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A unique but flexible space-time could challenge
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Aix-Marseille Université, CNRS IUSTI UMR 7343, 5 rue Enrico Fermi, 13453 Marseille Cedex 13, France

ABSTRACT

In a previous paper (Guillemant et al.,, 2018), we have shown
using a 2D billiard toy model that the propagation of uncertain-
ties resulting from space-time discretization leads to a classical
multiverse. In this one we estimate the growing law of the
number of its branches, thanks to an original shock indexation
method that permits a very fast comparison of trajectories. For
different involved parameters we use random sets of infinitesi-
mally perturbed initial conditions. From each set, we compute a
collection up to hundred millions of different billiard histories.
Our main result is the calculation of a Brownian saturation time
when the number of branches begins to exceed the total number
of billiard states. We discuss the possibility suggested by this
result to change locally the paths of objects without changing
their past and future histories and then subverting their global
system. We conclude that a unique but flexible space-time could
compete with the current many-worlds interpretation claiming
that each branch is a different universe.

*  Corresponding author.

The growing law of a billiard multiverse is independent of the discretization scale E.
The time for any final state to be accessible from any initial one is around 3E shocks.
The paths of billiard balls can change without changing initial or final states.
Space-time flexibility can be achieved through paths commutations and entanglement.
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0. Introduction

From the black holes properties described by Jacob Beckenstein [1] to the holographic principle
of Juan Maldacena [2], along with the quantum gravity requirements to quantify all physical
quantities [3], theoretical physics have to face the necessity to define a bound limit to the density
of physical information in the universe. As a consequence various discrete models of space-time
have been proposed [4,5], even mixed ones [6], but they do not solve the incompleteness of known
physical laws resulting from the intrinsic uncertainty at quantum level. One of the ways to restore
an hypothetic determinism in this context is to appeal to a multiverse theory, for example the many
worlds of Everett [7] which is now widely recognized [8,9], but the complementary laws that would
be able to determine in which universe we are living in are still lacking.

In a previous paper [10] we have shown, thanks to numerical simulations of billiards, that to
obtain a deterministic description of a discrete classical space-time it could be necessary to add six
extra dimensions. These new dimensions are required to identify a unique billiard among the huge
number of billiard branches that result from the macroscopic amplification of initial uncertainty
related to discretization. Indeed, to proceed to this identification it is necessary to define, after a
lot of interactions, not only the final conditions but even the paths to reach them! We think that
it has interesting perspectives that first require questioning the relation between the so created
multiverse and the other well known ones, especially the quantum multiverse which also emerges
from quantum uncertainties.

For this purpose we intend in this paper to quantify the different parameters that are condi-
tioning the emergence of a discrete classical multiverse, so as to characterize more precisely its
specificity and possible link with quantum mechanics.

Different types of approaches are possible to calculate such a multiverse: (i) stochastic ones such
as random walks [11] or Markov chains and processes [12] or based on kinetic theory [13]; (ii)
deterministic ones such as Hamiltonian approaches [14] or dynamical system equations [15]. For
the purpose of our paper only the last one is relevant, but as we use conservative equations (no
dissipation), the time integration of dynamical equations is not required.

The well known apparent frontier between classical and quantum mechanics (or multiverse) is
particularly characterized by a fundamental distinction in the interpretation of uncertainty. Unlike
the quantum ones, the classical uncertainties with which statistical physics deals are generally
considered as coming from our ignorance of existing details. But recently, it has been shown [16]
that using deterministic equations does not prevent the laws of mechanics from settling a Brownian
regime after a “long time”, when balls or particles seem to have got a random course that is
independent of their initial conditions. Thanks to a numerical billiard model that we investigated,
we have shown that this can be imputed to the loss of information that is due to the amplification
of phase uncertainty during interactions [10]. But in this precedent study we neither quantified the
growing law of the number of branches that appears after a critical time Tc, nor the different phases
and conditions of the growth, in absence of which our conclusions remain somehow weak. In this
following paper we really proceed to these quantifications that make us focus on three specific
dimensionless times, i.e. based on specific numbers of shock events:

- The critical time Tc (already statistically estimated in [10]) after which multiple histories appear
for the first time and then a diffusion stage is beginning;

- The Brownian time Ty after which all the growing histories have become independent of initial
conditions, meaning that the Brownian regime of [16] is really settled;

- The Brownian saturation time Ts after which all the possible final conditions of the billiard have been
statistically reached from well defined unique initial conditions.

As the highly chaotic behavior of a billiard makes its local and discrete multiverse quantification
out of reach of relevant theoretical approaches [17], we have again used computations with basic
shock equations so as to calculate as much as possible different branches (until 10%) from the same
initial conditions.

We were then confronted to a data mining problem that consisted in the comparison of massive
numbers of time series issued from different ball trajectories. Our challenge was then to count the
time variations of the number of branches, that is multiplied at each bifurcation.
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Fig. 1. Sketch of a contact between two balls, where p; and p; designate the momentum of ball i at instant just prior to
the (i, j) shock and just after, respectively (see [10] for more details).

A lot of methods have been proposed to compare massive time series [ 18]. Though they are today
most often related to big data [19] or artificial intelligence [20] they are more and more interesting
the future of physics [21]. The approach we propose in this paper is based on an original method of
time series indexation and chaining that come from our own contribution to artificial intelligence
in the past [22]. Without this method the discrimination between millions of branches we present
here would have been out of reach. Its principle is to identify branches thanks to a 128 bits floating
point indexation of their time series and to chain the corresponding indexes in such a way that
avoids massive useless comparisons, resulting in an ultra-fast branch counting algorithm.

1. Theoretical framework

We have used the same billiard model as in the previous paper [10] in which we presented
calculations of ball’s uncertainties propagation. This model concerns the frictionless 2D hard-sphere
model with elastic shocks of equal mass and diameter balls, whose governing equations are recalled
in Fig. 1.

In the previous study we have shown that however small the uncertainties affecting the initial
positions or velocities of balls, that will range in this work between 1072 and 102 pixels (or 107>
and 10723 x L, where L = 1024 pixels is the square billiard width), there always exists a critical
time where different shock histories begin to appear. In Fig. 2 this critical time occurs when it exists
for the first time one ball A; whose trajectories become to differ in two distinct histories A;; and Aj;
involving different balls C, and G after a shock with B;.

After critical step, an increasing number of different shock histories appears, corresponding to
as many branches of a billiard’s multiverse. We assumed at the end of our previous paper [10] that
the growing law of the number of branches Ny could vary exponentially with the number of shocks,
after a Brownian diffusion has been settled:

Ny ~ Nhes DN=Nes) (1)

Nhcs is the total number of branches accumulated at the end of a diffusion stage, where any ball
may have reached any position into the billiard, and Ncs the number of shocks until this moment.
We then assumed the existence of a D factor for which the subsequent growth of the number of
branches would satisfy (1), but we did not verify this assumption neither calculated the Brownian
time nor the value of D: it is the purpose of the present paper to do so.

To make these calculations and study the influence of different involved parameters, we have
computed many collections of large sets of multiple branches resulting from slightly noised initial
conditions, using a maximum value of noise equal to the uncertainty &, where 107! < ¢ < 10720
depending on the collection. Thanks to an original algorithm described in the following section,



Fig. 2. First occurrence of multiple billiard histories at critical step.

we have calculated a sufficiently high number of histories Ns = max(Ny) so as to draw robust
conclusions for each set, the number of shots Ns varying between 10°> and 10® depending on the
computation. The calculations of each set of histories were pursued until a minimum time (or mean
number of shocks per ball) corresponding to the situation where all the calculated billiards were
diagnosed as different ones (Ny = Ng).

2. Computations
2.1. Fast comparison algorithm

The balls trajectories are calculated using the same algorithm as previously published in [10].
Unlike this precedent work, we do not need to synchronize billiards so as to calculate the propaga-
tion of uncertainties, and then we can pursue calculations long after the critical step until we reach
a large enough set of billiard histories constituted of unique branches.

Each branch is distinguished from others using a branch identification principle based on the
series S(n, m) constituted by all the successive shock identifiers Idc(n) of the nth shock of the mth
branch, where each identifier is calculated with the two ball numbers involved at each shock, so
that:

S(n,m) = {Idc (1) ,Idc (2), ...,Idc (n)} with 0 <Idc (k) < W = Ny (2)

The last term is the number N, of couples of balls, Nj, being the number of balls. The interest of
this identification procedure is that it does not need any arbitrary threshold, it is perfectly adapted
to count bifurcations and it furnishes the most economic identifier in terms of bits.

To be able to constitute large enough sets m of branches, we have to solve the problem of
the huge computing times resulting from the comparison of all branches. For example, when we
compute a set of ten million branches, we have to compare the square that is hundred billion
couples of billiards, each one being characterized by N, trajectories formed by the succession of
up to hundreds of couples of balls. We have evaluated that to make a good study of the growth
of the different branches, we need to reach statistically established states that impose us to use an
alternative approximate method.
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Fig. 3. Chaining algorithm of P; using truncated values H; = P; mod (Ns).

We were already confronted in the past to this kind of problem, when we had to compare high
numbers of successive pixel’s records of smoke in departures of fires, so as to develop an automatic
forest fires detector [22]. For this we used a temporal embedding algorithm with a fractal indexing
of pixel values that permitted to characterize each smoke evolution by only one index in the form
of a 32 bits integer. In the present case we made our calculations with a 128 bits precision compiler,
so we propose here a very similar method which consists in characterizing each billiard branch with
a 128 bits P; integer value (carried by a floating point) that is coding only the last part of S(n, m):

k=n

log (2
Pi(n,m) = Z Idc (k, m) NS, where |= (int) (128L()
k=n—I+1 10g (NCP)

The value I is the number of successive couple identifiers that it is possible to code into a 128 bits
integer, so that it is the maximum value for which Nép < 21?8 In practice we do not use an integer
but a floating point value that is calculated from the precedent one with the equivalent recurrent
relation:

) (3)

PP(n—1,m) 228
Pi(n,m) = B + N
cp cp

(Idc(n) + 1) (4)

The power of this algorithm is then to use a chaining of all integers Pj(n, m) that is using a
truncated index H; so as to give a direct access to a very limited part of the chain, thus permitting
to highly reduce the number of comparisons and also the computing time in the same proportion.
(See Fig. 3.)

The dimension of the truncated index array H; is chosen to be the same as the number of shots Ns.
Our chaining algorithm then avoids us to implement a number of comparisons that is approximately
equal to n N2, while the number of comparisons we really make is equal to x Ny where x is the
mean number of integers P; having the same truncated index H;.
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Fig. 4. Illustration of the division in two different branches at shock n (in blue and green) involving distinct couples
of balls Idc (n, 1) # Idc(n, 2) as a result of slightly noised initial positions of balls S; and S,.. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

2.2. Implementation and validation

For different sets of involved parameters: the value of maximum uncertainty ¢, the number
of balls N, and their radius R, we associate as many randomly chosen initial conditions of balls
positions and velocities. For each set of these conditions, we repeat a collection of Ns computations
which differs in their branch bifurcations as a result of infinitesimal differences in starting positions,
illustrated in Fig. 4 by the two squares S; and S, located inside a zone of radius ¢, varying from 10~}
to 1072° depending on the study. In practice we implement it by the addition of initial uncertainties
dx and dy to the initial positions, that we randomly calculate to be always below the maximum
uncertaintye:

d(10000 d(36000

10000 36000
Note that the rand(N) random function returns an integer between 0 and N — 1 and has to be called
2 x Ny x Ng times during a computation of a new collection of branches.

For each new billiard branch series, we stop the computations after a fixed number of successive
shocks (generally comprised between 20 and 200) for which the number of different branches
has reached its maximum value, so that all the branches are unique ones. The validation of our
computation method requires the two checks (a) and (b):

(a) Comparing computing times of exact calculations and approximate indexation method.

We have got these computing times Ct(Ns) for low values of Ns, varying by powers of two from
Ns = 1000 to Ns = 64 000. For this latter value the approximate method was roughly 10 times
faster. Now, from the different couples (Ns, Ct(Ns)) that we obtained we have extrapolated that
for Ns values varying from 10° to 108, which are the most often needed, the computing time ratio
should vary between 100 to more than 1000, making then too prohibitive the use of the exact
algorithm when Ns is equal or above one million. Note that to calculate a collection of only one
million branches with our approximate algorithm we often need a computing time which is around
one hour (depending on parameters), and that for the whole study we have computed hundreds of
collections, some of them with hundred millions shots (series).

(b) Estimating the range of parameters for which the indexation algorithm is correct

dx=rcos(x) and dy=rsin(ax) withr=¢
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Fig. 5. Variation of N, versus n for different values of N, (a) and R (b). The fast algorithm results are plotted in dotted
lines.

From the principle of indexation we anticipate that our fast but approximate method is only valid
for low values of Nj,, because the number of couples of balls is varying with the square of N, and then
requiring much more bits to encode the couple, yet the maximum number of successive shocks that
we can identify is decreasing as much. For example, with only 3 balls we can encode 80 successive
shocks in a 128 bits integer, while for 100 balls we can only encode 10 successive shocks, which is
not enough when the number of shocks is high, because we take the risk to diagnose as a unique
branch, either different ones or the same branch but at different times or values of n. However, note
that it is better for the trust in our conclusions that our method tends to minimize the number of
branches.

Figs. 5a and 5b compare for low numbers of branches Ny with a maximum Ns = 2000 the exact
and approximate results of the variation of Ny with the number of shocks n for different values of
Np and R, respectively. Note that Ny varies from Ny = 1 during a few shocks to Ny = Ns when all
calculated branches are diagnosed as unique.

We notice in Fig. 5a that fast calculations are correct until N, = 32 balls, but begin to diverge
as predicted with growing values of N,. This is also due to the fact that when Nj, is increased the
number of shocks n is also increased, yet the probability of a false identification is growing with
both numbers N, and n. In Fig. 5b, we notice that when R is increased from 4 to 24 the critical time
is delayed and then the number of shocks is increased, so that for the same reason the approximate
curve begins to differ from the exact one.

As a consequence, in the following we limit our study to low values of N, ranging from 3 to 24
and also to low values of R ranging from 2 to 32. Note that low values of R correspond to high void
ratios (V, = 1 — mNy R ), which are much more interesting conditions to test than lower ones, for
which we already presented a statistical study in our previous paper.

Let us recall that the present study is neither a statistical nor a stochastic one. All our calculations
of billiard shocks and trajectories are purely deterministic (made at the double precision of 128 bits)
and in particular, for each set m of initial conditions we calculate only one branch or set S(n,m) that
we identify with the integers series P; (n, m).

3. Results
3.1. Influence of initial and intrinsic uncertainties
So as not to confuse the effects of the initial uncertainty that depends on ¢ in relation (5) and

the intrinsic uncertainty that depends on the compiler maximum precision of our calculations, we
tested two different 64 bits and 128 bits compilers. The 64 bits one was a GCC with 52 bits of
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Fig. 6. Variation of log(Ny) versus n for N, = 3 with different values of ¢ ranging from 10~2 to 1072 and for two
different compilers 64 bits (dotted lines) and 128 bits (solid lines).

effective resolution mantissa, from which we must subtract the resolution in power of two that we
need so as to perturb initial positions via Eqs. (5) with always distinct uncertainties, that requires
16 bits. It is then not correct to use a 64 bits compiler with ¢ factors less than 273° i.e. ranging from
10719 to 10~''. Yet we observe in Fig. 6 that it is actually the ¢ interval into which the number of
branches begins to fall, while the 128 bits compilers go on giving consistent results for lower values
of £ (1074 to 10720),

We also observe in Fig. 6 the effect of decreasing ¢ toward zero that is to increase approximately
linearly in function of log(e) the critical time for which multiple branches appear. This is what we
already established in our previous paper, the only difference being the present roughly linearity
due to the exact calculation with only one set of initial conditions that impose the influence of its
specific geometry. Now, what more clearly appears in Fig. 6 is the perfect linearity of the relation
between log(Ny) and n, which is due to a perfect geometric amplification of Ny by a factor D = 3
at each shock, that is the number of couples of balls. This result is maintained whatever initial
conditions are, except for shocks occurring just after the critical step for which we can sometimes
observe D = 2, depending on the initial geometry.

For higher values of N, we confirm the linear increase of the critical time with log(e) but we do
not illustrate this here as we already dealt with this issue in [10]. In the following we focus on the
relation between log(Ny) and the number of shocks, with values of ¢ ranging from 10~ to 10~ so
as to reduce the critical time and then optimize computing time.

3.2. Influence of ball number N,

We expect that the linear increase of log(Ny) with n that we observed for N, = 3 should be
repeated for higher N, values, knowing that after a critical step, the peculiar geometry of initial
conditions cannot impose any more durable restrictions on the collection of different paths, because
they become quickly dispersive at 360°. However it does not imply that no restriction subsists and
it is neither trivial nor deprived of surprises to anticipate what can occur for N, > 3 with various
geometries. It is precisely the main interest of our work to explore this issue. We could for example
imagine that a specific geometry of initial conditions would maintain some kind of unsuspected
determinism.

The main parameter we have to explore for this purpose is the derivative of log (Ny) which
depends on the ratio D between the successive numbers Ny of branches:

D— log(Ny(n + 1)) - Ny(Np — 1)
log(Ny(n)) — 2

=Ny (6)
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Fig. 7. Variations of D versus n for N, = 4 (a) and N, = 5 (b) with different numbers of shots growing by powers of 10
from 10° to 10%.

Figs. 7a and 7b show the different values of D obtained with ¢ = 10™* and R = 8 for N, = 4 and
N, = 5 balls, respectively.

We used in Figs. 7a and 7b different numbers of shots varying by powers of 10 from 10° to
108 so as to highlight the existence of an asymptotic maximum that is progressively reached. This
maximum is reached exactly for N, = 4 and approximately for N, = 5, the value of it being equal
to 6 and 10, respectively, so confirming that for N, = 3,4 or5 we have the equality:

D = N, (number of couples of balls) (7)

It seems to imply that there is no constraint issued from initial conditions that impose restrictive
paths that would prevent any ball to shock any other. Note that we obtained this result for ¢ = 1074
and that it would have been the same for any other value down to ¢ = 1072° and lower, or else
we expect that for N, = 3 we would have observed on Fig. 6 some anomaly when ¢ tends to zero.

Now, when we increase the number of balls with N, > 6 we do not succeed any more in finding
a maximum asymptotic value for D, one hundred million shots being the maximum permitted by
the memory of our computer. Indeed, in Fig. 8a we observe that for N, = 6 the number of couples
Ng = 15 is far from being reached (observed maximum = 11) and we can wonder if it is really
possible for higher values of Ny. This gives rise to the question of the influence of the void ratio,
because when the balls have a large radius we can expect a shield effect that prevents any ball from
being reached by any other.

3.3. Influence of void ratio

We use here the radius R of balls instead of the void ratio, which remains the same. What is to
be noticed about the influence of R when we look for an asymptotic value of D is the existence of an
intermediary radius for which we reach a maximum for D, which corresponds to values Dy = 14
and R = 8 in Fig. 8b.

This intermediary radius can be explained from Fig. 4 and then noticing that when R is small,
the paths permitting a shock n involving two specific different couples are reduced along with the
probability of this shock, which occurs through more restrictive initial conditions requiring a more
precise infinitesimal square Si. We then need much more squares S; and then a higher number of
shots Ns to be able to sample the required conditions randomly.

This also explains why we cannot calculate an asymptotic value of D for N, > 6. The maximum
value of Ng we can use being limited to 10%, the maximum value of D we could calculate was equal
to 14 in Fig. 8b, so we can guess in this particular case that D should reach its asymptote N, = 15
for higher values of Ns, but it is not sure. As limiting Ns is equivalent to define a threshold of branch
probability 1/Ns below which we ignore that branch, the existence of an asymptotic value of D that
does not reach the maximum value N, for N, > 6 depends on the existence of billiard states that
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are impossible to reach. Yet this really occurs either if there is still a dependence of billiard states
with the geometry of initial conditions, or if there is a shield effect due to the insufficiency of the
vacuum between the balls. The possibility for D to be equal to its asymptote N, should then be
satisfied through two conditions:

(a) A Brownian regime is established, so that all phases of balls have become independent of
their initial conditions and then any phase state configuration becomes possible.

(b) R is small enough, so that whatever the number of balls is, there is always a configuration of
ball phases for which the subsequent shock of any ball can involve any other one.

As we cannot make calculations that imply branch probabilities less than 1/max(Ns) = 1078, it is
not possible for us to estimate with our simulations the corresponding R domain values versus Np.
But from the moment where (a) is satisfied, we can assume that it is always possible to adjust for
any ball its subsequent shock with any other one, provided that we can also adjust R to prevent
shocks with other balls. If it is true, for any value of N, there would be a non-zero value of R for
which (b) is also satisfied.

3.4. Diffusion regime

A Brownian regime is settled after a Brownian time during which all the billiard ball phases
become progressively completely independent from initial conditions. In our discrete billiard toy
model, this is achieved after a certain time when, for any ball of any initial phase state, there is
at least one of the multiple branches for which this ball has crossed the maximum distance (the
billiard diagonal). Even if the space distribution of phases is not still uniform at this stage (states
are not still equiprobable), we can then be sure that a particular geometry of initial conditions
cannot any more cause a lack of presence of a ball in any region, which could be responsible of a
zero-probability local phase configuration. But for the same reasons as before we cannot verify this
point with our calculations.

However it is still possible to verify that the independence from initial geometry is achieved for
the value of D, even if we cannot make it reach its true asymptote. This is what we can observe in
Figs. 9a and 9b for N, = 12 and 24 balls, respectively.

We made the calculations of Fig. 9 for different numbers of shots varying from 10° to 10%. Note
that when the number of shots is multiplied by 10, D is linearly increased with log(Ny), a result
that let us think that D could reach its asymptote for a sufficient number of shots, but with an
infinitesimal branch probability. This result is consistent with the linear correspondence between
the number of shots and the distance to be covered so as to detect bifurcations with a resolution
that is maintained as a constant (see Fig. 4).
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Fig. 9. Variations of D versus n for N, = 12 (a) and 24 (b) with different numbers of shots from 10°> to 10%.

The main difference between Figs. 9a and 9b is the very low value of D (maximum 3 for a
maximum asymptote 276) when N, = 24 compared to the value obtained for N, = 12 (maximum
9 for a maximum asymptote 66). Considering also the maximum of 14 that we obtained for N, = 6,
this clearly manifests the unexpected result that D decreases when N, increases, while the opposite
was expected.

This can be explained by the fact that we make these comparisons for a constant number Ns of
configurations of successive shocks, while it would be necessary to adapt it to different numbers
depending on N, because the probability to sample a given configuration during a given number of
shocks N varies as the inverse of the total number of different configurations emerging during the
corresponding time. If we consider for example two branch configurations obtained with different
Np, during N successive shocks, it would mean dealing with very distinct numbers of configurations
DY and DY, where D; and D, are the associated growth factors. Now, as configurations are not
equiprobable their probabilities are out of reach of our calculations, so that we cannot take them
into account to make a correction. However, we have already given practical results and made
necessary clarifications to consider that if R is low enough, there is no reason to think that we
would not calculate a D factor tending toward its asymptote N, if we had no limitation on Ns.

Another aspect of Figs. 9a and 9b is the heterogeneous variation of D for low values of the number
of shocks, which we attribute to the peculiar geometry of initial conditions. In Fig. 9b we observe
that D is stabilized during 4 successive shocks, after which we do not have enough shots to sample
more data and then D tends to 0. So as to confirm the diagnostic of the initial geometry influence, we
have repeated the calculations with exactly the same parameters but for different initial conditions
(Fig. 10).

Figs. 10a and 10b illustrate the variations of log(Ny) and D, respectively, for various initial
conditions with N, = 24 and R = 12 (same parameters as on 8b). To keep a clear Fig. 10b we
only reported 3 of the 9 different geometries of Fig. 10a.

Fig. 10a shows discordances between the different variations of log(Ny) when we change the
initial geometry, that disappear when the number of shocks increases. This can be explained by the
fact that during the diffusion phase, there are still shocks of balls for which the critical step is not
reached yet locally, meaning that the angular dispersion of their velocities has not reached 360°
yet and then some subsequent shocks with neighboring balls are forbidden, resulting in low values
of D. On the contrary, high values of D appear ephemerally after critical step as a result of a better
sampling of branches when the covered distance and then the number of shocks are still low.

The parallelism of Fig. 10a curves demonstrates the convergence of log(Ny) slope toward a
constant when n increases. This also results in a similar convergence of D values that we can notice
on Fig. 10b along 3 or 4 successive shocks when Nc > 12. Below this value there are abrupt
variations of D and disordered evolutions of log(Ny) caused by the differences in initial geometry.
Above this value, the reason why there is just a parallelism but not an identity of log(Ny) curves is
that there is a persistent effect of initial geometry that results in a slight delay in the explosion of
branches, but without affecting the slope and the D growth factor.
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Fig. 10. Variations of log(Ny) (a) and D (b) versus n for various initial conditions and with the same parameters as on

8b: Ny =24 and R = 12.
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Fig. 11. Schematic time evolutions of growth coefficient D(t) of a billiard’s multiverse (solid lines) and number of branches

Ny in logarithmic scale (dotted lines).

3.5. Brownian and saturation times

The diffusion regime is achieved at a Brownian time (see Fig. 11) reached when the accumulated
uncertainty makes it possible for any ball to be located at any position into the billiard, so that
its phase has become completely independent of initial conditions. For low values of Nj, specular
reflections are important and the duration of the diffusion regime is short, if any. But for a higher
number of balls the diffusion regime becomes dominant and the important number of shocks until
the Brownian time, conjugated to the high Nj, makes it impossible for us to estimate this time with
our simulations. But we can consider, as Fig. 11 illustrates, that the Brownian time Tp corresponds
to the time of convergence of D values, which we interpret as the time for which all the possible
positions of balls are reachable and all their phases have a 360° uncertainty. As the equations of
diffusion are well known, there is no special interest to recall them to calculate T, and furthermore,
it is not needed for the purpose of this paper. So we will focus on the much more important
Brownian saturation time that we also call the saturation time Ts.

To calculate the saturation time that we have defined in the introduction, we have to count the
total number Nps of possible phase states of the billiard. Each phase has 4 coordinates and each
coordinate has 10F states, where E is the decimal precision of our discrete space-time (for example
E ~ 35 for a billiard of one square meter and a precision down to the Planck scale). Then the total



number of billiard states is 105>, Now, the total number of possible states is not so high because
we have to consider only states with the same energy, which makes one coordinate of velocity
depend on the other one, so that the number of coordinates is reduced to 3.

The saturation of states is then reached when the number of shocks N is such that Nps is equal
to the accumulated number of branches, as we approximately suppose to have statistically reached
uniformly distributed states:

N
Nps = 103 = pNec=Na)  with Tr < Ty = N—” <Tg (8)
b
We have reformulated in (8) the D growing law of relation (1) by introducing a number of shocks
N, which corresponds to the intersection with the n axis of the stabilized slope of log(Ny) versus n
curve, which occurs at a time T4 for which Te < Ty < Tg.

The saturation time Ts is then equal to:

_ Nee  Ng 3Elog(lo)
TNy, N log(D)

What is remarkable in this result is that Ts is a limited value that could even tend toward the time
T, when the number of balls is high, but on the condition that D has indeed the asymptote Ng,.
This remains contestable in the sense that it could require to accept infinitesimal probabilities that
could be not possible in a discrete space-time, as we have to consider the possibility of discrete
probabilities.

Now, our most solid result is obtained for low values of Nj, for which the diffusion regime is
negligible and log(D) is around log(10), so that the order of size of the second term of (9) is around
3E shocks per ball after the critical time T¢c ~ Ty4. If we also consider small balls (or high void ratios)
for which we know that T¢ is very low, we can neglect it and then the order of size of the saturation
time is equal to 3E, that is to say around hundred shocks per ball in the case of the Planck limit
resolution (E = 35).

Ts

(9)

4. Discussion

The main result of this paper is to highlight that there exists a Brownian saturation time with
a magnitude of order of 3E for the present billiard toy model (or 5E for a 3D dynamics), which
is interesting as an estimation of the delay we would have to extend our calculations if we want
to find multiple paths so as to join arbitrary given initial and final conditions. Though it involves
calculating a considerable number of branches that is still out of reach of our current computers,
we must notice that this delay condition could be realized for a lot of natural systems. That is why
this result has a fundamental interest that we discuss in the following.

But first of all, it is noteworthy that the work we have presented in this paper has the practical
outcome of our powerful indexation-chaining method to unbolt the data mining problem of millions
of branches comparison, which induce unaffordable computing times. Without such a method,
it would not have been possible for us to repeat numerous calculations involving comparisons
of several millions of billiard histories, which enable our analysis of the growing law of billiard
branches.

Yet the main focus of our paper is a theoretical one, that is to discuss the hypothesis that we
have raised in its title, which we can reformulate as follows: Is it realistic to consider the possibility
that some paths of objects in a local system of a discrete space-time could be replaced by other
ones, while maintaining well determined final conditions?

The interest to keep fixed final conditions is here to highlight a hypothetic space-time property
that could authorize changes of its local spatio-temporal structure without affecting its global
or higher scale structure. Note that this is an already known property of diffusive systems for
which equations are not differentiating low scale detailed trajectories. Yet we have shown that this
indetermination is not just an empirical approximation but a real possibility in a discrete space-
time, which enables individual paths to be not uniquely defined at low scales even though the global
history remains well determined at a higher scale. Would not it be the connecting key between local



discrete and global continuous physics? Let us recall that it was recently highlighted in [16] that
using deterministic equations does not prevent the basic laws from settling a Brownian regime
after a “long time”. However, this time was not quantified by the authors as it just results from an
asymptotic mathematical property. Thus a second practical interest of our work is to show how to
estimate this “long time” in a discrete space-time.

Now, let us consider the theoretical interest of our work, which is to give some realism to a
possible indetermination of paths that could link well determined initial and final conditions of a
local system. This possibility can be interpreted in various ways.

The first one is to propose that physical laws are still incomplete and say that when physicists
will complete them they will be able to restore a perfect determinism and eventually characterize
the particular parameters of the universe we live in within the classical discrete multiverse. This
assumes that these parameters do not vary along time and then it is somewhat equivalent to having
complementary data to add to initial conditions so as to inform in advance all choices made at all
bifurcations, from the beginning (or big-bang) to now. We could then wonder about the existence
of these complementary laws, while they are only justified by the necessity to supplement data to
initial conditions: why not just add more precision and keep the same laws? A good answer is that
adding enough precision to the initial conditions of early cosmology would require a tremendous
quantity of physical information in the universe, as it should grow linearly in function of time to
quasi infinitely small scales, so depending on the square of time. In the context of a finite density of
information in the universe, this is proscribed. Fortunately, there is a much better alternative (also
satisfying Occam'’s razor principle) which consists to add a very limited complementary data at all
interactions. We calculated for example in our previous studies that only 3 or 4 bits per shock are
generally enough to restore determinism, while the required information to make the same in the
context of a continuous space-time should be a quasi-infinite one!

A second possibility is then to say that the additional but very limited data required to restore
determinism needs other laws and extra dimensions, not only because it is more economic in terms
of physical information, but also because it could vary along time. However we could first prefer
extra dimensions without postulating the evolution of additional data. This is in particular the case
in string theory where the 6D Calabi-Yau modes [23] are not supposed to vary along time, giving
rise to the interpretation of a string theory multiverse which would have 10'° well separated
branches which are as many different universes. More generally, this is also the case with other
versions of the multiverse like the bubbles of early cosmology and even the Everett many worlds [7],
which are all considered as deterministic, specifically because restoring determinism is the essential
reason to appeal a multiverse, though it is still lacking the “hidden variables” and associated laws
or rules that are necessary to make choices at bifurcations.

Yet, there are already good reasons to consider differently the problem with the multiverse,
whatever the version we speak about. Both the fundamental principle of general relativity and the
quantum gravity premises show that space-time has to be considered as something flexible, as it is
bending and warping. Indeed, if we look at the timeless configuration of the block universe, there
is something incoherent in the idea that these folds and deformations would not vary out of time
and then leave the space-time exactly in the same gravitational frozen state from the big-bang
to nowadays. One of the reasons it is still considered so is that our understanding of time is still
vague and largely debated. But the main reason is that nobody knows how extra dimensional data
could cause, by varying in time, a variation of the timeless gravitational field without destabilizing
space-time as a whole. In brief, it is implicitly considered that space-time would collapse if such a
variation was permitted in the equations.

The main theoretical interest of our work is therefore to demonstrate that it could not be the
case, because we have shown that changing some choices at bifurcations may not affect subsequent
relative final conditions, as it changes only very locally the space-time structure without collapsing
it at higher scales. To say it in a more revealing way, we have shown that the opposite of the
butterfly effect could also exist, meaning that even somewhat erratic changes in the complex
evolution of a local system could change nothing at all to the global system in which it is immersed,
thus maintaining its final state.

Such a proposition could be criticized saying that it is insane to generalize our results, as they are
just calculated for a billiard with a few balls, to a real discrete space-time because the number of



interacting objects therein is incomparably higher. Yet we have shown that increasing the number
of interacting objects does not increase the saturation time for which multiple paths could appear.
On the contrary, while the number of branches grows as a geometrical series, the saturation time
stays in the worst case independent of the number of objects and in the best case decreases with
it, or even tends toward zero with T when the ball diameter is decreased. It is noteworthy that a
high void ratio is a usual case in a lot of situations at different scales, for example from quantum
particles like electrons to air molecules and planets, etc.

However, some objections could be raised against such a generalization, for example the fact
that we worked with a billiard isolated by borders, but it is not the purpose of this paper to discuss
them. We rather prefer to limit the scope of our finding by saying that it simply remains to affirm
that in particular cases, changing a few individual histories could not change the collective one,
which has already be described in other domains (for example a shoal of fish or a swarm of bees
does not strictly forbid individual unconformity).

More fundamental, even if it is still speculative the possibility for the paths of objects in a
local system to be not uniquely determined although the same future is maintained deserves to
be mentioned as it stands because it is offering very interesting perspectives, in particular new
highlights to the eternal debate about the question of time.

In physics, the current prevailing conception of space-time which is the block universe model
is the object of a large debate [24] because a lot of physicists do not agree with a future that
already exists with the same status as the past. If it is so, time could not exist physically as our
intuitive frontier between a well determined past and an undetermined future, but as an emergent
thermodynamic phenomenon [25]. But many physicists as for example Lee Smolin [26] or Georges
Ellis [27,28] reject the block universe because it does not give a real physical and creative sense to
the present and leaves no possibility, at best for free will, at worst for an undetermined future that
seems yet promised by quantum fate.

In Fig. 12 we have condensed in the simplest possible way the basic concept of the new flexible
model of space-time that we suggest. This model is reviving the function of time in a rather different
way of Smolin and partially restoring the indefiniteness of the future in the same sense of Ellis.
The big interest of this proposition is that though it is dynamic, it remains compatible with the
mainstream static block universe model by making it at all times a well defined space-time in the
past and the future. The objective sense of present time may then be to allow to define locally
a succession of particular instants t, when each time line commutation occurs, thus permitting
the block universe to evolve out of time. Such commutations should be controlled by timeless
parameters, involving a new physics of time lines but which is still unknown. We cannot say at
this stage if this new physics would imply or not some influence from the future that we mention
as stable in Fig. 12. Though the possibility of retrocausality has long ago been suggested [29] before
coming back strong recently with the work of Huw Price [30,31] and is now claimed as compatible
with quantum mechanics [32], it cannot be confirmed without knowing the complementary laws
of this new physics. We suggest here that it could possibly be carried out via hypothetic equations
of evolution of the extra dimensions that we have proposed in our previous paper.

5. Conclusion

We have proposed a relevant response to the data-mining problem raised by quantifying the
growth of the number of branches of a billiard classical multiverse, which have led us to results
that are likely to question the very concept of a multiverse as a set of separate branches. Indeed,
another interpretation is emerging, using space-time flexibility, which has the great interest to
provide new insight on the issue of time that we felt it was important to discuss.

So, the essence of our paper is to highlight the counterintuitive fact that the concept of time
determinism (or of many worlds) could be an illusion, probably due to the impossibility for our
brain to conceptualize the ability for multiple objects to change their paths while joining the same
past and future, because it involves an incommensurable complexity of interactions.

More concretely, we think that our result is likely to question the usual frontier between classical
and quantum states of objects, that could be in the same sense somewhat illusory because we
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Fig. 12. In a flexible block universe, space-time could safely change its configuration by evolving via local commutations
of different time lines. Note that the commutation time t, may be different from the bifurcation time t3.

have shown that in a discrete classical space-time, the possibility for the path of one object to be
locally not unique can be a macroscopic property. The difference between the classical and quantum
ontologies could then be founded on the time delay T¢ that is necessary for the first ontology to
become a multi-paths one, while in quantum physics Tc would be reduced to zero as a result of the
very small size of particles. In other words, our classical reality at our macroscopic scale could be
similar to quantum but only in the future, though at different scales of time that depends on mass,
distance and interactions between objects.

Now, the flexible universe hypothesis is challenging the multiverse theories as another candidate
to report the existence of multiple paths. It is resting on the condition of accepting the possibility for
extra dimensions [10,23] or quantum gravity [33] to bring the additional data that is necessary to
coordinate the commutations of the time lines implied by this flexibility. The entanglement between
paths would then be due to the impossibility to change one particular path of a given object without
changing other involved paths and objects.

This is also raising rather more philosophical questions about the nature of time, that we have
addressed in [34], and also about the difference between brain and consciousness, that has been
for example deeply addressed in physics by Penrose [35] and in philosophy by Bitbol [36]. This
difference could be founded on the capability of the latter to grasp multiple paths, resulting in an
intuitive and perhaps not always illusory sensation of free will.
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