbulent regimes in forced, mixed or natural circulation; ii) the resulting set of equations should satisfy 
continuity and derivability constraints required by the solution algorithm based on the Asymptotic Numerical Method, 
which internally computes, transforms and manages high-order Taylor series expansions.

2.1. Conservation equations

2.1.1. Mass conservation equation
Let us define ρm and G as cross-sectional averages of mixture density and mass flux (mass flow rate per area unit), 

respectively, according to the following relationships:

ρm = (1 − α)ρl + αρv (1)

G = (1 − α)ρlul + αρv uv (2)

where α is the cross-sectional average fraction of vapor phase (often referred to as void fraction), ρi is i-fluid phase den-
sity (i = l, v liquid or vapor phase, respectively) and ui is its one-dimensional cross-sectional average velocity. Then, the 
one-dimensional mass conservation equation of the liquid-vapor mixture reads (cf. eq. (A.1)–(A.4) for derivation details):

∂ρm

∂t
+ ∂G

∂z
= 0 (3)

where t is time and z the axial abscissa along the ascending vertical axis.

2.1.2. Momentum conservation equation
The one-dimensional momentum equation of the two-phase liquid-vapor mixture in projection along the ascending 

vertical direction reads as follows (cf. eq. (A.5)–(A.10) for derivation details):

∂G

∂t
+ ∂

∂z

[
G2

ρm
+ α(1 − α)

ρlρv

ρm
U 2

rvl

]
= −∂ pm

∂z
− [(1 − β)τl + βτv ]

4

d
− ρm g (4)

where Urvl = uv − ul is the relative liquid-vapor velocity, pm is the mixture pressure, β is the perimeter fraction wetted by 
vapor phase, τi is the viscous stress of the i-fluid phase at tube wall and g is gravity.

2.1.3. Energy conservation equation
Let us define ρmhm as cross-sectional average of mixture mass enthalpy, according to the following relationship:

ρmhm = (1 − α)ρlhl + αρvhv (5)

then, the one-dimensional enthalpy conservation equation of the liquid-vapor mixture reads (cf. eq. (A.12)–(A.20) for deriva-
tion details):

∂ (ρmhm − pm)

∂t
+ ∂

∂z

[
Ghm + α(1 − α)

ρlρv

ρm
Urvl Hrvl

]

−
[

G

ρm
+ α(1 − α)

(ρl − ρv)

ρm
Urvl

]
∂ pm

∂z
= qw

4

d
− Filv Urvl

(6)

where Hrvl = hv − hl is the relative liquid-vapor enthalpy and Filv is the interaction force between phases acting at the 
liquid-vapor interface.



2.2. Closures for our full-range drift-flux model

At this point, one has derived three conservation equations (mass eq. (3), momentum eq. (4) and enthalpy eq. (6)), but 
they involve twelve unknowns (ρl , ρv , α, G , pm , hm , Urvl , Hrvl , β , τl , τv , Filv ). Therefore, nine extra equations (constitutive 
relationships, closures or assumptions) have to be supplemented to conservation equations to lead to a solvable set of 
equations.

2.2.1. Negligible compressibility effects
Let us first show that in the particular liquid-vapor two-phase flows we are interested in (steady-states and very low-

dynamic subsonic flows, i.e., no water hammer), compressibility effects are negligible with respect to phase-change dilatation 
ones. Indeed, magnitude orders of the two related effects can be evaluated thanks to the total differential of mixture density 
as follows:

dρm = ∂ρm

∂ pm
�pm + ∂ρm

∂T
�T (7)

where T is temperature, the former term on the right hand side of eq. (7) represents compressibility effect meanwhile the 
latter represents the dilatation induced by internal energy variations (dominated by phase-change). In the particular cases 
we are interested in, the maximum vapor velocity does not overcome some fraction of the speed of sound in that fluid 
(Mav = uv/csv < 0.3, Mav being the Mach number in the vapor phase and csv ≈ 330 ms−1 is the speed of sound in the va-
por at atmospheric pressure). So, one can estimate the compressibility contribution as follows: ∂ρm

∂ pm
= ∂ρl

∂ pm
+ ∂ρv

∂ pm
≈ 1

c2
sl
+ 1

c2
sv

≈
1

c2
sv

, meanwhile the maximum pressure drop considered in the present work is �p = O (105) Pa. Thus, the compressibility 

contribution is ∂ρm
∂ p �pm = O (1), whereas the dilatation one is ∂ρm

∂T �T = O (
ρl
ρv

) ≈ O (103). Therefore, ∂ρm
∂ pm

�pm <<
∂ρm
∂T �T , 

so that compressibility effects are legitimately negligible with respect to phase-change dilatation ones. So, in the following, 
one assumes liquid and vapor density to be user provided constants:

ρl = ρl(pref , Tref ) (8)

ρv = ρv(pref , Tref ) (9)

where pref and Tref are prescribed reference pressure and temperature, respectively.

2.2.2. Void fraction relationship
Of very numerous works use the mass conservation equation of the vapor phase, eq. (A.2), to compute the cross-sectional 

average void fraction [24,47]. Despite its apparent appeal, this approach is discarded in the present work. Indeed, not only 
the right-hand side of eq. (A.2) is at best a cumbersome constitutive relationship and always highly nonlinear, but much 
worse, when looking for fixed point solutions as base solutions for subsequent linear stability analyses, the related implicit 
steady-state equation does not ensure the void fraction belongs to its physical domain of definition (α ∈ [0, 1]).

Therefore, the alternative way considered in this work is to refer to the mixture mass enthalpy flux (second term on 
the left hand side of eq. (A.20)), as the relevant closure for the void fraction equation. It somehow translates the thermal 
equilibrium assumption into the present implicit formalism. However, one first has to derive liquid and vapor enthalpy 
expressions (hl and hv ) dependent on their saturated values (hls and hvs) and mixture enthalpy (hm) in a regularized 
framework. The derived expressions read as follows:

hl = hls + 1

2

[
hm − hls −

√
(hm − hls)

2 + ε2
]

(10)

hv = hvs + 1

2

[
hm − hvs +

√
(hm − hvs)2 + ε2

]
(11)

where ε is the regularization parameter. These regularized liquid and vapor enthalpy relationships are plotted in Fig. 1 ver-
sus dimensionless mixture enthalpy for two values of the regularization parameter (ε = 10−1, 10−2), inside their respective 
definition domain (hl ≤ hls = 0.5 and hvs = 1.5 ≤ hv ). It is noteworthy that the latter value of the regularization parameter 
(ε = 10−2) performs quite well in the chosen dimensionless mixture enthalpy framework.

So, one can now easily access to liquid-vapor relative enthalpy (Hrvl ) within the phase-change interval (hls ≤ hm ≤ hvs), 
the only where it has a physical meaning. It reads:

Hrvl = hvs − hls (12)

Substituting then, on the one hand expressions of liquid and vapor velocities (eq. (A.10) and eq. (A.11)) and on the 
other hand those of regularized liquid and vapor enthalpies (eq. (10) and eq. (11)) into the mixture mass flux enthalpy and 
equating to its value in eq. (6), one ends up with an implicit void fraction equation as a function of the mixture mass flux, 
mixture enthalpy, relative liquid-vapor velocity and related thermo-physical fluid properties. It reads:



Fig. 1. Dimensionless regularized liquid and vapor enthalpies (blue and red lines, respectively) versus dimensionless mixture enthalpy ( 2 hm
hls +hvs

) for
2(hvs −hls )

hls +hvs
= 1. Dashed and solid lines refer to regularization parameter ε = 10−1 and 10−2, respectively. (For interpretation of the colors in the figure(s), 

the reader is referred to the web version of this article.)

Fig. 2. Full-range regularized void fraction, eq. (13), versus dimensionless mixture enthalpy ( 2 hm
hls +hvs

) for 2(hvs −hls )

hls +hvs
= 1, ε = 10−4, G = 100 kg.s−1.m−2, 

ρl = 103 kg.m−3 and various liquid to vapor density ratios and relative velocities, subsequently defined in eq. (15). (a) ρv = 10 kg.m−3; (b) ρv = 4 kg.m−3; 
(c) ρv = 1 kg.m−3.

G
[
(1 − α)ρl

(
hm − hls +

√
(hm − hls)

2 + ε2
)

+ αρv

(
hm − hvs −

√
(hm − hvs)2 + ε2

)]
+α(1 − α)ρlρv Urvl

(
hvs − hls −

√
(hm − hls)

2 + ε2 −
√

(hm − hvs)2 + ε2
)

= 0
(13)

This regularized void fraction relationship, eq. (13), is plotted versus dimensionless mixture enthalpy in Fig. 2 for pre-
scribed mass flux and vapor to liquid saturation enthalpy ratio, but various liquid to vapor density ratios and relative 
velocities. One can note that the higher the liquid to vapor density ratio, the steeper the void fraction evolves just beyond 
the saturated liquid enthalpy and sharply asymptotes unity. Conversely, the higher liquid-vapor relative velocity, the more 
void fraction is shifted towards higher mixture enthalpies.

The set of the above three conservation equations (mass eq. (3), momentum eq. (4) and enthalpy eq. (6)) supplemented 
with void fraction relationship eq. (13) makes up the core of the present one-dimensional model that enables to implicitly 
solve for their associated four primary variables, namely: pm , G , hm and α, respectively. The remaining five variables (Urvl , 
β , τl , τv , Filv ) are thus defined as secondary variables, derived as explicit functions of these four primary unknowns.

2.2.3. Liquid-vapor relative velocity
The drift-flux model first developed by Zuber & Findlay [59] in the mid-sixties relies on an empirical constitutive re-

lationship that relates vapor velocity (uv ) to superficial mixture velocity ( j = (1 − α)ul + αuv ) and drift velocity (v D ), 
according to the following linear equation:

uv = C0 j + v D (14)

where C0 is the distribution parameter that accounts for flow patterns in which, liquid and vapor phases are not uniformly 
distributed in the tube cross-section (e.g., annular flow regime). The empirical constitutive relationship of eq. (14) has been 



Fig. 3. Liquid, vapor, relative and specific velocities versus void fraction for G = 100 kg.s−1.m−2, ρl = 103 kg.m−3, ρv = 1 kg.m−3 and C0 = 1. (a) Constant 
drift velocity (v D = 0.178 m.s−1); (b) drift velocity from [50]; (c) drift velocity derived in the present work, eq. (B.9). Liquid velocity, eq. (B.2), green line; 
vapor velocity, eq. (B.3), blue line; relative velocity, eq. (B.1), red line; specific mixture velocity, purple line.

Fig. 4. Comparison of three drift-flux models for G = 100 kg.s−1.m−2, ρl = 103 kg.m−3, ρv = 1 kg.m−3 and C0 = 1. Constant drift velocity (v D = 0.178
m.s−1, blue line), drift velocity from [50] (black line) and present work (red line).

successfully confronted to experiments in many reference works on boiling channel [18,42,47]. To get some insight in how 
this constitutive relationship acts on the fluid flow, its related velocities have been derived in B.1 and plotted in Fig. 3(a) 
versus void fraction for constant drift velocity (v D = 0.178 m.s−1) and distribution parameter (C0 = 1), G = 100 kg.s−1.m−2, 
ρl = 103 kg.m−3, ρv = 1 kg.m−3. With such a constant drift velocity, all velocities except the vapor phase one diverge to 
infinity as void fraction approaches to unity, which is obviously nonphysical. Therefore, none constant drift velocity can 
be a candidate for any full-range model, so one should instead look for a constitutive equation in which the drift velocity 
depends on void fraction as, e.g., in [24,25,50]. Fluid flow velocities corresponding to the drift velocity from [50] are plotted 
versus void fraction in Fig. 3(b). All velocities are now perfectly bounded, which represents a noticeable improvement with 
respect to the constant drift velocity model. However, despite various levels of sophistication, none of the quoted boiling 
channel models simultaneously satisfies all of the present work constraints: full-range implicit constitutive relationship 
that satisfies conditions of eq. ((B.6)–(B.8)) and that has continuity and derivability properties suitable for our Asymptotic 
Numerical Method.

Therefore, to overcome these issues we have followed the former approach of Ishii [28] to derive a kinematic constitutive 
equation that relates the liquid-vapor relative velocity (Urvl ) to mixture mass flux and void fraction, while preserving the 
global behavior of the original constitutive equation (14). This fully-implicit simplified model is tailored to overcome the 
weaknesses of previous constitutive equations [50,59]. For the sake of brevity, it is derived in the present paper for the 
particular case of uniform distribution coefficient (C0 = 1). The fluid flow velocities related to the constitutive equation 
derived in the present work, eq. (B.9), are plotted in Fig. 3(c). One can observe it behaves as expected towards the two 
single-phase liquid (α → 0) and vapor (α → 1) limits, respectively, while reproducing faithfully the original constitutive 
equation in-between.

The drift velocities from the three models (constant, from [50] and present model, eq. (B.9)) are plotted versus void 
fraction in Fig. 4(a). They coincide over the main part of the void fraction range except at both ends, where the drift 
velocity introduced in the present work tends to zero faster than that from [50] for void fraction approaching to one and is 



Fig. 5. Relative liquid-vapor velocity (eq. (15)) and vapor quality (eq. (16)) versus void fraction for d = 10−2 m, G = 100 kg.s−1.m−2, ρl = 103 kg.m−3, 
C0 = 1 and various liquid to vapor density ratios (ρv = 10, 4, 1 kg.m−3).

the only one that goes to zero for α tending to zero in order to satisfy eq. (B.6). Substituting back the proposed constitutive 
relationship of eq. (B.9) into the liquid-vapor relative velocity expression of eq. (B.1), performing then some tedious algebra 
(expanding, developing into series, simplifying and identifying leading order terms) thanks to the Mathematica [54] symbolic 
algebra software, the full-range analytical expression of the liquid-vapor relative velocity reads:

Urvl = v D0

tanh(auα)(1 − αcu )

1 − α (1 − bu)
(15)

where v D0 = 9
16

√
gd(ρl−ρv )

ρl
is the drift velocity in the limit of α → 0 from [50] and the three constants have been identified 

to: au = 32, bu = 9
16

√
ρv
ρl

and cu = 40. The liquid-vapor relative velocities from the three models (constant drift velocity, 
from [50] and present model, eq. (15)) are plotted versus void fraction in Fig. 4(b) for the considered case and the same 
comment as for the drift velocity plot also holds. Finally, vapor velocities from the three models are plotted versus specific 
mixture velocity in Fig. 4(c) and one can notice the very good agreement to the original constitutive relationship [59] of 
eq. (14) over most of the void fraction range, except close to the pure liquid region (α → 0) where the present model departs 
from the two others as its vapor velocity tends to liquid one in order to satisfy continuity conditions of eq. ((B.4)–(B.5)). The 
influence of liquid to vapor density ratio is depicted in Fig. 5(a) and it is noteworthy that the higher this ratio, the stronger

is the vapor-liquid relative velocity as its maximum evolves as 
√

gd
(

ρl
ρv

− 1
)

.

Finally, vapor quality can be expressed with respect to our primary variables of the problem (mixture mass flux, void 
fraction) and relative liquid-vapor velocity, in the following way:

x = αρv uv

G
= αρv

[
G + (1 − α)ρlUrvl

]
G [(1 − α)ρl + αρv ]

(16)

Vapor quality, eq. (16), is plotted versus void fraction in Fig. 5(b) for three liquid to vapor density ratios. It turns out that 
the higher the density ratio, the smaller is vapor quality for a given void fraction.

2.2.4. Two-phase frictional pressure drop
For single-phase fluid flows in tubes the frictional stress is related to friction coefficient and flow kinetic energy as 

follows:

τi = f i

4

G2

2ρi
(17)

where f i is the Darcy-Weisbach friction coefficient of the i-fluid phase (subscript i = l, v). It can be defined by numerous 
correlations among them the Churchill constitutive law [7], that reads:

f i = 8

⎧⎪⎨
⎪⎩
(

8

Rei

)12

+
⎡
⎣
(

−2.457 ln

[(
7

Rei

)0.9

+ 0.27
εr

d

])16

+
(

37530

Rei

)16
⎤
⎦

−3/2
⎫⎪⎬
⎪⎭

1/12

(18)



Fig. 6. Two-phase frictional pressure gradient, eq. (19) for d = 10−2 m, G = 100 kg.s−1.m−2, ρl = 103 kg.m−3, μl = 10−3 Pa.s−1 and various liquid to vapor 
density and dynamic viscosity ratios (ρv = 10, 4, 1 kg.m−3; μv = 10−4, 4 10−5, 10−5 Pa.s−1). (a) versus vapor quality; (b) versus void fraction.

where Rei = Gd
μi

is the related Reynolds number (μi is the dynamical viscosity of the i-fluid phase) and εr is the tube 
roughness. This correlation performs quite well for single-phase tube flows at all flow regimes (laminar, transitional and 

turbulent) as it recovers the Hagen-Poiseuille friction coefficient ( f i = 64
Rei

) and the Blasius one ( f i = 0.3164 Re
− 1

4
i ) in laminar 

and fully turbulent regimes, respectively.
For two-phase flows, very few correlations are able to predict their frictional pressure drop for all flow regimes and flow 

patterns. However, the Muller-Steinhagen constitutive relationship [37] chosen in this work is one of the simplest and it 
performs surprisingly among the best over a broad range of flow configurations [51,57]. It enables to relate the two-phase 
frictional pressure gradient to vapor quality and individual contributions of liquid and vapor phases flowing alone in the 
tube. Thanks to this relationship the two-phase frictional pressure gradient that appears in the momentum conservation 
equation of the mixture (second term on right hand side of eq. (4)) can be approximated as follows:(

∂ pm

∂z

)
f ric

= [(1 − β)τl + βτv ]
4

d
≈
{[

fl

ρl
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(
f v

ρv
− fl

ρl

)
x

]
(1 − x)

1
c + f v

ρv
xc
}

G2

2d
= fm

G2

2d
(19)

where x is the vapor quality and the c exponent is a constant (its value, c = 3, results from fits on thousand of experimental 
data points [37]) and fm is the resulting mixture friction coefficient. This correlation works fine provided f v

ρv
− fl

ρl
> 0, that is 

to say, when the kinematic viscosity of vapor phase is greater than liquid one ( μv
ρv

>
μl
ρl

), condition which is usually satisfied 
for low to moderate viscosity liquids. The two-phase frictional pressure gradient (eq. (19)) is plotted versus vapor quality 
and void fraction in Figs. 6(a) and 6(b), respectively, for three liquid to vapor density ratios and dynamic viscosity ones. 
One can observe that it first increases up to its maximum value that takes place at roughly x = 0.85 and then it steeply 
decreases to the pure vapor value.

2.2.5. Mechanical power of phase interaction force discarded
In the present one-dimensional model neither the topology of the liquid-vapor interface nor its dynamics are by no way 

accessible to any implicit computation. However, the mechanical power of this interaction term that acts at the liquid-vapor 
interface can be legitimately assumed negligible with respect to the leading terms (heating power, mixture mass enthalpy 
flux, etc.) appearing in the enthalpy conservation equation. Consequently, in what follows the related term (Filv Urvl ) is 
always neglected in eq. (6).

2.3. Dimensionless set of governing equations

Setting the tube length as length scale, L̃ = l, then related dimensionless length quantities read: ẑ = z/L̃, d̂ = d/L̃; setting 
then reference density and mass flux, respectively denoted ρ̃ and G̃ , then the reference time and pressure read: t̃ = ρ̃ L̃/G̃
and p̃ = G̃2/ρ̃ , respectively. Finally, the reference enthalpy is set to h̃. Therefore, the present one-dimensional full-range 
liquid-vapor two-phase flow model is governed by the set of four implicit equations related to the four primary dimension-
less unknowns, namely p̂m = pm/p̃, Ĝ = G/G̃ , ĥm = hm/h̃ and α, that read as follows:

∂ρ̂m
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= −∂ Ĝ

∂ ẑ
(20a)
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[
Ĝ2

ρ̂m
+ α(1 − α)

ρ̂lρ̂v

ρ̂m

ρ̃2U 2
rvl

G̃2

]
− ∂ p̂m

∂ ẑ
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where ρ̂m = (1 − α)ρ̂l + αρ̂v , x = αρ̂v

[
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3. Numerical model to compute bifurcation diagrams

Once the set of governing equations has been closed and is solvable one has to select a numerical strategy to accu-
rately and efficiently compute its relevant solutions. Furthermore, one also wants to determine for which range of control 
parameters the system is either stable or unstable, as qualitative and quantitative changes in its behavior may occur. The 
methodological strategy used in this paper follows the Dynamical System Theory [19,27,32] in a way that one first finds 
out fixed point solutions of the governing equations, then select some relevant ones as base-states at which linear stability 
analyses are performed. The stability of the system changes at critical values of control parameters associated with, e.g., 
turning points, steady-state or Hopf bifurcation points, which unfortunately coincide to singular solution of the governing 
equations [14,29]. Therefore, specialized algorithms should be used to accurately compute them [10,16,17,48,49].

The originality of the present work in the framework of boiling fluid flows stands in the way one efficiently computes 
branches of steady-state solutions. It results from the combination of accurate discretization of their governing partial differ-
ential equations and efficient solution of the resulting highly nonlinear algebraic system, thanks to a powerful continuation 
algorithm based on the Asymptotic Numerical Method [11–13]. So, this section presents its main numerical stages and 
methods, derived in the framework of the present full-range boiling flow model.

3.1. Spatial discretization of first-order derivatives

As just discussed above, one first seeks for fixed points of the set of governing equations, that is to say setting to zero the 
time derivatives on left-hand sides of eq. (20a)–(20c). This results in a set of nonlinear first-order partial differential equa-
tions, which transform into a set of nonlinear algebraic equations after spatial discretization of their first-order derivatives. 
In such a one-dimensional problem, a simple and accurate way to proceed is to perform spatial discretizations with finite 
difference schemes. However, mass and momentum conservation equations, eq. ((20a)–(20b)), are linked to one another by 
density and mass flux, meanwhile the incompressibility condition is assumed to hold, it results that density variations are 
no longer related to any pressure ones. Therefore, a pressure equation is required such that solutions of the momentum 
equation be mass-consistent, along with a specific velocity-pressure coupling in order to end-up in a mass consistent stable 
scheme. So, to overcome these issues and to prevent from any odd-even decoupling or checkerboard pattern for pressure, 
staggered grids for mass flux and pressure are introduced following the original velocity-pressure coupling scheme first 
suggested in [23], see Fig. 7.

Let Q be any of the collocated primary variables (G, hm, α), whose n evenly distributed discrete values along the one 
dimensional computational domain are located at Q i (1 ≤ i ≤ n) points, see Fig. 7. Their first-order spatial derivative in 
momentum or enthalpy conservation equations, eq. ((20b), (20c)), are discretized at every collocated grid point with the 
6th order finite difference scheme of eq. (C.1). Furthermore, it is noteworthy to mention that in the present staggered dis-
cretization scheme, the n − 1 discrete pressure unknowns are evenly located at the middle point to their adjacent collocated 
mates, meanwhile the two pressure boundary conditions (p0 and pL ) are set at the two computational domain ends (ẑ = 0
and ẑ = l̂), respectively, to satisfy the actual imposed pressure drop, cf. Fig. 7. According to the chosen staggered grids the 
first-order derivative of mixture pressure in the momentum equation, eq. (20b), is computed at every collocated grid point 
with the 5th order finite difference scheme of eq. (C.2). Finally, the first-order derivative of the mixture mass flux in the 
mass conservation equation, eq. (20a), is computed at every staggered grid point with the staggered 5th order finite dif-
ference scheme of eq. (C.3). To target optimal accuracy all these discretization operators use centered stencils, except in 
the vicinity of the two computational domain ends where the resulting schemes are forward or backward finite difference 
stencils, respectively.

3.2. Continuation algorithm to compute fixed point solutions

Once the set of nonlinear algebraic equations is at disposal, one wants to efficiently compute its fixed point solutions 
by continuation or path-following algorithms [2,29]. They aim at mapping the parameter space by computing branches of 



Fig. 7. One-dimensional computational domain of the vertical heated tube (rotated 90◦ clockwise for display purpose) and its evenly distributed staggered 
grids of primary variable unknowns: collocated ones (Q i = Gi , hmi , αi ) and staggered ones (pi ).

solutions for a given range of control parameters, along with critical values and their corresponding singular solution. Their 
founding principle is based on the Implicit Function Theorem [29], which basically states that from a given starting-point 
solution, provided the jacobian matrix associated with the functional at this point is full rank (regular point), then it exists 
in its vicinity a branch of solutions that passes throught that point. On the other hand, more complex algebra have to 
be performed to compute emanating branch(es) from singular points, i.e., steady-state bifurcation points, but specialized 
algorithms are now well established [13,27,29].

Among continuation algorithms, first-order predictor-corrector ones with pseudo-arc-length parameterization have been 
widely used for decades [15–17,29,48,49]. Nevertheless, their step-length adaptivity may be sometimes in trouble in the 
vicinity of bifurcation points, resulting in weak computational efficiency and even worse as possible lack of convergence. 
An alternative way to first-order predictor algorithms stands in high-order predictors that have been introduced in the 
Asymptotic Numerical Method (ANM) [11–13]. Its implementation in the frame of the present full-range two-phase flow 
model involves two main components: a continuation algorithm based on high-order Taylor series expansion and Automatic 
Differentiation (AD) procedures to efficiently compute their numerous coefficients associated with every nonlinear terms 
involved in the governing equations. These two parts are in turn briefly presented below.

3.2.1. Asymptotic Numerical Method
Unlike first-order predictor-corrector algorithms one of the key features of the Asymptotic Numerical Method is that 

it does not involve any a priori user-prescribed incremental loading to drive the continuation process. Indeed, it rather 
translates the latter into an implicit parametric loading problem in such a way that the control parameter enters the 
algorithm as an unknown loading coefficient. Furthermore, it advantageously combines high-order Taylor series expansion 
and parameterization strategy resulting in a general and efficient nonlinear solution method. Its intrinsic features enables to 
transform the initial set of nonlinear algebraic equations into a series of linear sets, sharing the same tangent operator, which 
basically provides an overall high computational efficiency to the method. In the ANM step-length adaptivity is intimately 
related with the radius of convergence of the series, so it automatically self-adapts to any local nonlinear changes. Finally, 
taking advantage of Van Dyke’s pioneer works on power series analysis [52] the computational efficiency of the ANM 
algorithm has been nicely improved at steady bifurcation points and their emanating branches [13].

To briefly present the main features of ANM, let us first introduce some generic notations. Let R(u, λ) = 0 be the 
functional associated with the algebraic system of n nonlinear smooth equations. The latter results from the spatial dis-
cretization of the set of steady-state governing equations. u ∈Rn is the vector of discretized state variable unknowns (G , p, 
hm and α values at their respective grid points) and λ ∈ R the chosen scalar control parameter. The extended state vector 

U =
[

u
λ

]
∈ Rn+1 is in turn introduced for compactness as it contains the continuation parameter λ in addition to state 

variables, so that the equilibrium system now reads:

R(U ) = 0 (21)

Generic solutions of eq. (21) are branches of solutions, which are represented in ANM continuation algorithms by the power 
series expansion of eq. (22):

U (a) = U0 + a U1 + a2 U2 + · · · + am Um (22)

where m is the truncate order of the power series expansion and a the path parameter defined in the parameterization 
equation (23) as the classical pseudo arc-length [11,12]:

a = [U (a) − U0]T · U1 (23)

Substituting the power series expansion of eq. (22) into the original algebraic set of nonlinear equations (21), equating then 
like powers of a, it results a set of linear algebraic systems, that share a unique tangent operator (the jacobian matrix) 
and have recursive right hand sides. The latter depends on the solution vectors from previous series expansion orders, 
therefore, one has to solve sequentially at every order of the Taylor series expansion for the unknowns of these recursive 
linear algebraic systems to provide the sought nonlinear solution in the vicinity of a known starting point.

However, as any Taylor series expansion has generally only a finite radius of convergence, one has to compute the 
maximum value of the path parameter to not exceed a user-defined maximum departure from the solution curve within 
the ANM predictor step. For that purpose we make use of a reliable criterion to evaluate the maximum path parameter 
value amax . It is built on the ratio between the first term of the series to the last one, times a user-prescribed accuracy 
constant δ [11]:



amax =
(

δ
|| �U1||
|| �Um||

) 1
m−1

(24)

In that way, the ANM algorithm enables to compute a piecewise semi-analytical representation of the whole path in a 
step-by-step procedure until the parameter range of interest has been spanned. Moreover, as the ANM predictor step could 
produce a guess solution slightly departing from the sought solution curve, the classical Newton-Raphson algorithm is 
implemented as a subsequent corrector step, when needed.

3.2.2. Automatic Differentiation
On the one hand, constitutive relationships or closures supplemented to the conservation equations have been carefully 

designed to be appropriately continuous and differentiable in the framework of Taylor series expansion involved in ANM. 
On the other hand, the overall computational efficiency of ANM highly depends on computational costs associated with 
recurrence formulas involved in the nonlinear terms appearing in the right hand side of linear algebraic systems to be 
solved at every order of the asymptotic expansion. Since the present set of governing equations involve numerous highly 
nonlinear terms it has been a good opportunity to resort to Automatic Differentiation in the framework of the Asymptotic 
Numerical Method, thanks to its object-oriented implementation in the Diamanlab software [5,6].

Automatic Differentiation is used in the Diamanlab software to compute first-order derivatives involved in the jacobian 
matrix once per ANM predictor step and high-order derivatives appearing in recursive right hand sides at every asymptotic 
expansion order. Its basic principle is to make a systematic use of complex function decomposition into elemental differen-
tial ones and then apply differentiation chain-rule to composition of those elemental functions. The computation of Taylor 
series coefficients of elementary functions and arithmetic operations (sum, product, etc.) is performed thanks to recurrence 
formulas such as the famous Leibniz formula for a product [22] and the Faà di Bruno’s generalization for the chain-rule 
to higher-order derivatives [56]. The implementation in the Diamanlab software [5,6] relies on operator overloading as the 
vehicle of attaching higher-order derivative computations to arithmetic operators and intrinsic functions provided by the 
programming language.

3.3. Linear stability analysis

Once branches of fixed point solutions have been computed, linear stability analyses (LSA) can be performed on some 
of these steady-state solutions that can interestingly belong to the highly nonlinear regime. In this goal, one follows the 
Dynamical System Theory [19,27,32], because although it has been developed for Ordinary Differential Equations (ODEs), 
the needed theoretical background and formalisms can be transposed and adapted to Partial Differential Equations (PDEs) 
involved in the present set of governing equations.

Let us(z, λ) be one of the steady-state solutions previously computed for a particular value of the control parameter, it 
is referred to as a base-state. The most simple way to perform a linear stability analysis is to superimpose to this base-state 
an infinitely small amplitude perturbation. Then, a classical method to transform the initial-value PDEs problem into a 
corresponding eigenvalue one is to introduce the normal mode approach, in which the space-time variable separation of the 
perturbation field is of the form up(z, t) = φ(z)eσ t , φ(z) being the spatial mode and σ the temporal growth or decay rate. 
In that way, the linear stability analysis produces a linearization of the evolution equations around this steady-state solution. 
For the present governing equations this procedure leads to a generalized eigenvalue problem that reads as follows:

[J] {φ} = σ [M] {φ} (25)

where [J] =
[

∂ R(u,λ)
∂u

]
is the jacobian matrix at steady-state solution point us(z, λ) and [M] is the mass matrix at that point 

(i.e., coefficient matrix of the time derivative terms). The eigenvalues σ and their associated eigenvectors φ can be complex 
numbers and vectors, respectively. So, if the real part of the rightmost eigenvalue of eq. (25) is negative (positive), the 
system is linearly stable (unstable), else it is marginally or neutrally stable.

The main issue arising from the generalized eigenvalue problem of eq. (25) is the mass matrix associated with the 
discretization of dynamical governing equations is singular, so there are as many infinite eigenvalues as singular equations 
in the system. The first source of singularity is associated with the incompressibility constraint that assumes density does 
not depend on pressure. This is a classical issue which has been broadly addressed in the LSA literature of incompressible 
fluid flows [8,9,35]. However, in the present problem where liquid-vapor phase-change is involved, incompressibility does 
not lead to divergence-free response to dynamical perturbations as density could vary up to three orders of magnitude 
(for water-steam phase-change at atmospheric pressure, ρl

ρv
= O (103)). So, most of the numerous algorithms devoted to 

divergence-free problems associated with constant density assumption are no longer appropriate to solve eq. (25). However, 
they inspired us in the way to undertake the second singularity of the problem, which is associated with the fully implicit 
time-independent closure equation of the void fraction, eq. (20d).



[J] =

⎛
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J GG J Gp 0 J Gα
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JhG Jhp Jhh Jhα
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Indeed, taking advantage of the block structure of the algebraic system, cf. eq. (26), resulting from the discretization of 
the set of linearized perturbation equations, one can perform a static condensation of the algebraic system to eliminate 
the n perturbation equations associated with void fraction unknowns. The corresponding matrices resulting from this static 
condensation read, cf. eq. (27):

[Jsc] =
⎛
⎝ J GG − J Gα J−1

αα JαG J Gp − J Gα J−1
αα Jαh

J pG 0 0
JhG − Jhα J−1

αα JαG Jhp Jhh − Jhα J−1
αα Jαh

⎞
⎠ ; [Msc] =

⎛
⎝ MGG 0 0

−Mpα J−1
αα JαG 0 −Mpα J−1

αα Jαh

−Mhα J−1
αα JαG Mhp Mhh − Mhα J−1

αα Jαh

⎞
⎠

(27)

The singularity of the resulting generalized eigenvalue problem is reduced, but [Msc] is still singular. Indeed, it remains 
n − 1 infinite eigenvalues associated with pressure unknowns out of 3n − 2 discrete equations, n being the number of grid 
points. The direct matrix factorization of the reduced size system is reasonably affordable for the present one-dimensional 
model as its cost evolves as O ((3n − 2)3). Therefore, the present generalized eigenvalue problem with singular mass matrix 
can be accurately solved thanks to the Jacobi-Davidson Q Z factorization algorithm [20,36,45,53]. Let 

[
JU T
sc

]
and 

[
MU T

sc

]
be

the upper triangular matrices resulting from the Q Z factorization of [Jsc] and [Msc], respectively, then {β} = diag
[
JU T
sc

]
and

{δ} = diag
[
MU T

sc

]
are the generalized eigenvalues that satisfy:

[Jsc] {φsc} · {δ} = [Msc] {φsc} · {β} (28)

Finally, the 2n −1 relevant eigenvalues (that are not infinite) are conditionally computed according to the following rule: for
1 ≤ i ≤ 3n − 2; if δi > ε or 0.1 ≤ | βi δi |/ε2 ≤ 10, then σsci = βi/δi (with ε being a user-defined tolerance). This procedure 
has been satisfactorily validated against classical Shift-and-Invert and Generalized Cayley spectral transform methods [8,10,
35].

4. Numerical assessments

Several numerical analyses have been performed on representative test cases to assess computational accuracy and effi-
ciency of the present implementation. Let us consider a natural circulation flows into an open heated tube (length l = 10d, 
diameter d = 10−2 m) immersed into a liquid water bath of infinite extension at atmospheric pressure. Continuation in 
this sub-cooled natural circulation configuration is performed starting from a base-state defined at zero heating power by 
sub-cooled liquid water (ĥ0

m < ĥls) at rest in hydro-static equilibrium. A constant heat flux is supplied at tube wall over the 
first eighty percents of its length (lq/l = 0.8), while the remaining twenty percents are assumed adiabatic. Natural circula-
tion into the tube is computed by taking the heating power as continuation parameter in such a way one travels along the 
branch of solutions for which the mixture enthalpy of the fluid monotonically increases. The present continuation procedure 
consists in computing steady-state solutions versus tube heating power. This section presents at first a spatial convergence 
analysis and secondly a sensitivity analysis with respect to the main numerical parameter of the model.

4.1. Spatial convergence analysis

A spatial convergence analysis is performed on branches of steady-state solutions and bifurcation points (Hopf and 
turning point) where the linear stability of base-state changes. Approximate solutions have been computed for a value of 
the regularization parameter ε = 10−3 on four successively refined grids (npts = 201, 401, 801 and 1601 points) to achieve 
reliable spatial convergence, so that Richardson extrapolation (RE) can be performed. This extrapolation technique not only 
enables to evaluate effective convergence order for any actual problem of interest, but also and more importantly, to improve 
the accuracy of discrete solutions when used in the asymptotic range [38,39,43,44].

4.1.1. Branches of steady-state solutions
Branches of steady-state solutions are plotted in Fig. 8 versus dimensionless heating power per cross section area 

(λ̂ = 4 qw
q̃

l
d ) as continuation parameter for the four spatial discretizations considered. In this sub-cooled natural circula-

tion configuration continuation curves exhibit two turning points. In a first stage, buoyancy increases faster than resisting 
forces (wall friction and phase-change acceleration) so that mass flux increases along with heating power. Then, a first 
turning point occurs along the continuation for its maximum heating power (λ̂T P1 ≈ 0.4932) and maximum mass flux 
(Ĝ T P1 ≈ 0.5172), leading to a mixture enthalpy at tube outlet (ĥm(l̂)T P1 ≈ 0.4009) just above its liquid saturation value 
(ĥls = 0.4) and a moderate void fraction at tube outlet (α(l̂)T P1 ≈ 0.3420). Beyond this stage, two-phase frictional pressure 
drop and phase-change acceleration increase faster than buoyancy so that the mixture mass flux decreases. It results that 



Fig. 8. Bifurcation diagrams versus dimensionless heating power in natural circulation configuration for various spatial discretization (npts = 201, 401,
801 and 1601 points), l = 10−1 m, d = 10−2 m, ρl = 103 kg.m−3, μl = 10−3 Pa.s−1, ρv = 1 kg.m−3; μv = 10−5 Pa.s−1, hls = 0.4192 106 J .kg−1, hvs =
2.6756 106 J .kg−1, G̃ = 544 kg.s−1.m−2, h̃ = 1.048 106 J .kg−1, q̃ = 3 108 W .m−2 and ε = 10−3.

Table 1
Spatial convergence analysis of natural circulation configuration at first Hopf bifurcation point (H B1) for l = 10−1 m, d = 10−2 m, ρl = 103 kg.m−3, 
μl = 10−3 Pa.s−1, ρv = 1 kg.m−3; μv = 10−5 Pa.s−1, hls = 0.4192 106 J .kg−1, hvs = 2.6756 106 J .kg−1, G̃ = 544 kg.s−1.m−2, h̃ = 1.048 106 J .kg−1, 
q̃ = 3 108 W .m−2 and ε = 10−3.

Mesh # npts dz = l̂/(npts − 1) λ̂H B1 ĥm(l̂)H B1 Ĝ H B1 α(l̂)H B1 ω̂H B1

M1 201 5 10−3 0.19371 0.392785 0.206907 0.015701 ±0.61103
M2 401 2.5 10−3 0.19353 0.392821 0.207607 0.015779 ±0.61211
M3 801 1.25 10−3 0.19352 0.392828 0.207763 0.015793 ±0.61234
M4 1601 6.25 10−4 0.19351 0.392829 0.207765 0.015796 ±0.61235

β = ln [( f1− f3)/( f2− f4)]
ln (dz1/dz2)

3.17 2.43 2.44 2.47 2.42

Cβ = f3− f4

dzβ
3 −dzβ

4

1.79362 104 −1.35852 101 −2.92732 101 −5.58265 101 −1.32324 102

f R E
H B1

= f4 − Cβ dzβ

4 0.19351 0.392829 0.207765 0.015796 0.61235

in this region steady-state solutions only exist for decreasing heating power, which nevertheless induces increasing mixture 
enthalpy in the heated tube. Then, the second turning point occurs at moderate heating power (λ̂T P2 ≈ 0.2028) and low 
mass flux across tube (Ĝ T P2 ≈ 0.1064), leading to a mixture enthalpy at tube outlet (ĥm(l̂)T P2 ≈ 0.7316) and high void 
fraction at tube outlet (α(l̂)T P2 ≈ 0.9945). Going further beyond this point, the heating power increases again continuously 
up to single-phase steam (ĥvs = 2.553) and super-heated steam (ĥm > ĥvs) takes in turn place inside the computational 
domain.

At first glance all continuation curves corresponding to the various grids considered collapse on a master one. This is 
true over the three quarters of the whole continuation procedure up to the region where void fraction tends to unity. There, 
the coarsest grid (npts = 201 points) is no longer able to capture the problem stiffness, so artificial numerical oscillations 
appear on its branch of steady-state solutions. On the other hand, all three finer grids both provide smooth oscillation-free 
converging solutions even in this extremely stiff region, see dimensionless mixture enthalpy at tube outlet, mixture mass 
flux across tube and void fraction at tube outlet plotted in Figs. 8(a)-8(c), respectively, together with inserts corresponding 
to close-up view in the vicinity of the two turning points.

4.1.2. Linear stability changes
Once branches of steady-state solutions are computed one is interested to find out particular values of control parameter 

for which stability changes. For this natural circulation configuration, steady-state solutions are linearly unstable in two 
separate ranges of the control parameter (red lines in Fig. 8). The first one (red dotted-lines) occurs at small void fraction 
and takes place between two Hopf bifurcation points (red crosses), so that steady-state solutions loose their stability towards 
oscillating unsteady solutions leading to a so-called dynamical instability. The second region (red solid-lines) appears from 
moderate to high void fractions and it lies between two turning points (red circles), so that steady-state solutions loose 
their stability towards steady ones leading to a so-called static instability or Ledinegg instability.

The locations of the two Hopf bifurcation points along with their respective angular frequencies are reported for the 
four grids considered in Tables 1 and 2, together with Richardson extrapolation parameters (convergence order, constant 
and extrapolated values). Similarly, locations of the two turning points are reported in Tables 3 and 4, respectively, together 
with the Richardson extrapolation parameters (convergence order, constant and extrapolated values).

One can observe that convergence orders (designated β in Tables 1–4) increase as void fraction gets larger at considered 
point. This can be explained by looking at the various terms involved in governing equations. Indeed, at very low void 
fractions, the leading terms in momentum equation are buoyancy and wall friction that do not involve any spatial deriva-
tive, inducing a global first-order spatial convergence. At slightly higher void fractions, spatial derivatives of pressure and 



Table 2
Spatial convergence analysis of natural circulation configuration at second Hopf bifurcation point (H B2) for l = 10−1 m, d = 10−2 m, ρl = 103 kg.m−3, 
μl = 10−3 Pa.s−1, ρv = 1 kg.m−3; μv = 10−5 Pa.s−1, hls = 0.4192 106 J .kg−1, hvs = 2.6756 106 J .kg−1, G̃ = 544 kg.s−1.m−2, h̃ = 1.048 106 J .kg−1,
q̃ = 3 108 W .m−2 and ε = 10−3.

Mesh # npts dz = l̂/(npts − 1) λ̂H B2 ĥm(l̂)H B2 Ĝ H B2 α(l̂)H B2 ω̂H B2

M1 201 5 10−3 0.43809 0.399262 0.461086 0.106412 ±0.96050
M2 401 2.5 10−3 0.43589 0.399286 0.461888 0.107009 ±0.96061
M3 801 1.25 10−3 0.43563 0.399289 0.461913 0.107097 ±0.96062
M4 1601 6.25 10−4 0.43562 0.399291 0.462039 0.107131 ±0.96063

β = ln [( f1− f3)/( f2− f4)]
ln (dz1/dz2)

3.19 2.46 2.45 2.49 2.48

Cβ = f3− f4

dzβ
3 −dzβ

4

2.01585 104 −3.4333 101 −2.0426 103 −6.9679 102 −1.9374 102

f R E
H B2

= f4 − Cβ dzβ

4 0.435619 0.399291 0.462067 0.107138 0.96083

Table 3
Spatial convergence analysis of natural circulation configuration at first turning point (T P1) for l = 10−1 m, d = 10−2 m, ρl = 103 kg.m−3, μl = 10−3

Pa.s−1, ρv = 1 kg.m−3; μv = 10−5 Pa.s−1, hls = 0.4192 106 J .kg−1, hvs = 2.6756 106 J .kg−1, G̃ = 544 kg.s−1.m−2, h̃ = 1.048 106 J .kg−1, q̃ = 3 108

W .m−2 and ε = 10−3.

Mesh # npts dz = l̂/(npts − 1) λ̂T P1 ĥm(l̂)T P1 Ĝ T P1 α(l̂)T P1

M1 201 5 10−3 0.49319440 0.40084100 0.51717300 0.3401070
M2 401 2.5 10−3 0.49319595 0.40089350 0.51715555 0.3418950
M3 801 1.25 10−3 0.49319599 0.40089495 0.51715502 0.3419515
M4 1601 6.25 10−4 0.49319600 0.40089500 0.51715500 0.3419520

β = ln [( f1− f3)/( f2− f4)]
ln (dz1/dz2)

5.03 5.10 5.03 5.02

Cβ = f3− f4

dzβ
3 −dzβ

4

−4.058365 105 −5.201081 107 4.695985 107 −1.883051 108

f R E
T P1

= f4 − Cβ dzβ

4 0.493196 0.400895 0.517155 0.341952

Table 4
Spatial convergence analysis of natural circulation configuration at second turning point (T P2) for l = 10−1 m, d = 10−2 m, ρl = 103 kg.m−3, μl = 10−3

Pa.s−1, ρv = 1 kg.m−3; μv = 10−5 Pa.s−1, hls = 0.4192 106 J .kg−1, hvs = 2.6756 106 J .kg−1, G̃ = 544 kg.s−1.m−2, h̃ = 1.048 106 J .kg−1, q̃ = 3 108

W .m−2 and ε = 10−3.

Mesh # npts dz = l̂/(npts − 1) λ̂T P2 ĥm(l̂)T P2 Ĝ T P2 α(l̂)T P2

M1 201 5 10−3 0.20275700 0.72856600 0.1067000 0.99447600
M2 401 2.5 10−3 0.20276502 0.73162550 0.1063555 0.99453700
M3 801 1.25 10−3 0.20276599 0.73159700 0.1064365 0.99452405
M4 1601 6.25 10−4 0.20276600 0.73159688 0.1064369 0.99452400

β = ln [( f2− f3)/( f3− f4)]
ln (dz1/dz2)

5.50 5.47 5.44 5.56

Cβ = f3− f4

dzβ
3 −dzβ

4

−8.236544 105 2.102785 107 −5.253872 107 1.470603 107

f R E
T P2

= f4 − Cβ dzβ

4 0.202766 0.731597 0.106437 0.994524

acceleration terms enter the game, enabling to increase the global convergence order. Finally at high void fractions, spatial 
derivatives of acceleration and pressure terms mainly determine the global spatial convergence order, rising up to β ≈ 5.5
at second turning point, where α tends to unity. This value is perfectly consistent with formal orders of spatial derivatives 
used in this implementation, 6th order for collocated variables at collocated grid points and 5th order otherwise. As spatial 
convergence has been achieved on a representative case, then one can consider discrete solutions belonging to the range 
of asymptotic convergence of the method to perform Richardson extrapolation of quantities of interest. They are denoted 
f R E in Tables 1–4 and are based on the four grids considered for the two Hopf bifurcation points and first turning point, 
whereas they are based on the only three finest ones for the second turning point.

4.2. Sensitivity to regularization parameter

As previously mentioned governing equations consist of a regularized void fraction relationship, eq. (13), which provides 
continuity and derivability properties suitable for our Asymptotic Numerical Method. Therefore, the present sensitivity anal-
ysis reports on how the computed results depend on this regularization parameter (designated ε). The few other numerical 
parameters involved with the Asymptotic Numerical Method are the same as those used in our previous works [13,34].

First of all, let us introduce how does the regularization parameter act on a simplified problem. For that purpose, 
thanks to the Mathematica software [54] one solves for the void fraction from eq. (13) alone, with prescribed dimen-
sionless mass flux, relative vapor-liquid velocity and mixture enthalpy, for three values of the regularization parameter 
(ε = 10−3, 10−4 and 10−5). The resulting void fraction distributions versus dimensionless mixture enthalpy are displayed in 



Fig. 9. Full-range regularized void fraction, eq. (13), versus dimensionless mixture enthalpy for ĥls = 0.4, ĥls = 2.55, Ĝ = 1, ρl = 103 kg.m−3, ρv = 1 kg.m−3

and three values of regularization parameter ε = 10−3, 10−4 and 10−5. (a) linear scales; (b) linear-logarithmic scales.

Fig. 10. Continuation diagrams versus dimensionless heating power in natural circulation configuration for various values of regularization parameter
(ε = 10−3, 5 10−4, 10−4 and 10−5), l = 10−1 m, d = 10−2 m, ρl = 103 kg.m−3, μl = 10−3 Pa.s−1, ρv = 1 kg.m−3; μv = 10−5 Pa.s−1, hls = 0.4192 106

J .kg−1, hvs = 2.6756 106 J .kg−1, G̃ = 544 kg.s−1.m−2, h̃ = 1.048 106 J .kg−1, q̃ = 3 108 W .m−2 and npts = 1601 points.

Table 5
Values of dimensionless quantities at the two turning points in natural circulation configuration versus regularization parameter, l = 10−1 m, d = 10−2

m, ρl = 103 kg.m−3, μl = 10−3 Pa.s−1, ρv = 1 kg.m−3; μv = 10−5 Pa.s−1, hls = 0.4192 106 J .kg−1, hvs = 2.6756 106 J .kg−1, G̃ = 544 kg.s−1.m−2,
h̃ = 1.048 106 J .kg−1, q̃ = 3 108 W .m−2 and npts = 1601 points.

ε λ̂T P1 α(l̂)T P1 ĥm(l̂)T P1 Ĝ T P1 λ̂T P2 α(l̂)T P2 ĥm(l̂)T P2 Ĝ T P2

10−3 0.493196 0.341952 0.400895 0.517155 0.202766 0.994530 0.731231 0.106401
5 10−4 0.484599 0.364788 0.401185 0.507662 0.202654 0.994528 0.731202 0.106340
10−4 0.480663 0.378471 0.401308 0.503318 0.202614 0.994527 0.731199 0.106338
10−5 0.480394 0.379052 0.401313 0.503027 0.202607 0.994526 0.731198 0.106337

Figs. 9(a) and 9(b), on linear and logarithmic scales, respectively. It clearly appears that the influence of regularization pa-
rameter is only restricted to the sub-cooled region (ĥm < ĥls = 0.4), where the theoretical value of void fraction is obviously 
zero whereas the regularized one does not. This latter tends to zero as mixture enthalpy decreases from liquid saturation 
enthalpy and its magnitude behaves as ε2, so reducing the regularization parameter by one order diminishes the regularized 
void fraction by two orders, as depicted in Fig. 9(b).

Then, to analyze the global influence of regularization parameter on our model let us move to the numerical solution 
of the fully coupled set of governing equations, considering the same natural circulation configuration as in previous sub-
section. Branches of steady-state solutions are plotted in Fig. 10 for four values of the regularization parameter (ε = 10−3, 
5 10−4, 10−4 and 10−5) and a refined spatial resolution (npts = 1601 points). One can notice as in the simplified prob-
lem that the influence of the regularization parameter appears mainly at the lowest heating powers leading to sub-cooled 
conditions and small to moderate void fractions. Then, at higher void fractions, a very fast convergence is achieved versus 
regularization parameter, as clearly displayed by comparing branches of steady-state solutions computed with ε = 10−4 to 
those with 10−5, since their relative deviation is less than ε itself.

Quantitative comparisons of dimensionless values at first and second turning points have been reported in Table 5, 
moreover, they are plotted versus regularization parameter in Figs. 11(a) and 11(b), respectively. It is noteworthy that in 
this dimensionless framework values of regularization parameter lower than ε = 5 10−4 produces very accurate results. 
However, it should be mentioned that the lower ε the higher the computational costs of the continuation procedure as the 
step length reduces with the nonlinear stiffness of the problem. The computational cost (CPU time) is twice from ε = 10−3



Fig. 11. Dimensionless quantities at the two turning points in natural circulation configuration versus regularization parameter (ε = 10−3, 5 10−4, 10−4

and 10−5), l = 10−1 m, d = 10−2 m, ρl = 103 kg.m−3, μl = 10−3 Pa.s−1, ρv = 1 kg.m−3; μv = 10−5 Pa.s−1, hls = 0.4192 106 J .kg−1, hvs = 2.6756 106

J .kg−1, G̃ = 544 kg.s−1.m−2, h̃ = 1.048 106 J .kg−1, q̃ = 3 108 W .m−2 and npts= 1601 points.

to 5 10−4 and the same overhead comes again from 5 10−4 to 10−4, but no significant further cost increase is observed 
from that latter value to the smaller one considered, ε = 10−5.

5. Conclusion

This paper presents a methodological approach that aims to bring altogether advanced nonlinear algorithms and linear
stability ones into a single numerical model devoted to study boiling channel flows. The one-dimensional phase-change 
model considered in this work is based on three drift-flux based conservation equations for the two-phase mixture, sup-
plemented with a specifically derived void fraction equation, along with simple and general-purpose constitutive equations 
as closures. These governing equations have been derived to suit continuity and derivability requirements of the present 
high-order model. However, the authors are aware of the various limitations of the present model, but the intended goal is 
first to show the potential added-value of the present approach on academic configurations.

To take full advantage of the present semi-analytical continuation algorithm, several implementation precautions have be 
taken to fulfill the desired continuity and derivability properties. First-order spatial derivatives that appear in conservation 
equations are discretized with high-order finite difference schemes: 6th order for collocated fields at collocated grid point 
and 5th order elsewhere. Then, spatial convergence analyses have been performed to assess the numerical model imple-
mentation. The Richardson extrapolation technique confirmed that in representative natural circulation boiling flows, the 
overall effective convergence order actually tends towards the formal one, as in best cases it reaches roughly up to β ≈ 5.5.

In the framework of natural circulation boiling channels the present work’s strong point is definitely the computation of 
branches of steady-state solutions (response curves) versus tube heating power. Unlike previous semi-analytical models [1,
30,31,47,55], the present approach enables to accurately and efficiently solve the highly nonlinear partial differential equa-
tions associated with the fully implicit governing equations along response curves. It follows the Dynamical System Theory 
in the way one first computes branches of fixed points and then use some of these fixed point solutions as base-state to 
perform linear stability analyses.

Some added-value of the present approach compared to classical ones is: (i) the developed continuation algorithm en-
ables to compute stable as well as unstable steady-states whereas time integration approaches only compute stable ones; 
(ii) solving for the fully nonlinear governing equations PDEs provides some insight into the spatial field evolution along the
channel together with their spatial instability modes; (iii) the developed approach provides a good computational efficiency
that results from judicious combination of semi-analytical Asymptotic Numerical Method and Automatic Differentiation.
Besides, their implementation in the Matlab software [33] using operator overloading results in a powerful, efficient and
user-friendly scientific tool [5]. Moreover, configurations of mixed forced and natural circulation can also be computed by
using the driving pressure difference at tube ends as continuation parameter.

Finally, the present model suffers from several weaknesses that could be improved in forthcoming work. The main one 
is definitely the singularity of the generalized eigenvalue problem that arises in linear stability analyses. Indeed, the inher-
ent problem singularity unavoidably requires out-of-the shelves numerical algorithm to extract the only physically relevant 
eigenvalues and discard infinite ones. On the other hand, one can extend the present model capabilities toward more phys-
ically sounding ones by accounting for compressibility of density vapor phase and pressure dependance of phase-change 
properties along saturation curves. Also, problem specific constitutive relationships proposed in the literature [24,25] could 
also be implemented to address relevant targeted configurations, provided one performs some adaptations to match semi-
analytical requirements of the Asymptotic Numerical Method. Another promising direction of forthcoming work could be to 
take advantage of the present model that directly integrates the fully nonlinear governing PDEs to provide data to surrogate 



or reduced order models suitable to perform efficiently numerous parametric studies. Finally, in this framework of boiling 
channels it seems also very promising to perform the continuation of periodic solutions in their fully nonlinear regime and 
to study their stability.
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Appendix A. Conservation equations for 1D liquid-vapor flows

A.1. Mass conservation equations

For each fluid phase (liquid, subscript l or vapor, subscript v), the mass conservation equation reads as follows:

∂(αlρl)

∂t
+ ∂(αlρlul)

∂z
= −Ṁlv (A.1)

∂(αvρv)

∂t
+ ∂(αvρv uv)

∂z
= Ṁlv (A.2)

where t is time, z the axial abscissa, αi the cross-sectional average fraction of fluid phase i (i = l, v), ρi its density, ui

is its 1D cross-sectional average velocity and Ṁlv is the mass flow rate across the liquid-vapor interface associated with 
phase-change. As defined, the cross-sectional average liquid and vapor fractions make a partition of unity, so that they sum 
up to unity:

αl + αv = 1 (A.3)

Summing up equations (A.1) and (A.2) and substituting the partition of unity relationship (A.3), while designating α as the 
cross-sectional average void (vapor) fraction, one obtains the mass conservation equation of the liquid-vapor mixture:

∂[(1 − α)ρl + αρv ]
∂t

+ ∂[(1 − α)ρlul + αρv uv ]
∂z

= 0 (A.4)

A.2. Momentum conservation equations

For each of the liquid or vapor phases, the momentum conservation equation in projection along the ascending vertical 
direction reads as follows:

∂(αlρlul)

∂t
+ ∂(αlρlu2

l )

∂z
= −αl

∂ pl

∂z
− βlτl

P

A
− αlρl g − Filv (A.5)

∂(αvρv uv)

∂t
+ ∂(αvρv u2

v)

∂z
= −αv

∂ pv

∂z
− βvτv

P

A
− αvρv g + Filv (A.6)

where pi designates pressure in the i phase, τi is the viscous stress of the i phase at tube wall, βi is the perimeter (P ) 
fraction wetted by the i phase and A is the constant cross section of the tube. Moreover, Filv is the interaction force between 
phases acting at the liquid-vapor interface.

Let us now consider some simplifying physical assumptions that enables to reduce the number of unknowns. First of 
all, in this 1D model one has no access to any geometrical information about the liquid-vapor interface. Therefore, the 
simplest realistic choice is to assume a pressure equilibrium across the interface, leading to: pl = pv = pm . Furthermore, the 
perimeter fractions wetted by liquid and vapor phases make a partition of unity, so that they also sum up to unity:

βl + βv = 1 (A.7)

Summing up equations (A.5) and (A.6) and substituting the partition of unity relationship (A.7) while designating β as 
the perimeter fraction wetted by the vapor phase, one obtains the momentum conservation equation of the liquid-vapor 
mixture:



∂ [(1 − α)ρlul + αρv uv ]

∂t
+ ∂

[
∂z

=

−∂ pm

∂z
− [(1 − β)τl + βτv ]

P

A
− [(1 − α)ρl + αρv ] g

(A.8)

The second term on the left hand side of eq. (A.8) can be judiciously written as a function of the mixture mass flux (G) 
and the relative velocity between liquid and vapor phases (designated Urvl ). These two later quantities are related to phase 
velocities as follows:{

(1 − α)ρlul + αρv uv = G

−ul + uv = Urvl

(A.9)

Therefore, solving this set of two equations gives the two phase velocity relationships:

ul = G − αρv Urvl

ρm
(A.10)

uv = G + (1 − α)ρlUrvl

ρm
(A.11)

where ρm is the mixture density defined in eq. (1).

A.3. Energy conservation equations

According to the first law of Thermodynamics, for each of the liquid or vapor phases, the total energy conservation 
equation reads as follows:

∂(αlρlel)

∂t
+ ∂(αlρlulel)

∂z
= βlqw

P

A
− αl

∂(plul)

∂z
− βlτl

P

A
ul − αlρl gul − P t

ilv
(A.12)

∂(αvρv ev)

∂t
+ ∂(αvρv uv ev)

∂z
= βvqw

P

A
− αv

∂(pv uv)

∂z
− βvτv

P

A
uv − αvρv guv + P t

ilv
(A.13)

where P t
ilv

is the total power exchanged across the liquid-vapor interface. As the total energy is the sum of internal and

kinetic energies (e = ei + u2

2 ), let us now derive conservation equations for the kinetic energy of each phase.

∂(αlρl
ul

2

2 )

∂t
+ ∂(αlρlu2

l )

∂z
ul = −αl

∂ pl

∂z
ul − βlτl

P

A
ul − αlρl gul − Filv ul (A.14)

∂(αvρv
uv

2

2 )

∂t
+ ∂(αvρv u2

v)

∂z
uv = −αv

∂ pv

∂z
uv − βvτv

P

A
uv − αvρv guv + Filv uv (A.15)

Therefore, the conservation equations of internal energy can be obtained by subtracting conservation equations of kinetic 
energy (eq. (A.14)–(A.15)) from those of total energy (eq. (A.12)–(A.13)) as follows:

∂(αlρle
i
l )

∂t
+ ∂(αlρlule

i
l )

∂z
= βlqw

P

A
− αl pl

∂ul

∂z
− P t

ilv
+ Filv ul (A.16)

∂(αvρv ei
v)

∂t
+ ∂(αvρv uv ei

v)

∂z
= βvqw

P

A
− αv pv

∂uv

∂z
+ P t

ilv
− Filv uv (A.17)

Introducing the enthalpy expression (h = ei + p
ρ ) into these relationships, the conservation equations for the enthalpy reads 

for each phase:

∂(αlρlhl − αl pl)

∂t
+ ∂(αlρlulhl)

∂z
− ul

∂(αl pl)

∂z
= βlqw

P

A
− P t

ilv
+ Filv ul (A.18)

∂(αvρvhv − αv pv)

∂t
+ ∂(αvρv uvhv)

∂z
− uv

∂(αv pv)

∂z
= βvqw

P

A
+ P t

ilv
− Filv uv (A.19)

Summing up equations (A.18) and (A.18) and substituting the partition of unity relationships (A.3) and (A.7), one obtains 
the enthalpy conservation equation for the liquid-vapor mixture:

∂ [(1 − α)ρlhl + αρvhv − pm]

∂t
+ ∂ [(1 − α)ρlulhl + αρv uvhv ]

∂z

− [(1 − α)ul + αuv ]
∂ pm

∂z
= qw

P

A
− Filv Urvl

(A.20)



Appendix B. Closure equations for 1D liquid-vapor flows

B.1. Kinematic constitutive relationship

Assuming the constitutive relationship of eq. (14) [59] to hold for given drift velocity v D and distribution parameter 
C0, one can get the expressions of liquid-vapor relative velocity by inserting the expressions of liquid and vapor velocities 
(eq. (A.10) and eq. (A.11), respectively) into eq. (14). It reads as follows:

Urvl = G(C0 − 1) + ρm v D

(1 − α) [ρl − αC0(ρl − ρv)]
(B.1)

Plugging back this expression into the original ones (eq. (A.10) and eq. (A.11)), one ends up with liquid and vapor velocity 
written in function of drift velocity v D and distribution parameter C0, as follows:

ul = G(1 − αC0) − αρv v D

(1 − α) [ρl − αC0(ρl − ρv)]
(B.2)

uv = GC0 + ρl v D

(1 − αC0)ρl + αC0ρv
(B.3)

To derive a full-range model (that holds for α ∈ [0, 1]) from expressions of eq. ((B.1)–(B.3)), one has to satisfy some 
physical and algebraic conditions. Let us begin with the two single-phase limits: mainly liquid (α → 0) and mainly vapor 
(α → 1), respectively. Indeed, at these two limit-cases one can show from basic force balance that the liquid-vapor relative 
velocity should fade away. Let us first consider the former case for which one assumes a bubbly flow, such that vapor 
bubbles are sufficiently dispersed in the liquid phase that their collective effects are negligible (0 < α 	 1). Then, let us 
assume there are n small enough bubbles to be spherical. In the opposite mist-flow limit, just below the saturated vapor 
limit (α → 1), a similar reasoning can be conducted considering sufficiently small liquid droplets to be spherical and well 
dispersed into the vapor phase. The steady-state relative velocity between vapor bubbles (former case) or liquid droplets 
(latter case) and surrounding fluid (liquid and vapor, respectively) results from the balance between drag force and buoyancy. 
Thus, in these two limit-cases, the relative liquid-vapor velocity reads:

Urvl (α → 0) = lim
α→0

[
4d(ρl − ρv)g

3ρlC D
(1 − α)

(α

n

) 1
2

] 1
2

= 0 (B.4)

Urvl (α → 1) = lim
α→1

[
4d(ρl − ρv)g

3ρv C D
α

(
1 − α

n

) 1
2
] 1

2

= 0 (B.5)

where d is the tube diameter, g is gravity and C D is the bubble or droplet drag coefficient. Inserting in turn eq. (B.4) and 
eq. (B.5) into eq. (B.1) produces the two limit conditions:

v D(α = 0) = v D(α = 1) = 0 (B.6)

C0(α = 0) = C0(α = 1) = 1 (B.7)

The second condition that has to be satisfied for getting bounded fluid flow velocities from eq. ((B.1)–(B.3)) is that the 
distribution parameter C0 should be bounded as follows:

1 ≤ C0(α) ≤ ρl

ρl − ρv
(B.8)

Once we have ruled out the basic features a full-range constitutive equation should satisfy, we have then looked for a 
drift velocity expression that accommodates the two end-limit conditions of eq. (B.6). The analytical expression that fits all 
these requirements reads:

v D = v D0 [tanh(avα) − tanh (bv(α − 1)) − 1]
(
1 − αcv

)
(B.9)

where v D0 = 9
16

√
gd(ρl−ρv )

ρl
is the drift velocity drawn from [50] when α tends to zero and C0 = 1. The three constants that 

it contains have been obtained by substituting eq. (B.9) into eq. (B.1) and satisfying the two limit conditions of eq. (B.6) and 
eq. (B.7). Their values are: av = 35, bv = 18 and cv = 45, respectively.



Appendix C. Finite difference discretization schemes

For such one-dimensional problem discretization coefficients of first-order derivatives involved in the governing equations 
have been obtained according to the classical finite difference method. Stencil coefficients at current grid point i have been 
derived at prescribed order, denoted m, in four steps. In a first step, one derives at m neighbor grid points Taylor series 
expansions of the unknown up to its mth order derivatives. Second step, every equation is multiplied by a coefficient 
associated with the corresponding m + 1 grid points. Third step, summing up coefficients at each order of the Taylor series 
expansion, equating to one the sum associated to first order and to zero all other ones, it results a set of m + 1 linear 
equations for the stencil coefficients. Fourth step, solving this set of linear equations with a symbolic linear algebra software, 
e.g., Xcas a free online one [41], one obtains the literal expression of sought stencil coefficients. Applying this procedure up
to 6th order for collocated variables at collocated grid points and 5th order elsewhere, in a centered way apart from domain
ends, forward and backward in vicinity of left and right boundaries, respectively, led us to the following stencil coefficients,
cf. Fig. 7 to refer to variable notation on the considered staggered grids.

C.1. Discrete first-order derivative at collocated grid points of collocated variables (G, hm, α)

∂ Q

∂z
= 1

dz

⎛
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where dz = l̂/(n − 1) is the uniform space increment separating n evenly distributed points along the tube.



C.2. Discrete first-order derivative at collocated grid points of mixture pressure (momentum equation)
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C.3. Discrete first-order derivative at staggered grid points of mixture mass flux (mass conservation equation)
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