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Abstract 

Magnetotactic bacteria (MTB) are a group of microorganisms that have the ability to 

synthesize intracellular magnetic crystals (magnetosomes). They prefer microaerobic or 

anaerobic aquatic sediments. Thus, there is growing interest in their ecological roles in 

various habitats. In this study we found co-occurrence of a large rod-shaped 

deltaproteobacterial magnetotactic bacterium (tentatively named LR-1) in the sediment of a 



brackish lagoon with algal bloom. Electron microscopy observations showed that they were 

ovoid to slightly curved rods having a mean length of 6.3 ± 1.1 μm and a mean width of 4.1 ± 

0.4 μm. Each cell had a single polar flagellum. They contained hundreds of bullet-shaped 

intracellular magnetite magnetosomes. Phylogenetic analysis revealed that they were most 

closely related to Desulfamplus magnetovallimortis strain BW-1, and belonged to the 

Deltaproteobacteria. Our findings indicate that LR-1 may be a new species of magnetotactic 

bacteria. We propose that deltaproteobacterial magnetotactic bacteria may play an 

important role in iron cycling and so may represent a reservoir of iron, and be an indicator 

species for monitoring algal blooms in such eutrophic ecosystems. These observations 

provide new clues to the cultivation of magnetotactic Deltaproteobacteria and the control of 

algal blooms, although further studies are needed. 
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Introduction 

Magnetotactic bacteria (MTB) are a heterogeneous collection of prokaryotes that can 

respond to magnetic fields because they produce membrane-bound magnetic intracellular 

magnetite (Fe3O4) and /or greigite (Fe3S4) crystals (Bazylinski and Frankel 2004). These 

magnetic minerals are termed magnetosomes, and are commonly arranged in chains along 

the long axis of the cell (Bazylinski, et al. 2013). Most MTB are ubiquitously distributed at or 

below the oxicanoxic transition zone (OATZ) in freshwater and marine environments (Lin, 

et al. 2009, Simmons, et al. 2007, Spring, et al. 1993, Zhang, et al. 2012). Phylogenetically, all 

cultured and uncultured MTB have been found to be affiliated with the Alpha-, Beta-, Delta-, 

Gamma-, and candidate Eta-Proteobacteria classes within the Proteobacteria phylum 

(Abreu, et al. 2018, Bazylinski, et al. 2000, Ji, et al. 2017, Lefèvre, et al. 2009, Lefèvre, et al. 

2011c, Lefèvre, et al. 2011e, Zhou, et al. 2012, Zhu, et al. 2010), the Nitrospirae (Journal of 

The Royal Society InterfaceLi, et al. 2015, Lefevre, et al. 2010, Lefèvre, et al. 2011a, Lin, et al. 

2012), the Planctomycetes (Lin, et al. 2017a), the candidate Omnitrophica (Kolinko, et al. 

2016) and Latescibacteria phyla (Lin and Pan 2015). It has been widely believed that MTB 

play important roles in the biogeochemical cycling of iron, sulfur, nitrogen and carbon (Lin, 

et al. 2014b, Lin, et al. 2017a).  

Deltaproteobacterial MTB comprise a diverse and ecologically interactive group of 

sulfate-reducing bacteria (SRB). They have been found in various habitats including 



freshwater rivers, moats, lakes, and wetlands (Chen, et al. 2013, Li, et al. 2019, Sakaguchi, et 

al. 1993, Wang, et al. 2013, Zhang, et al. 2017); in brackish lagoons and springs (Lefèvre, et 

al. 2011c, Lins and Farina 1999); marine intertidal zones, lagoons, and coral reefs (Chen, et 

al. 2015b, Teng, et al. 2018b, Zhou, et al. 2012); and in extreme hypersaline and highly 

alkaline environments (Lefèvre, et al. 2011b, Martins, et al. 2010). They include various 

morphological forms including unicells (Lefèvre, et al. 2011c), chains of 25 cocci (barbells) 

(Simmons, et al. 2006), and multicellular forms (multicellular magnetotactic prokaryotes: 

MMPs) (Delong, et al. 1993, Zhou, et al. 2013). Most unicellular deltaproteobacterial MTB 

are large rods or helical in form. Deltaproteobacterial MTB can synthesize magnetite or 

greigite magnetosomes, and are the only MTB able to crystallize both types within the same 

cell (Bazylinski, et al. 1995, Bazylizinki, et al. 1993, Chen, et al. 2015b, Kasama, et al. 2006, 

Kolinko, et al. 2014, Lefèvre, et al. 2011c, Spring and Bazylinski 2006, Wang, et al. 2013, 

Zhang, et al. 2014). Synthesis of the two types of magnetosome is controlled by two 

different magnetosome gene clusters and culture conditions (such as redox potential and 

the concentrations of sulfide and iron), as shown in pure cultures of strain BW-1, which is a 

deltaproteobacterium isolated from a brackish spring (Descamps, et al. 2017, Lefèvre, et al. 

2011c). Most bullet-shaped magnetosomes have been found in MTB affiliated to the 

Deltaproteobacteria class and Nitrospirae phylum, which are the most deeply diverging 

group of the Proteobacteria and the most deeply branching phylogenetic group, respectively 

(Lefèvre, et al. 2011d, Lefèvre, et al. 2013a, Lin, et al. 2017b). Thus, bullet-shaped 

magnetosomes are considered to be the earliest to form (Lefèvre, et al. 2013a, Lin, et al. 

2017b). Although mam genes (magnetosome genes) are conserved in all known MTB, a set 

of putative special genes, termed mad genes (magnetosome associated 

deltaproteobacteria), appear to be highly conserved and may control magnetosome 

formation in deltaproteobacterial MTB (Lefèvre, et al. 2013b). Therefore, 

deltaproteobacterial MTB have been widely used as model organisms for investigating 

mechanisms of biomineralization (Lefèvre, et al. 2011c, Rahn-Lee and Komeili 2013), the 

evolution of magnetotaxis (Lefèvre, et al. 2013b, Nakazawa, et al. 2009), and the evolution 

of multicellular life (Chen, et al. 2015b). 

Although coccoid alphaproteobacterial MTB predominate in most environments (Lin, et 

al. 2009, Pan, et al. 2008, Spring, et al. 1998), deltaproteobacterial MTB occur in some 

spatially heterogeneous natural environments (e.g. sediment), and there has been an 

increased number of reports of deltaproteobacterial MTB. However, many of these have 

focused on the characterization, diversity, and distribution of MMPs (Abreu, et al. 2013, 

Azevedo and Acosta-Avalos 2015, Chen, et al. 2016, Kolinko, et al. 2014, Leao, et al. 2017, 

Leao, et al. 2018, Lins and Farina 2001, Liu, et al. 2018, Simmons and Edwards 2007, Zhou, et 



al. 2013). Only little literature has reported the cultivation and diversity of the unicellular 

deltaproteobacterial MTB (Lefèvre, et al. 2011b, Lefèvre, et al. 2011c, Li, et al. 2019, Wang, 

et al. 2013). Therefore, information on their characteristics and ecological roles in natural 

habitats is still limited. 

Algal blooms occur in freshwater, marine, and brackish aquatic systems worldwide. 

They are promoted by eutrophication (enrichment of water with nutrients, mainly nitrogen 

and phosphorus) and climate change (Graneli, et al. 2008, O'Neil, et al. 2012). They are a 

cause of great concern because of their negative effects on biodiversity, food webs, and 

ultimately human health (Huisman, et al. 2018). For better understanding the influence and 

process of algal blooms, many studies have focused on the bacterial community composition 

associated with cyanobacterial aggregates (Cai, et al. 2013, Eiler and Bertilsson 2004, 

Tuomainen, et al. 2006), in water layer (Oliver and Ganf 2002, Wilhelm, et al. 2011, 

Woodhouse, et al. 2016) as well as sediment (Chen, et al. 2015a, Fan, et al. 2019, Shao, et al. 

2013, Zhang, et al. 2019). Which would provide valuable information to aid in improving our 

ability to control cyanobacterial blooms. Although responses of some different functional  

microbial communities such as methanogenic microorganisms (Schwarz, et al. 2008) and 

algicidal bacteria (Mayali and Azam 2004) to algal blooms have been studied, the 

relationship between the MTB and algal bloom has never been reported. 

In this study we found that a group of large rod-shaped MTB dominated in the sediment 

of a brackish lagoon during an algal bloom in April 2016. Microsorting combined with single 

cell whole genome amplification indicated that this homogenous taxonomic group 

represents a new species of MTB affiliated to the Deltaproteobacteria class. 

Materials and methods 

Site and MTB collection 

During an algal bloom in April 2016, some surface sediments (to approximately 10 cm 

depth) and in situ water (ratio approximately 2:1) were collected from a brackish lagoon 

(Lvdao Lake: 37°07N, 122°27E) located at the top of Sanggou Bay, Shandong Province, 

northeastern China. Lvdao Lake is the largest lagoon (3.2 km2) in urban Rongcheng city, and 

opens into the east of Sanggou Bay. Freshwater inputs to the lagoon are mainly from one 

large river (the Gu River) and two small rivers (the Shili and Yatou rivers). The peak of 

terrestrial inputs of freshwater into the lagoon occurs in summer. The nutrients entering 

Lvdao Lake and affecting its water quality are derived from both natural and anthropogenic 

sources. The sampling sites are a low tide area having a water salinity of 17‰ and a pH of 

7.4. The samples were collected in 500 ml plastic bottles and were returned to the 

laboratory for subsequent analysis. 



The MTB cells were enriched from the samples by attaching the south pole of 

permanent magnets outside the bottles at the water/sediment interface, as described 

previously (Pan, et al. 2008). The MTB were then purified using the race track method 

(Wolfe, et al. 1987). 

Optical and electron microscopy 

The number, morphology and magnetotactic behavior of the magnetic collected or 

purified MTB were investigated using the hanging-drop method within an artificial magnetic 

field. For the abundance of MTB, magnetic collected MTB samples were  transferred to a 2.0 

mL tube (volumes were recorded as V1 mL). Subsequently, a 20 μL (V2 /mL) sample of each 

concentrate was used to count the numbers of MTB under the microscopy (Olympus BX51) 

(in triplicate). The average numbers of MTB were counted as N (ind.). The abundance of 

MTB (A, ind./cm3 ) was calculated using the formula A = N*V1 /V2/Vs, where Vs (cm3 ) is the 

volume of sediment in each bottle. Observations were made using differential interference 

contrast (DIC) microscopy (Olympus BX51 equipped with a DP80 camera system; Olympus, 

Tokyo, Japan). Phototaxis experiments were carried out using a fluorescence microscope 

equipped with mercury arc UV/visible light sources (Olympus, Tokyo, Japan), as previously 

described (Chen, et al. 2015b). 

For transmission electron microscopy (TEM) observations the purified MTB cells (not 

fixed or stained) were deposited on carbon-coated copper grids, rinsed with Milli-Q water, 

then air dried. The morphological characteristics of the MTB and the chemical composition 

of their magnetosomes were investigated using a HITACHI H8100 microscope operating at 

115 kV, and a JEM2100 microscope operating at 200 kV and equipped for energy-dispersive 

X-ray spectroscopy (EDXS: Revolution), respectively (Liu, et al. 2017). The length and width

of the MTB cells and magnetosomes were measured using Adobe Photoshop software. The 

frequency distribution of magnetosome size, calculated as (length + width)/2, and shape 

factor (width/length), were conducted using Origin software (Edwards 2002). 

For scanning electron microscopy (SEM) the MTB cells were fixed for 1 h or overnight 

at 4C in 1.25% glutaraldehyde, then transferred directly onto a 0.22 μm nucleopore 

polycarbonate filter (Whatman, Britain) using vacuum filtration. The samples were rinsed in 

1 × PBS and dehydrated in an ethanol series (50%, 60%, 70%, 90%, and 100%: 10 min each) 

and soaked with isoamyl acetate for 1 h at room temperature. The cells collected on the 

filter were critical point dried and gold coated, and their cell surface characteristics were 

examined using a HITACHI S-3400N scanning electron microscope (Japan) operating at 5 kV. 



Phylogenetic Analysis 

For phylogenetic analysis of the MTB we combined micromanipulation with whole 

genome amplification (WGA) and polymerase chain reaction (PCR) amplification of the 16S 

rRNA gene. The use of micromanipulation in studies involving genome sequences of MTB 

has been reported previously (Chen, et al. 2015b, Jogler, et al. 2011, Teng, et al. 2018a, 

Teng, et al. 2018b). WGA of the MTB was performed using the illustra Single Cell GenomiPhi 

DNA Amplification Kit (GE29-1080-39; Sigma, United States) following the manufacturer’s 

instructions, with a 2.5-h amplification (Teng, et al. 2018a, Teng, et al. 2018b). PCR 

amplification (Mastercycler; Eppendorf, German) was conducted using the bacterial 

universal primers 27f and 1492r (Lane 1991) (Sangon Biotech, Shanghai, China). The PCR 

products were cloned into the pMD18-T vector (TaKaRa, Dalian, China), which was 

transformed into competent E. coli TOP10 cells. Randomly chosen clones were sequenced by 

Nanjing Genscript Biotechnology (Nanjing, China) . 

The 16S rRNA gene sequences obtained were first analyzed using the BLAST search 

program on the NCBI website (http://www.ncbi.nlm.nih.gov/BLAST/). The related sequences 

were initially aligned using the default setting of CLUSTAL W multiple alignment software, 

and BIOEDIT software was used to calculate the sequence identities. A phylogenetic tree was 

derived using the maximum-likelihood method in MEGA 6.0, with bootstrapping of 1000 

replicates. The representative sequence was submitted to the GenBank database under 

accession number MH990263. 

The sediment with rich LR-1 cells was chosen to measure total carbon (TC), total 

nitrogen (TN) and total organic carbon (TOC) using an elemental analyzer (Vario Macro 

CNS, Elementar, Germany). Major and trace element concentrations in the sediment were 

determined by X-ray fluorescence (XRF) spectrometry (Bruker, S8 Tiger). 

Results 

Occurrence of magnetotactic bacteria in Lvdao lake 

At the time of sampling an algal bloom was present in Lvdao Lake, and the brackish 

water was green in color and contained numerous cells of Microcystis aeruginosa (data not 

shown). The sediment was dark brownish and had a sulfide odor. As expected, variously 

shaped MTB were observed including coccoid, vibroid, spiral, rod, and MMP forms. TEM 

examination showed that coccoid magnetotactic cells containing two or four elongated 

prismatic magnetosomes chains were often present (Fig. 1A and 1B). Magnetotactic spirilla 

containing single bullet-shaped magnetosome chains (Fig. 1C), rod-shaped MTB containing 

single tooth-shaped magnetosome chains (Fig. 1D), and oval-shaped MTB (a dividing MTB 



cell) containing two prismatic magnetosomes chains (Fig. 1E) were occasionally found. 

Spherical mulberry-like MMPs (s-MMPs), evident because of their unique cell arrangements, 

were also observed using both TEM and SEM (Fig. 2). TEM investigation indicated that all 

MMPs cells contained bullet-shaped magnetosomes (Fig. 2AC). SEM analysis showed that 

the cells in the s-MMPs were arranged in a helix (Fig. 2D and 2E). Peritrichous flagella were 

also found in the s-MMPs.  (Fig. 2D) 

Although many MTB morphologies were present in the lagoon sediment, at most 

sampling sites large rod-shaped magnetotactic bacteria dominated following magnetic 

enrichment, with a maximum abundance of approximately 103 ind./cm3. DIC observations 

revealed that the rod-shaped magnetotactic bacterial cells have an optical “transparency 

dot” (white arrows in Fig. 3A), which were also observed with blue light (450–480 nm), violet 

light (400–410 nm), and ultraviolet light (330–385 nm) illumination under fluorescence 

microscope (white arrows in Fig. 3CE). Notably neither the rod-shaped cells nor the 

transparency dot were observed under green light (510–550 nm) illumination (Fig. 3B). No 

phototaxis was evident when the rod-shaped cells were exposed to light of different 

wavelengths (data not shown). Both TEM and SEM observations showed that the rod-

shaped cells were ovoid-to-slightly curved rods (Fig. 4A and 4C) having a mean length of 6.3 

± 1.1 μm and a mean width of 4.1 ± 0.4 μm (n = 26) (Fig. 4A). Each cell had a single polar 

flagellum that was almost twice the length of the cell (Fig. 4B and 4D). 

Phylogenetic analysis of the dominant rod-shaped MTB 

 For phylogenetic analysis, approximately 100 rod-shaped MTB cells were collected 

using micromanipulation technology, as described in the Materials and Methods. The 

genomic DNA was extracted and amplified using the multiple displacement amplification 

(MDA) method, and the 16S rRNA gene was subsequently amplified and cloned. A total of 30 

clones was picked at random for sequencing, and 29 almost complete 16S rRNA gene 

sequences were obtained. The sequences shared at least 97.3% sequence identity and 

belonged to the same OTU, indicating that the rod-shaped MTB represent a single 

population of likely the same species, which we designated Lvdao rod-shaped (LR-1) MTB. 

Phylogenetic analysis showed LR-1 is most closely related to Desulfamplus 

magnetovallimortis strain BW-1 (96.6% identity), which was isolated from a brackish spring 

in Death Valley National Park, California, USA (Descamps, et al. 2017, Lefèvre, et al. 2011c). 

They formed a clade in the Deltaproteobacteria class (Fig. 5). Our phylogenetic results 

suggest that LR-1 is a novel species of the genus Desulfamplus, affiliated with 

Deltaproteobacteria. 



Characteristics of magnetosomes in LR-1 cells 

TEM indicated that LR-1 cells are capable of producing hundreds of bullet-shaped 

magnetosomes (Fig. 6A1 and 6A2). The number of magnetosomes per cell ranged from 136 

to 258 (average: 199; n = 10), which indicates a remarkable capacity of iron-mineralization. 

Although the magnetosomes formed chains along the long axis of the cell (Fig. 6A1 and 6A2), 

the chains appeared to bend along the curving surface of white storage globules (Fig. 6A1). A 

similar situation has been reported for the marine magnetotactic coccus strain MO-1 

(Lefèvre, et al. 2009). Most of the magnetosomes in LR-1 cells had a bullet shape and were 

65 ± 16 nm in length and 36 ± 5 nm in width (n = 100) (Fig. 6B1). Based on this, the shape 

factor (width/length) was approximately 0.58 ± 0.13 (Fig. 6B2). Different projected images of 

bullet-shaped magnetosomes having double triangle (dts) and flat top (fts) shapes were also 

observed in LR-1 cells (the black and white arrows in Fig. 6A2, respectively). EDXS analysis 

indicated that the magnetosome crystals were composed of iron and oxygen (Fig. 6C). These 

results indicate that LR-1 MTB can biomineralize bullet-shaped magnetite magnetosomes 

under natural conditions. 

Physical and chemical characterization of sediment 

The nutrient percentages were 720 mg/kg for TC, 460 mg/kg for TN, and 650 mg/kg for 

TOC. The major element concentrations of P, S and iron were 959.2 mg/kg, 625.5 mg/kg and 

44,870 mg/kg, respectively. Other major and trace element concentrations in the sediment 

were provided in the Suplemental Information Table S1. According to reference guidelines 

established by the USEPA (1977) (U. S. Environmental Protection Agency 1977), the 

sediment with high abundance LR-1 cells in Lvdao lake was classified as nonpolluted by TN 

(TN<1000 mg/kg). However, TP (TP>650 mg/kg ) and iron (iron>25,000) concentrations 

were at heavy polluted level. The results suggested that P and heavy metals are major sources 

of pollution in Lvdao lake. 

Discussion 

Two deltaproteobacterial MTB strains, Desulfovibrio magneticus RS-1 and 

Desulfamplus magnetovallimortis BW-1, have been isolated from sediments, the former 

from the Kameno River (Wakyama, Japan) and the latter from a brackish spring in Death 

Valley National Park (California, USA) (Descamps, et al. 2017, Sakaguchi, et al. 2002). 

Obligately alkaliphilic deltaproteobacterial MTB strains of Desulfonatronum thiodismutans 

(ML-1, AV-1, and ZZ-1) have been isolated and purified from three extremely alkaline 

hypersaline, brackish, and saline water habitats, respectively (Lefèvre, et al. 2011b). Another 

pure strain (SS-2), from the Salton Sea (California, USA), has also been reported (Lefèvre, et 

al. 2011c). Among these, only BW-1 has been shown to be capable of biomineralizing 

irregular greigite and/or bullet-shaped magnetite, while the others appear to synthesize only 



bullet-shaped magnetite crystals under culture conditions (Lefèvre, et al. 2011b, Lefèvre, et 

al. 2011c, Sakaguchi, et al. 1993). Among uncultured unicellular deltaproteobacterial MTB, 

two groups have been found to synthesize both types of magnetosome under natural 

conditions in the Xi’an freshwater moat and Weiyang Lake sediments (Chen, et al. 2013, 

Wang, et al. 2013). Another two uncultured groups, from the freshwater Longfeng wetland 

of Daqing city and Weiyang Lake (named WYHR-1) only formed magnetite magnetosomes 

(Li, et al. 2019, Zhang, et al. 2017). In this study, although LR-1 and BW-1 share the highest 

16S rRNA gene sequence identity, only one type of magnetosome (magnetite) was found in 

LR-1under natural condition. For BW-1, magnetite formation seems favored at low sulfide 

concentration (<0.3 mM) and high iron concentration (>100 μM) in the BWM medium 

(Descamps, et al. 2017, Lefèvre, et al. 2011c). Here, the concentrations of S in the LR-1 cells-

riched sediment was 625.5 mg/kg, which corresponds to the concentration of sulfur in the 

BW-1 medium. Hydrogen sulfide produced by bacteria growth and sulfate reduction may not 

be accumulated to a very high concentration in natural shallow lake sediment because they 

are easily released into the overlying water and air. In addition, in the sediment sample, the 

iron concentration (44,870 mg/kg) was significantly higher than that in BW-1 medium. Thus, 

the natural environmental conditions appeared to be favorable for magnetite formation in LR-

1 cells even though it may possess two sets of gene clusters like BW-1. Or LR-1 only 

contains one cluster genes encoding magnetite magnetosome proteins. Therefore, the genome 

of LR-1 and the environmental factors are needed for intensive studies. 

As noted above, the average width and length of the bullet-shaped magnetosomes of 

the deltaproteobacterial MTB LR-1 was approximately 36 and 65 nm, respectively. This 

width is slightly longer than that of Desulfamplus magnetovallimortis BW-1 (approximately 

33 nm wide (n = 61) calculated the size of magnetosomes in Fig. 2A from ref. (Descamps, et 

al. 2017)) and less than that of the cultured MTB deltaproteobacterial strain AV-1 (45 nm). 

Nevertheless, the average length of LR-1 magnetosomes is much greater and smaller than 

that of the BW-1 (about 47 nm in length, same measurement as above mentioned) and AV-1 

(about 107 nm in length), respectively (Lefèvre, et al. 2011d). As a result, the shape factor 

for LR-1 (0.58) was smaller and greater than those for BW-1 (0.72) and AV-1 ( 0.42), 

respectively. In addition, it seems that only bullet-shaped magnetosomes with dts projected 

are for these two strains (BW-1 and AV-1) (Lefèvre, et al. 2011d), while bullet-shaped 

magnetosomes with both dts and fts projected  co-occurred in single LR-1 cell. It's worth 

mentioning that LR-1 is capable of biomineralizing hundreds of bullet-shaped 

magnetosomes, which is more commonly observed for MTB affiliated with the Nitrospirae 

phylum rather than the Deltaproteobacteria class. These results suggest that some unknown 

genes differing from that in other deltaproteobacterial MTB, may be involved in determining 



the size, shape, and number of bullet-shaped magnetosomes in LR-1. Also, maybe some 

environmental factors make the difference among of them. A more detailed investigation of 

this kind of MTB, as well as pure culture studies and genome information are required to 

elucidate it. 

In this study of lagoon sediment during a cyanobacterial bloom (Microcystis 

aeruginosa) we found a homogeneous group of MTB (LR-1) that are probably sulfate 

reducing bacteria belonging to the Deltaproteobacteria. However, after the cyanobacterial 

bloom declined (October 2016), the abundance of LR-1 declined markedly (abundance 

approximately decreased from 103 to 410 ind./cm3). This finding suggests that there may 

be a relationship between the proliferation of LR-1 and the occurrence of cyanobacterial 

blooms. One explanation for this relationship is that the cyanobacterial bloom may have led 

to hypoxia in Lvdao Lake. The resulting low redox potentials and high sulfide concentrations 

would have promoted the reproduction of SRB, which may have contributed to 

decomposition of the cyanobacteria (Li, et al. 2012). The sulfate-reducing LR-1 MTB would 

probably dominate at the sediment surface, where they may have degraded the settled 

cyanobacteria (Feng, et al. 2014, Wang, et al. 2014); consequently, through biogeochemical 

cycling they may contribute to purifying the water. A second explanation is that the water 

turbidity was high during the cyanobacterial bloom, restricting light availability for organisms 

at the sedimentwater interface. Mostly, the sediment samples of MTB often stored in dim 

light and also the MTB be capable of escaping the damage of light with different 

wavelengths through the phototaxis (Azevedo, et al. 2013, Chen, et al. 2011, Chen, et al. 

2015b, Li, et al. 2017, Shapiro, et al. 2011, Zhu, et al. 2010). However, as noted above, it 

seems that LR-1 cells did not have phototactic behavior. Thus, the high water turbidity 

caused by the cyanobacterial bloom may have protected the LR-1 cells from light damage, 

and established a favorable environment for this type of MTB. A third explanation is related 

to iron, which is a required trace element but also a factor limiting the growth of 

phytoplankton. Previous studies have shown that cyanobacteria are highly sensitive to iron 

deficiency, and that iron is essential to bloom formation (Fu, et al. 2019, Gress, et al. 2004, 

Larson, et al. 2018, Molot, et al. 2014, Paczuska and Kosakowska 2003, Parparova and Yacobi 

1998, Zhou, et al. 2019). It has been suggested that ferrous iron (Fe2+) diffusing from anoxic 

sediments is a major iron source for cyanobacteria (Molot, et al. 2014). Under aerobic 

conditions, iron occurs mainly as sparingly soluble Fe3+. However, during a cyanobacterial 

bloom the overlying water and the surface sediment are anaerobic. Therefore, soluble Fe2+ is 

more stable and available in this environment. Consequently, anoxia resulting from the 

bloom increased the concentration of Fe2+, which in turn promoted bloom formation and 

the proliferation of sulfate-reducing MTB. However, sulfate reduction to sulfide can also 



limit ferric iron diffusion rates from anoxic sediments to the overlying water through the 

formation of insoluble iron sulfide (Carignan and Tessier 1988). It seems likely that LR-1 can 

overcome this problem in natural habitats by storing iron in their cells as magnetite rather 

than greigite during cyanobacterial blooms. It is also likely that the sulfide produced by 

sulfate reduction by LR-1 readily diffuses into the oxygenated shallow overlying water, which 

reduces the concentration of iron sulfide. Similar explanations have been provided in 

relation to the axenic deltaproteobacterial MTB strains ZZ-1, AV-1, and ML-1, isolated from 

extremely alkaline environments (Lefèvre, et al. 2011b). In addition, under culture 

conditions Desulfamplus magnetovallimortis strain BW-1 (the type strain most similar to LR-

1) biomineralizes bullet-shaped magnetite magnetosomes at H2S concentrations < 0.3 mM,

and roughly rectangular greigite magnetosomes at H2S concentrations > 0.3 mM (Lefèvre, et 

al. 2011c). This provides evidence supporting our hypothesis, although further confirmatory 

studies are needed. 

MTB are prey for protozoa, and this is one of the likely pathways for return of iron to 

the environment (Bazylinski, et al. 2000, Lin, et al. 2014a, Monteil, et al. 2018). In Lvdao Lake 

the digestion of magnetosomes in the food vacuoles of protozoa during grazing on MTB 

could generate bioavailable iron for cyanobacteria. If so, deltaproteobacterial MTB may play 

an important role in iron cycling in such eutrophic ecosystems, and so may be a reservoir of 

iron and an indicator species for monitoring algal blooms. 

Several cultures of unicellular axenic deltaproteobacterial MTB have been obtained 

(Lefèvre, et al. 2011b, Lefèvre, et al. 2011c, Sakaguchi, et al. 1993), but the isolation and 

culture of MMPs and most unicellular MTB remains a major challenge. This study may 

provide insights into how to cultivate MTB, especially magnetotacitc deltaproteobacteria. 

Magnetotactic bacterial-algal co-cultivation can be performed to create more favorable 

growth conditions for MTB such as the concentrations of O2 and H2S, redox gradients and 

light intensity. Unfortunately, it was difficult to measure some important physical and 

chemical characteristics of sediments and their heterogeneity in situ, including the oxidation 

reduction potential (ORP) and the concentrations of H2S and O2. Further research 

considering the relationships between MTB and algal blooms could usefully be undertaken 

using a sedimentwater microcosmic simulation system. 
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Fig. 1 TEM images showing various morphological forms of representative MTB cells 

collected from Lvdao Lake. Cocci (A, B), spirilla (C), rod (D) and ovoid (E). Bars = 500 nm. 

Fig. 2 TEM and SEM images of spherical mulberry-like MMPs (s-MMPs) collected from Lvdao 

Lake. AC: TEM images of representative s-MMPs containing bullet-shaped magnetosomes. 

SEM images of s-MMPs showing flagella evident on the surface (D) and a depression in the 

cell surface (E). Bars = 2 μm in A, B, and C. Bars = 1 μm in D and E. 



Fig. 3 The morphology and autofluorescence of rod-shaped MTB as viewed by optical 

microscopy. Differential interference contrast (DIC) image of rod-shaped MTB (A). In panel 

(A) the black arrow indicates the direction of the applied magnetic field. Panels BE show

the fluorescence of rod-shape MTB cells exposed to green light (510550 nm) (B), blue light 

(450480 nm) (C), violet light (400410 nm) (D), and ultraviolet light (330–385 nm) (E). The 

white arrows indicate the optical “transparency dots”. Scale bar = 10 μm for all images. 

Fig. 4 Morphology of rod-shape MTB observed using TEM (A, B) and SEM (C, D), including the 

presence of a single flagellum (B and D). Bars = 5 μm. 



Fig. 5 Maximum-likelihood tree for LR-1 based on 16S rRNA gene sequences. The sequence 

determined in this study is shown in bold text. GenBank accession numbers of the sequences 

used are indicated in parentheses. Bootstrap values are provided. Scale bar: 0.02 

substitutions per nucleotide position. 

Fig. 6 Characteristics of the magnetosomes of rod-shape MTB. Rod-shape MTB cell with 

abundant intracellular magnetosomes (A1). A2: enlargement of the framed part of A1, 

showing bullet-shaped magnetosomes. Black arrows indicate the dts bullet-shaped 

magnetosomes and white arrows indicate the fts bullet-shaped magnetosomes. Histograms 

of magnetosome size (B1) and shape factor distribution (B2). Energy dispersive X-ray (EDX) 

analysis of magnetosomes (C). Note the peaks of iron and oxygen. 




