

Bacterial injection machines: Evolutionary diverse but functionally convergent

Sophie Bleves, Jorge E Galán, Matxalen Llosa

▶ To cite this version:

Sophie Bleves, Jorge E Galán, Matxalen Llosa. Bacterial injection machines: Evolutionary diverse but functionally convergent. Cellular Microbiology, 2020, pp.e13157. 10.1111/cmi.13157 . hal-02456027

HAL Id: hal-02456027 https://amu.hal.science/hal-02456027

Submitted on 27 Jan 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	
2	Bacterial injection machines:
3	Evolutionary diverse but functionally convergent
4	
5	Authors: Sophie Bleves ¹ , Jorge E. Galán ² , Matxalen Llosa ^{3*}
6	
7	¹ LISM (Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255),
8	IMM (Institut de Microbiologie de la Méditerranée), Aix-Marseille Univ and CNRS,
9	Marseille, France.
10	² Department of Microbial Pathogenesis, Yale University School of Medicine,
11	New Haven, USA.
12	³ Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad
13	de Cantabria-CSIC-SODERCAN, Santander, Spain.
14	* Corresponding author. Phone +34 942201957. email <u>llosam@unican.es</u>
15	
16	Running title: Bacterial injection machines
17	

18 Summary

19

20	Many human pathogens use Type III, Type IV and Type VI secretion systems to
21	deliver effectors into their target cells. The contribution of these secretion systems to
22	microbial virulence was the main focus of a Workshop organized by the International
23	University of Andalusia in Spain. The meeting addressed structure-function, substrate
24	recruitment and translocation processes, which differ widely on the different secretion
25	machineries, as well as the nature of the translocated effectors and their roles in
26	subverting the host cell. An excellent panel of worldwide speakers presented the state
27	of the art of the field, highlighting the involvement of bacterial secretion in human
28	disease and discussing mechanistic aspects of bacterial pathogenicity, which can
29	provide the bases for the development of novel anti-virulence strategies.
30	
31	
32	Keywords: Bacterial secretion / Type III Secretion System / Type IV Secretion
33	System / Type VI Secretion System / machinery assembly/ protein translocation /
34	effector protein / toxin/ microbial virulence / host subversion / pathogenicity/
35	antibacterial
36	
37	Abbreviations: cryo-EM, cryo-electron microscopy; cryo-ET, cryo-electron
38	tomography; IMCC, inner membrane – cytoplasmic complex; nsEM, negative staining
39	electron microscopy; OMC, outer membrane complex; T3/T4/T6SS, Type III / Type IV /
40	Type VI secretion system(s)

41

Bacterial injection systems: all roads lead to Rome

42

43 Bacterial secretion systems are trans-envelope multi-protein assemblies devoted 44 to the transport of specific macromolecules to the outside. These nanostructures 45 connect bacteria with the outer world, playing a pivotal role in essential bacterial life 46 processes such as finding nutrients, sharing genetic information, or communicating 47 with other organisms in the context of pathogenic or symbiotic interactions (Green et 48 al., 2016). Among the many different families of secretion machineries, the Type III, 49 Type IV and Type VI protein secretion systems (T3/T4/T6SS) share the ability to inject 50 their substrates directly into human cells (Galan et al., 2018), playing an important role 51 in pathogenesis. The transported substrates, collectively known as effectors, have the 52 capacity to modulate host cellular processes for the benefit of the bacterial pathogens 53 that encode them. The role of translocated effectors in virulence is well established for 54 an increasing number of human pathogens such as Escherichia coli, Salmonella 55 enterica, Helicobacter pylori, Legionella pneumophila, Pseudomonas aeruginosa, or 56 Brucella melitensis. These three secretion machineries are also found within 57 phytopathogens whose effectors target plant cells. T4SS also play a role in horizontal 58 gene transfer, one of the main causes for spreading antibiotic resistance genes within 59 bacterial populations. This mechanism contributes to the generation of multi-resistant 60 bacteria, which pose a major threat to global health (Aslam et al., 2018). T6SS are 61 mainly recognized as antibacterial injection machineries, able to deliver toxic effectors 62 in prey bacteria (Coulthurst, 2019).

Remarkably, the evolutionary origin of these protein secretion systems differs
 significantly. T3SS are evolutionary related to the flagellar apparatus (Bhattacharya *et*

65	al., 2019); T4SS were originally conceived as conjugative bridges for DNA transfer
66	(Christie, 2001), and T6SS are evolutionary related to contractile phage tails (Leiman <i>et</i>
67	al., 2009). Thus, evolution has shaped multiprotein complexes with the capacity to
68	inject bacterially-encoded proteins into another cell multiple times. In spite of their
69	different evolutionary origins, these secretion machines converged mechanistically
70	into the ability to transport macromolecules across phospholipids bilayers, resulting in
71	the delivery of proteins synthesized by one bacterium into another cell target,
72	prokaryotic or eukaryotic. In the injection systems involved in pathogenicity, there is
73	also a functional convergence in the effectors delivered by the different machines,
74	which have the capacity to target similar cellular processes, such as signal transduction
75	pathways, vesicular trafficking, or the immune response (Personnic et al., 2016,
76	Ratner et al., 2017, Pisano et al., 2018, Tsai et al., 2019) (Figure 1).
77	The number of effector proteins transported by a given machine varies
78	significantly and can reach hundreds in some exceptional cases. As these effectors
79	have the capacity to modulate a vast range of cell physiology processes, their study are
80	not only providing insight into mechanisms of pathogenicity but also illuminating
81	fundamental principles of cell biology. Furthermore, the molecular knowledge of
82	these secretion machineries may pave the way to the design of new anti-infective
83	drugs. Thus, the search for inhibitors of the secretion machinery assembly or
84	functioning/operation or the effector themselves is an active field of research
85	(Fasciano et al., 2019, Graf et al., 2019). In addition, secretion systems can be
86	converted into intracellular delivery machines which could also have therapeutic
87	applications (Walker <i>et al.,</i> 2017).

88	Our knowledge on the architecture and function of these different secretion
89	machines has improved significantly over the last few years. Work during the 90's led
90	to the realization that T3SS had the capacity to deliver bacterially encoded proteins
91	into host cells, and in particular, virulence factors into human cells. The discovery of
92	the needle complex and associated structures led to the concept of the injectisome.
93	Combined with the description of a plethora of effector proteins and their biochemical
94	activities, these studies led to the emergence of novel paradigms in bacterial
95	pathogenesis, host pathogen interactions, protein secretion, and molecular machines
96	(Galan et al., 2014). Furthermore, because of their high degree of conservation across
97	many important bacterial pathogens independently of their phylogeny and the
98	commonality of secretion mechanisms, T3SS emerge as a potential target for the
99	development of novel antimicrobial strategies (Lara-Tejero et al., 2019). Overall, the
100	study of T3SS has serve as useful paradigm for research on other protein secretion
101	systems.

102 T4SSs stand out for their plasticity, since they can translocate both protein and 103 DNA molecules, and the destiny can be their secretion into the milieu or the delivery 104 into another cell, being either prokaryotic or eukaryotic (Li et al., 2019). This versatility 105 allows T4SS to play a key role in many essential aspects of bacterial life. These 106 functions can be grossly classified in two: (i) contribution to the horizontal gene pool, 107 both in Gram-negative and positive bacteria, and (ii) modulation of eukaryotic host 108 cells. DNA transport is a particularity of T4SSs, which are an integral part of bacterial 109 conjugation machineries. A T4SS subfamily adapted to interact with eukaryotic cells 110 mediates secretion or direct cell-to-cell transfer of virulence factors to modulate host 111 cells (Hayek et al., 2019). Members of this family contribute to the virulence of

112 significant human pathogens, such as Helicobacter pylori, Legionella pneumophila, or 113 Brucella melitensis. T4SS can also mediate interkingdom DNA transfer, as exemplified 114 by the prototypical T4SS VirB of Agrobacterium tumefaciens, responsible for the 115 transfer and integration of bacterial DNA into the plant cell genome (Li et al., 2018). 116 Finally, T6SSs were described only a decade ago, but in spite of this, their 117 structure and mechanism have been deciphered in much detail quickly (Cherrak et al., 118 2019). The T6SS functions as a dynamic contractile phage tail-like structure anchored 119 in the bacterial cell envelope to deliver effectors directly into the target cell. The T6SS 120 primary role is to target competitor bacteria in the environment or in the context of 121 host infection (Hood *et al.*, 2010, Coulthurst, 2019); however, interestingly some T6SS 122 effectors are also recognized as virulence factors that target eukaryotic cell 123 components (Hachani et al., 2016). T6SSs are present among pathogens such as P. 124 aeruginosa or Acinetobacter, classified by the WHO as antibiotic-resistant "priority 125 pathogens". 126 The role of bacterial secretion in disease is an especially relevant research field 127 where to promote cooperation: the socio-economic importance of the issue raises 128 interests among scientists from different backgrounds, such as medicine, biochemistry, 129 structural, cellular and molecular biology, genetics, or microbiology, working on a 130 variety of organisms including microbes, plants, animals, and humans. A detailed understanding of bacterial secretion systems requires a multidisciplinary approach that 131 132 addresses all structural, biochemical, microbiological, cellular and medical aspects: 133 from the elucidation of the molecular structure of the protein components to the cell 134 biology studies to elucidate the activities of the translocated effector proteins in 135 eukaryotic host cells. The ultimate goal of the Workshop "Contribution of bacterial

136	injection systems to human disease", which took place at the International University
137	of Andalusia (UNIA, Spain) in November 2018, was to promote cross-talk between
138	scientists working in different secretion systems at different organization levels,
139	pursuing as goals a holistic comprehension of bacterial pathogenesis, and discussing
140	possible common strategies for anti-pathogen therapies.
141	Knowledge on the mechanism of secretion is essential to understand
142	pathogenicity and to design therapies that block the secretion process. The first
143	session of the workshop addressed the assembly of the multiprotein transmembrane
144	complex, the 3D structure of the individual protein components, and structure-
145	function analysis of the nanomachines. A second session dealt with the nature and
146	recruitment of substrates, and the active translocation process of both protein and
147	DNA molecules. The third session focused on the subversion of the human cell by
148	translocated effectors, including interaction of the delivered substrates with host
149	elements and modulation of the host response.
150	
151	
152	Structure and function of T3, T4 and T6 Secretion Systems
153	
154	Structural biology provides an essential knowledge on which we base to great
155	extent our research for understanding multiprotein complexes. The size of these
156	complexes makes electron microscopy the ideal technology to elucidate their three-
157	dimensional architecture. In the last years, technologies requiring particle purification
158	have been complemented by other approaches, which allow the elucidation of
159	complex structures in situ. In this new context, cryo-electron tomography (cryo-ET) has

160	proven an excellent tool, and new exciting results argue for the importance of the
161	biological context on the elucidation of three-dimensional structures. María Lara-
162	Tejero (Yale University, New Haven, USA) presented the <i>in situ</i> structure of the
163	Salmonella T3SS obtained by cryo-ET. Comparison with the cryo-electron microscopy
164	(cryo-EM) structure of the isolated needle complexes revealed significant
165	conformational differences resulting from the docking of the sorting platform in the
166	needle complex, providing the symmetry adaptation required for the assembly of the
167	entire secretion within the bacterial envelope (Hu et al., 2017). Expanding on the T3SS
168	structure, Samuel Wagner (University of Tübingen, Germany) presented work in
169	collaboration with Susan Lea (Oxford) on the T3SS core export apparatus components
170	SctR, SctS, and SctT, (Wagner et al., 2010). A cryo-EM structure of the flagellar SctRST
171	homologs FliPQR showed that these proteins assemble into a unique helical complex
172	with a central pore, that is closed in the structure of the isolated complex, but that is
173	thought to open when located in the membrane. Despite their prediction as
174	membrane proteins, the helical SctRST complex resides within the bacterial inner
175	membrane during assembly, but it locates to a periplasmic supramembrane position in
176	the assembled injectisome. The details of its function in gating of and secretion
177	through the T3SS injectisome awaits further investigation.
178	There were a number of reports providing new, data on the structure of T4SS.
179	Until recently, our knowledge came from single particle negative staining electron
180	microscopy (nsEM) and reconstruction of the full transmembrane complex of the
181	conjugative plasmid R388 (Low et al., 2014), and the nsEM structure of the core
182	complex of the Cag T4SS (Frick-Cheng <i>et al.</i> , 2016) involved in <i>H pylori</i> pathogenicity.
183	Although different in size and shape, both T4SS showed an outer membrane complex

184 (OMC) with a 14-fold symmetry. The atomic structure of the OMC of the VirB T4SS 185 from Xanthomonas citrii, which mediates bacterial killing, confirmed this 14-fold 186 symmetry, as reported Tiago R. Costa from Gabriel Waksman lab (Imperial College, 187 London, UK) (Sgro et al., 2018). Intriguingly, the fine structure of two different T4SS, 188 solved *in situ* by cryo-ET, shed different results. Craig R Roy (Yale University, New 189 Haven, USA) presented a refined structure of the Dot-Icm T4SS from L. pneumophila 190 (Chetrit et al., 2018), previously reported at lower resolution (Ghosal et al., 2017); the 191 Dot-Icm T4SS is the prototype of so-called "Type B" T4SS, due to their partial homology 192 to the canonical "Type A" T4SS. Peter J. Christie (U Texas, Houston, USA) presented the 193 architecture of the T4SS of the conjugative plasmid F (Hu et al., 2019a), which shows little homology to that of R388. In both cases, a surprising 13-fold symmetry in the 194 195 OMC was evident.

196 The stoichiometry of the inner membrane / cytoplasmic complexes (IMCC) 197 received much focus. The reconstruction by Low et al (2014) proposed an inner 198 membrane complex formed by two side-by-side hexameric barrels of the cytoplasmic 199 ATPase VirB4; more recently, a five-barrel cytoplasmic structure was proposed for the 200 Cag T4SS (Chang et al., 2018), although the level of resolution left open the question of 201 the structure/s of these subcomplexes. The new fine structures of the Dot-Icm and F 202 plasmid allowed detailed observation of the IMCC. Craig Roy reported a DotB-DotO 203 hexameric complex, involved in substrate recruitment, which creates a cytoplasmic 204 channel whose assembly opens up the T4SS, thus directing the translocation of 205 substrates through the T4SS (Chetrit et al., 2018). A very similar structure is revealed in 206 the case of the system associated with the conjugative plasmid F, with a 13-fold 207 symmetry OMC linked to a 6-fold symmetry IMCC (Hu et al., 2019a). In addition, Bo Hu

T3T4T6- 9

from University of Houston reported a refined cryo-ET structure of the Cag T4SS
confirming the previously reported 14-fold symmetry at the OMC, but showing a clear
6-fold symmetry in the cytoplasmic complex (Hu *et al.*, 2019b).

211 Figure 2 shows a comparison of the features of the different T4SS structures 212 elucidated so far. Apart from the valuable insight into each particular T4SS, the set of 213 results opens up the question as to whether there are significant structural variations 214 among the T4SS, maybe adapted to their biological roles, and/or the variations are due 215 to the differences in the technology used to solve the structures. The fact that both the 216 14-fold and 13-fold symmetry OMC were solved in different systems from independent 217 labs argues for the co-existence of these alternative oligomeric structures in the T4SS 218 world. The newly solved structures provide strong evidence for a 6-fold symmetry 219 IMCC to which the 14-fold or 13-fol symmetric OMC has to engage. The apparent 220 stoichiometric mismatches among subcomplexes could be in fact an important 221 flexibility factor key to T4SS function. In this respect, it is interesting to note that the 222 recently reported near-atomic resolution structure of the Cag T4SS (Chung et al., 2019) 223 shows that the 14-fold symmetric outer membrane core complex connects to a newly 224 described 17-fold symmetric periplasmic ring complex (PRC). This new structure 225 illustrates the structural diversity among T4SS.

Another significant difference concerns the dimensions of the OMC. While the IMCC has a similar diameter in all the reported T4 structures (around 25-30 nm wide), the OMC is about 20 nm wide in the case of the R388, F, and *Xanthomonas* T4SS, while the OMC of Cag and Dot-Icm T4SS double this size. The obvious difference between these two types of T4SS is the target cell (prokaryotic or eukaryotic), raising the possibility that the extended OMC in the case of the *H. pylori* and *L. pneumophila* T4SS
is designed to target the human cell.

233 Structural studies not only shed light on the architecture of mature, functional 234 secretion machines. They can also illustrate the biogenesis pathway of the 235 transmembrane complexes. Peter Christie reported various structures of the F T4SS, 236 which may represent assembly intermediates or alternative biological states of the 237 T4SS, such as F pili associated with distinct basal platforms. Bo Hu showed the Cag 238 T4SS structures from mutants lacking the cytoplasmic ATPases, which do not affect the 239 formation of the outer membrane complex, but suggest a pathway for the assembly of 240 the inner membrane complex (Hu et al., 2019b). Joseph Vogel (Washington University, 241 St Louis, USA) combined cryo-EM with immunofluorescence microscopy to address the 242 assembly process of the *L. pneumophila* Dot-Icm T4SS, revealing that early-stage 243 assembly process begins with the targeting of Dot/Icm components to the bacterial 244 poles. Interestingly, polar targeting is mediated by two T4 components, DotU and 245 IcmF, which have homologues in T6SS, raising the possibility that these elements may 246 have been recruited by a T6SS (Ghosal et al., 2019).

247 Eric Cascales (CNRS, Marseille, France) reported the state of the art on T6SS 248 structure and assembly. T6SS includes a contractile sheath that covers a hollow tube 249 topped with a membrane-puncturing spike. The sheath can contract and inject the 250 arrow loaded with effectors into the prey cell. The cryo-EM structure of the wedge 251 complex of the enteroaggregative *Escherichia coli* T6SS and how the TssK wedge 252 subunit anchors the baseplate to the trans-membrane complex were briefly presented 253 at the workshop (Cherrak et al., 2018). The group has also dissected T6SS biogenesis 254 using an original *in vivo* technique based on APEX2-dependent biotinylation to

determine proximity partners of TssA. TssA, by stabilizing the baseplate and
coordinating the polymerization of the tail plays a central role in the assembly of two
T6SS subcomplexes. The results revealed a new partner, TagA, which holds the distal
extremity of the sheath at the opposite site of the bacterial membrane (Santin *et al.*,
2018). In fact, these authors have recently reported that cell width determines the
length of the T6SS tail, since T6SS sheath polymerization is arrested upon contact with
the opposite membrane, likely by the TagA stopper (Santin *et al.*, 2019).

262 The intriguing relationships between T4SS and T6SS were also raised at the 263 Workshop. It was already known that the conjugative pilus triggers T6SS activity in the 264 recipient cell (Ho et al., 2013), so T6SS-containing bacteria are unlike recipients of 265 conjugative plasmids. Mario Feldman (Washington University School of Medecine at St 266 Louis, USA) built further into this relationship. Coexistence of T4 and T6SS in donor 267 bacteria is functionally contradictory, since the former is intended to transfer DNA to 268 recipient bacteria, while the latter kills potential recipients. In Acinetobacter baumanii, 269 where most strains harbour a constitutively expressed T6SS, the solution is simple: 270 large conjugative plasmids repress co-existing T6SS in order to allow their spread and 271 the conjugation of other plasmids through their T4SS (Weber *et al.*, 2015). In fact, they 272 show that this repression is essential for conjugation to occur (Di Venanzio et al., 273 2019). The molecular components involved in these interactions remain to be 274 determined. 275 276 277 **Translocated substrates**

278

The workshop devoted its attention also to different aspects of the substrates translocated by T3, T4 and T6SS, from their evolutionary origin to their recruitment and translocation by the secretion machineries, their detection and action in the target cell, and even their possible biotechnological applications. The varied nature of the substrates was represented in different talks, including the nucleoprotein complexes transferred by T4SS, the toxins targeted to other bacteria through T6SS, or the protein effectors injected into human cells by T3SS.

286 Christoph Dehio (University of Basel, Switzerland) addressed the evolution of 287 effectors, using the example of the *Bartonella* VirB/D4 T4SS substrates, collectively 288 known as Beps. Their group reported that Beps evolved from a single ancestral effector 289 that emerged by fusion of a bacterial toxin-antitoxin module and a T4 secretion signal 290 (Harms et al., 2017). This ancestral Bep became the primordial interkingdom effector 291 when VirB/VirD4-T4SS was co-opted for host interaction. By parallel evolution, specific 292 sets of Bep repertoires have been adapted to three different Bartonella lineages, in a 293 remarkable example of host adaptation (Wagner et al., 2019a).

294 Substrate recruitment and translocation are especially intertwined in the case of 295 T6SS. Luke Allsopp, from Alain Filloux lab (Imperial College London, UK), presented the 296 fine characterization of the secretion of a DNAse toxin by the *P. aeruginosa* T6SS into 297 competitor bacteria (Pissaridou et al., 2018). This evolved toxin, whose effector 298 domain is fused to a structural component of the T6 puncturing device, was shown to 299 fit exquisitely in the tip of the T6SS spike thanks to interactions by its PAAR domain. In 300 addition, they showed that immunity proteins are highly specific for their cognate 301 toxins, allowing interstrain competition. T6 effector genes can also be localized at the 302 vicinity of genes encoding the phage tail like structure. Like this, Sophie Bleves (Aix-

303	Marseille University, France) discovered a novel antibacterial phospholipase of P.
304	aeruginosa whose secretion requires an adaptor protein for the targeting to the T6
305	spike and an immunity protein to protect from sister cell attack (Berni et al., 2019). The
306	existence of toxin-antitoxin pairs was the also the basis for the search for new
307	effectors associated with the <i>P. aeruginosa</i> H1-T6SS by David Albesa (CIC-Biogune,
308	Spain) in collaboration with Alain Filloux and Julian Parkhill. They developed a
309	methodology named TraDIS (Transposon directed insertion-site sequencing) and
310	mutagenized in parallel strains with active/inactive T6SS. By comparing the number of
311	transposon insertions in each gene, they identified putative immunity proteins (which
312	are essential genes), allowing the search for adjacent toxins. Following this approach
313	they discovered Tse8, an antibacterial toxin with an original mechanism of action, the
314	inhibition of protein synthesis, and its cognate immunity protein Tsi8 (Nolan et al.,
315	2010)
515	2019).
316	Access of the effectors to their host target requires different strategies depending
316	Access of the effectors to their host target requires different strategies depending
316 317	Access of the effectors to their host target requires different strategies depending on the pathogen. In the case of the <i>Helicobacter pylori</i> Cag T4SS, the effector
316317318	Access of the effectors to their host target requires different strategies depending on the pathogen. In the case of the <i>Helicobacter pylori</i> Cag T4SS, the effector oncoprotein CagA is secreted at the surface of the gastric cell and then translocated
316317318319	Access of the effectors to their host target requires different strategies depending on the pathogen. In the case of the <i>Helicobacter pylori</i> Cag T4SS, the effector oncoprotein CagA is secreted at the surface of the gastric cell and then translocated into the target cell. Steffen Backert (Friedrich-Alexander University Erlangen-
 316 317 318 319 320 	Access of the effectors to their host target requires different strategies depending on the pathogen. In the case of the <i>Helicobacter pylori</i> Cag T4SS, the effector oncoprotein CagA is secreted at the surface of the gastric cell and then translocated into the target cell. Steffen Backert (Friedrich-Alexander University Erlangen- Nuremberg, Germany) presented a novel basolateral T4 secretion model for CagA.
 316 317 318 319 320 321 	Access of the effectors to their host target requires different strategies depending on the pathogen. In the case of the <i>Helicobacter pylori</i> Cag T4SS, the effector oncoprotein CagA is secreted at the surface of the gastric cell and then translocated into the target cell. Steffen Backert (Friedrich-Alexander University Erlangen- Nuremberg, Germany) presented a novel basolateral T4 secretion model for CagA. While the gastric pathogen is exposed only to the apical surface of epithelial cells, the
 316 317 318 319 320 321 322 	Access of the effectors to their host target requires different strategies depending on the pathogen. In the case of the <i>Helicobacter pylori</i> Cag T4SS, the effector oncoprotein CagA is secreted at the surface of the gastric cell and then translocated into the target cell. Steffen Backert (Friedrich-Alexander University Erlangen- Nuremberg, Germany) presented a novel basolateral T4 secretion model for CagA. While the gastric pathogen is exposed only to the apical surface of epithelial cells, the T4 needle-like pilus binds basolateral integrins to translocate CagA. The access to these
 316 317 318 319 320 321 322 323 	Access of the effectors to their host target requires different strategies depending on the pathogen. In the case of the <i>Helicobacter pylori</i> Cag T4SS, the effector oncoprotein CagA is secreted at the surface of the gastric cell and then translocated into the target cell. Steffen Backert (Friedrich-Alexander University Erlangen- Nuremberg, Germany) presented a novel basolateral T4 secretion model for CagA. While the gastric pathogen is exposed only to the apical surface of epithelial cells, the T4 needle-like pilus binds basolateral integrins to translocate CagA. The access to these basolateral receptors is allowed by the secretion of the HtrA serine protease that

treatment by inhibiting their proteolytic activity or for its use in vaccine development.
In addition to integrins, *H. pylori* exploits at the basolateral surface the
carcinoembryonic antigen-related cell adhesion molecules (CEACAM) receptors via the
outer membrane adhesin HopQ (Moonens *et al.*, 2018). This binding is required for
CagA delivery into gastric epithelial cells. CEACAMs are also exploited by pathogenic
bacteria such as *Neisseria gonorrhoeae*, *N. meningitidis*, and *E. coli* during mucosal
colonization.

334 Bacterial secretion systems can target specifically a diversity of host cells and 335 translocate very different cargos, making them ideal systems to customize as substrate 336 delivery tools. Luis Angel Fernández (CNB, Spain) utilizes the ability of T3SS to 337 translocate proteins into human cells for biotechnological purposes. His group has 338 designed a non-pathogenic *E. coli* strain which produces a functional T3SS from 339 enteropathogenic E. coli, that injects the desired proteins into human cells (Ruano-340 Gallego et al., 2015). They also showed that E. coli can be targeted to specific cell 341 types, and in particular tumor cells, by expressing synthetic adhesins consisting of 342 nanobodies (Pinero-Lambea et al., 2015). By joining both approaches, he presented 343 encouraging preliminary results of the engineered E. coli strain injecting customized 344 substrates specifically to tumor cells. Matxalen Llosa (Universidad de Cantabria, Spain) 345 aims to customize T4SS to deliver protein-DNA complexes for genomic editing 346 purposes. T4SS involved in effector translocation can also mediate DNA delivery into 347 human cells, when combined with a plasmid conjugation machinery (Llosa et al., 348 2012). The translocated DNA is covalently attached to the conjugative relaxase. They 349 showed that certain relaxases promote random integration of the incoming DNA into 350 the recipient human genome (Gonzalez-Prieto et al., 2017). Through protein

351	engineering, relaxase chimeric proteins can acquire new functions, including the ability
352	to integrate the attached DNA (Agundez et al., 2018). Preliminary results suggest that a
353	site-specific nuclease fused to the relaxase can be translocated through the T4SS in
354	order to attain site-specificity in the integration of T4SS-delivered DNA.
355	Francisco Ramos-Morales (Universidad de Sevilla, Spain) presented a different
356	example of possible biotechnological/biomedical exploitation of the secreted
357	substrates, using Salmonella T3SS effectors as carriers in a live vaccine against P.
358	aeruginosa. A fusion between the S. enterica effector SseJ and the P.
359	aeruginosa antigen PcrV was translocated by Salmonella into host cells in vitro,
360	eliciting the generation of specific antibodies in mice, which showed enhanced survival
361	(Aguilera-Herce et al., 2019).
362	
363	
364	Effector-mediated subversion of host cells
365	
366	Although the T3, T4 and T6SS are evolutionary and structurally quite diverse, many
367	of the effector proteins that they deliver target common core eukaryotic functions.
368	Consequently, the study of these effectors share common experimental approaches.
369	One of the main limitations to study effector function in the host cell is their
370	visualization after translocation. Amy E. Palmer (University of Colorado, Boulder, USA)

- 371 reviewed the techniques they have developed to monitor T3SS effector injection in
- 372 human cells, which they also used to visualize *Listeria* protein secretion in infection,
- and could ideally extend to imaging of T4 and T6 effectors. Effectors tagged with a

374 fluorescent peptide allow following the secretion process from the intracellular bacteria by the loss of fluorescence. Another approach consists on an adaptation of 375 376 the split-GFP assay, fusing the FP11 GFP domain to the effector and expressing the rest 377 of the GFP protein (FP1-10) in the host cell (Young et al., 2017, Batan et al., 2018). 378 Ulla Bonas (Martin Luther University Halle-Wittenberg, Halle, Germany) discussed 379 how bacterial plant pathogens subvert their host by T3SS-mediated effector 380 translocation. Interestingly, effectors from human and plant pathogens share common 381 host targets. The repertoire of T3 effectors of Xanthomonas campestris pv. vesicatoria 382 comprises more than 35 proteins, among them the AvrBs3 transcription factor, cell 383 death inducers, plant immunity suppressors (Adlung et al., 2017), or the XopL 384 ubiquitine ligase. The characterization of the latter reveals and unprecedented role of 385 microtubules in stromule extension and dynamics in Nicotiana benthamiana (Erickson 386 et al., 2018). 387 Christoph Dehio addressed the functional versatility of the Bartonella VirB/D4

388 T4SS Bep substrates. The effectors are composed of only three basic domain types that 389 are highly versatile in function, allowing them to adapt their original function to host 390 cell subversion, by post-translation modification of target proteins, e.g. AMPylation by 391 FIC domains, interfering with signaling pathways mimicking eukaryotic protein pY 392 motifs, etc (Wagner et al., 2019b). Another fine example of host cell subversion by a 393 T4SS effector was reported by Maria Lucas (University of Cantabria, Spain), who 394 showed that the effector RavN of the L. pneumophila Dot/Icm T4SS mimics host cell E3 395 ligases to exploit the ubiquitylation pathway (Lin et al., 2018). Based on the structural 396 information obtained from this effector, they propose and validate other four effectors with E3 ligase activity, underscoring the importance of manipulation of the hostubiquitylation pathway for *Legionella* infection.

399 Since the main function of T6SS is to target other bacteria, there are few 400 examples of T6 anti-eukaryotic effectors (Hachani et al., 2016). Some of them provide 401 unique cases of trans-kingdom toxins, which allow the search for antibacterial 402 compounds that may limit bacterial competition for the niche colonization and further 403 host subversion. While toxins are usually directed against eukaryotic cells (like AB 404 toxins) or against rival bacteria (like bacteriocins), three T6 phospholipases of P. 405 aeruginosa were previously shown to affect both, prokaryotic and eukaryotic target 406 cells (Jiang et al., 2014, Jiang et al., 2016). These T6 effectors disrupt membrane 407 integrity of their prey bacteria and promote internalization *P. aeruginosa* into 408 epithelial cells and autophagy. Sophie Bleves reported a fourth trans-kingdom effector 409 of a novel type, called VgrG2b, which acts as an antibacterial metallopeptidase 410 implicated in bacterial competition (Berni et al., 2019). The bacterial target remains to 411 be discovered. VgrG2b was previously shown to facilitate the uptake of *P. aeruginosa* 412 into non-phagocytic cells by recruiting microtubules through an interaction with the 413 gamma-tubulin ring complex, the microtubule nucleating centre (Sana et al., 2015). As 414 in the case of the Xanthomonas T3 effector XopL, the precise role on host microtubules 415 remains to be evaluated in future studies. This represents a novel internalization 416 strategy, since most pathogens manipulate the actin cytoskeleton to enter host cells. 417 One such example was described by Miguel Valvano (University of Belfast, UK), who 418 presented a T6 effector that targets the host cytoskeleton to survive in macrophages: 419 the protease TecA of Burkholderia cenocepacia (Aubert et al., 2016) inactivates Rho 420 GTPases by deamidation, thus inducing actin disruption and caspase-1 inflammation

421 through activation of the Pyrin inflammasome. Furthermore, his lab addressed the role 422 of T2, T4 and T6SS in the interactions between *B. cenocepacia* and macrophages by 423 constructing mutant strains lacking each secretion system. They appear to increase 424 pathogenicity in macrophages, while limiting the spread of infection. 425 Finally, three talks addressed the complex interplay between enteropathogens 426 and the host immune response. Jorge Galán (Yale University, New Haven, USA) 427 provided the demonstration that three well-characterized T3 effectors of Salmonella 428 Typhimurium, SopE, SopE2 and SopB, trigger intestinal inflammation bypassing innate 429 immune receptors. Instead, they do so through the activation of Cdc42 and Pak1. 430 These effectors conserve signalling pathways that operate downstream from canonical 431 innate immune receptors and involve Tak1 and TRAF6 (Sun et al., 2018). These findings 432 illustrate the unique balance that emerges from the host/pathogen co-evolution, in 433 that pathogen-initiated responses that help its replication are also important to 434 prevent pathogen spread to deeper tissues. Furthermore, the mechanisms describe 435 here could help develop anti-pathogen therapeutic strategies by targeting specific 436 host-signaling pathways. Elisabeth L. Hartland (Monash University, Clayton, Australia) 437 reported on the suppression of host innate immunity pathways in enteropathogenic E. 438 coli and Shigella by T3SS effectors. EspL defines a family of cysteine protease effectors 439 which directly target RHIM-dependent inflammatory and necroptotic signalling 440 pathways (Pearson et al., 2017). Using the proteomic approach ProtoMap (Fuhrman-441 Luck et al., 2017), they have defined the host interacting partners of the Shigella EspL 442 homologues, and found that they target components of the type I interferon signalling 443 pathway. This suggests that Shigella activity blocks the host type I interferon response 444 and that type I interferon induced proteins mediate host defense against Shigella

445	infection. Feng Shao (National Institute of Biological Sciences, Beijing, China) reported
446	the interaction of the T3 effector IpaH9.8 of Shigella flexneri with the host immune
447	response. IpaH9.8 suppresses host defense through ubiquitination and degradation of
448	guanylate-binding proteins (Li et al., 2017). Lack of IpaH9.8 or its binding to GBPs
449	provoked translocation of GBPs such as hGBP1 and mGBP2 to intracellular S. flexneri,
450	where they inhibited bacterial replication, highlighting the functional importance of
451	GBPs in antibacterial defenses. The recently reported structure of the IpaH9.8:GBP
452	interaction reveals clues on how IpaH proteins discriminate among different GBP
453	targets through its LRR domain (Ji et al., 2019). This same group recently reported that
454	the Salmonella SopF effector specifically blocks xenophagy by blocking V-ATPase
455	recruitment of ATG16L1 onto bacteria-containing vacuole, without affecting canonical
456	autophagy (Xu <i>et al.,</i> 2019). This is just the last example of how the study of bacterial
457	subversion of the human cell serves to elucidate basic aspects of cell biology.
458	
459	
460	Conclusions and prospects
461	
462	The Workshop gathered an excellent panel of experts addressing different
463	aspects of the biology of T3, T4 and T6SS and their involvement in bacterial virulence.
464	The data presented reflected the exciting scientific moment in the field, and

- 465 underscored the fact that these evolutionary distant nanomachines converge
- 466 functionally in the host human cell, where they elicit pathogenic effects. This situation
- 467 calls for a joint action among experts in these fields to find common anti-virulence

468 strategies. In this context, the workshop constituted an excellent forum for merging 469 scientists from different backgrounds, which undoubtedly leads to fruitful synergies. 470 The authors hope similar meetings continue to take place in the future. 471 In the workshop, the reports on new 3D structures of the different secretion 472 machineries highlighted the importance of solving structures that are relevant in vivo. 473 The differences observed in the structures of the T3SS when it is embedded in the 474 membrane, or the different IMCC observed in T4SS structures solved in situ compared 475 to single particle reconstruction by cryo-EM (Fig 2), emphasizes the importance of the 476 physical context in biological structures. It is evident that structural biology of 477 secretion systems is moving towards the in situ characterization of the nanomachines 478 (Oikonomou et al., 2019). Still, cryo-ET needs to reach a better level of resolution to 479 provide full answers to the structure-function relations. 480 Elucidation of the structures is essential to understand the secretion mechanism, 481 and from a practical point of view, to identify potential targets for blocking secretion, 482 and thus, microbial virulence. Such anti-virulence molecules would be an alternative to 483 classical bacteria-killing antibiotics. In addition, bacterial secretion systems offer 484 numerous possibilities to develop biotechnological and biomedical applications, and 485 some of them were illustrated here, such as customization of DNA- and protein-486 delivery systems which access in vivo specific target cells for the purpose of human cell 487 modification, or even the construction of live vaccines based on secreted effectors. 488 Another highlight from the workshop is the increasing evidence in support of 489 convergent strategies for host cell subversion, regardless of the type of secretion 490 system involved in the translocation of the effectors. Different effectors, translocated 491 by different nanomachines, often end up interfering with the same host functions, key

492	for infection, survival and propagation of pathogens in the host cell, as illustrated in Fig
493	1. Typical examples are the manipulation of host cytoskeleton, subversion of host
494	immune response, interference with host signaling pathways, or alteration of vesicular
495	trafficking. This convergence implies that the identification of a novel host target for a
496	TxSS effector can pave the way to find the intracellular target of another, even if they
497	are not transported by the same machinery. Another important consequence is the
498	possibility of finding common effector motifs that could be targeted for broad-
499	spectrum anti-virulence strategies, which could block the action of effectors secreted
500	by different systems. Last, but not least, the study of host cell subversion through
501	bacterial secreted effectors keeps providing us with basic understanding of the human
502	cell physiology.
503	
504	
505	Figure Legends
506	
507	Figure 1. Schematic representation of T3, T4 and T6SS showing their relation to
508	flagellum, conjugative DNA transfer and phage structures, and their common targets in
509	the host cell. Bacteria (in green) are shown hosting the secretion system and related
510	machineries: flagella for T3SS, conjugative DNA transfer complexes for T4SS, and phage
511	tails for T6SS. Their bacterial targets are also shown: recipient bacteria for DNA
510	turn of an (TACC), and be standed billed (detailed binsed) by TCCC (detailed by the TL and

- 512 transfer (T4SS), or bacteria killed (dotted lines) by T6SS-injected toxins. The three
- 513 secretion systems can translocate effectors to the human cell, shown to the right,
- 514 together with the most common subverted cellular functions.
- 515

516	Figure 2. Comparison of the 3D structure of T4SS from plasmid R388 (Low et al.,
517	2014), plasmid F (Hu <i>et al.</i> , 2019a), <i>L pneumophila</i> Dot-Icm (Chetrit <i>et al.</i> , 2018), and <i>H</i> .
518	pylori Cag (Hu et al., 2019b). Below each T4SS, the nature of the translocated substrate
519	(Protein or protein-DNA complexes) and the target cell (bacteria or human) is
520	indicated. The R388 T4SS image is from (Galan <i>et al.</i> , 2018). The images for the F-Tra,
521	Dot-Icm and Cag T4SS were kindly provided by Bo Hu (University of Texas, USA). The
522	lanes below show the method for 3D structure elucidation, the stoichiometry of the
523	subcomplexes, and the size of the structure (in Armstrongs) at the outer membrane
524	(OM) side (the diameter of the pore is shown below) or the cytoplasmic (Cyt) side.
525	
526	
507	
527	Acknowledgements
527 528	Acknowledgements
	Acknowledgements We wish to thank the UNIA staff, and in particular Joaquin Torreblanca, for
528	
528 529	We wish to thank the UNIA staff, and in particular Joaquin Torreblanca, for
528 529 530	We wish to thank the UNIA staff, and in particular Joaquin Torreblanca, for organization of the Workshop. We are grateful to the speakers for presenting
528 529 530 531	We wish to thank the UNIA staff, and in particular Joaquin Torreblanca, for organization of the Workshop. We are grateful to the speakers for presenting unpublished data and allowing their citation. We are especially indebted to Bo Hu for
528 529 530 531 532	We wish to thank the UNIA staff, and in particular Joaquin Torreblanca, for organization of the Workshop. We are grateful to the speakers for presenting unpublished data and allowing their citation. We are especially indebted to Bo Hu for kindly providing the Tra, Dot and Cag images shown in Fig 2.
528 529 530 531 532 533	We wish to thank the UNIA staff, and in particular Joaquin Torreblanca, for organization of the Workshop. We are grateful to the speakers for presenting unpublished data and allowing their citation. We are especially indebted to Bo Hu for kindly providing the Tra, Dot and Cag images shown in Fig 2. Work in SB lab is supported by recurrent funding from the CNRS and Aix-Marseille
528 529 530 531 532 533 534	We wish to thank the UNIA staff, and in particular Joaquin Torreblanca, for organization of the Workshop. We are grateful to the speakers for presenting unpublished data and allowing their citation. We are especially indebted to Bo Hu for kindly providing the Tra, Dot and Cag images shown in Fig 2. Work in SB lab is supported by recurrent funding from the CNRS and Aix-Marseille University and by a grant from the Excellence Initiative of Aix-Marseille University-
528 529 530 531 532 533 534 535	We wish to thank the UNIA staff, and in particular Joaquin Torreblanca, for organization of the Workshop. We are grateful to the speakers for presenting unpublished data and allowing their citation. We are especially indebted to Bo Hu for kindly providing the Tra, Dot and Cag images shown in Fig 2. Work in SB lab is supported by recurrent funding from the CNRS and Aix-Marseille University and by a grant from the Excellence Initiative of Aix-Marseille University- A*Midex, a French "Investissements d'Avenir" program ("Emergence & Innovation" A-

539	
540	
541	References
542	
543	Adlung, N. and Bonas, U. (2017). Dissecting virulence function from recognition: cell
544	death suppression in Nicotiana benthamiana by XopQ/HopQ1-family effectors
545	relies on EDS1-dependent immunity. <i>Plant J</i> 91, 430-442.
546	Aguilera-Herce, J., Garcia-Quintanilla, M., Romero-Flores, R., McConnell, M.J. and
547	Ramos-Morales, F. (2019). A Live Salmonella Vaccine Delivering PcrV through
548	the Type III Secretion System Protects against Pseudomonas aeruginosa.
549	mSphere 4 .
550	Agundez, L., Zarate-Perez, F., Meier, A.F., Bardelli, M., Llosa, M., Escalante, C.R., et al.
551	(2018). Exchange of functional domains between a bacterial conjugative
552	relaxase and the integrase of the human adeno-associated virus. PLoS One 13,
553	e0200841.
554	Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., et al.
555	(2018). Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11,
556	1645-1658.
557	Aubert, D.F., Xu, H., Yang, J., Shi, X., Gao, W., Li, L., et al. (2016). A Burkholderia Type VI
558	Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and
559	Trigger Inflammation. Cell Host Microbe 19, 664-674.
560	Backert, S., Bernegger, S., Skorko-Glonek, J. and Wessler, S. (2018). Extracellular HtrA
561	serine proteases: An emerging new strategy in bacterial pathogenesis. Cell
562	<i>Microbiol</i> 20, e12845.
563	Batan, D., Braselmann, E., Minson, M., Nguyen, D.M.T., Cossart, P. and Palmer, A.E.
564	(2018). A Multicolor Split-Fluorescent Protein Approach to Visualize Listeria
565	Protein Secretion in Infection. Biophys J 115, 251-262.

566	Berni, B., Soscia, C., Djermoun, S., Ize, B. and Bleves, S. (2019). A Type VI Secretion
567	System Trans-Kingdom Effector Is Required for the Delivery of a Novel
568	Antibacterial Toxin in Pseudomonas aeruginosa. Front Microbiol 10, 1218.
569	Bhattacharya, S., Baidya, A.K., Pal, R.R., Mamou, G., Gatt, Y.E., Margalit, H., et al.
570	(2019). A Ubiquitous Platform for Bacterial Nanotube Biogenesis. Cell Rep 27,
571	334-342 e310.
572	Coulthurst, S. (2019). The Type VI secretion system: a versatile bacterial weapon.
573	Microbiology 165, 503-515.
574	Chang, Y.W., Shaffer, C.L., Rettberg, L.A., Ghosal, D. and Jensen, G.J. (2018). In Vivo
575	Structures of the Helicobacter pylori cag Type IV Secretion System. Cell Rep 23,
576	673-681.
577	Cherrak, Y., Flaugnatti, N., Durand, E., Journet, L. and Cascales, E. (2019). Structure and
578	Activity of the Type VI Secretion System. <i>Microbiol Spectr</i> 7 .
579	Cherrak, Y., Rapisarda, C., Pellarin, R., Bouvier, G., Bardiaux, B., Allain, F., et al. (2018).
580	Biogenesis and structure of a type VI secretion baseplate. Nat Microbiol 3,
581	1404-1416.
582	Chetrit, D., Hu, B., Christie, P.J., Roy, C.R. and Liu, J. (2018). A unique cytoplasmic
583	ATPase complex defines the Legionella pneumophila type IV secretion channel.
584	Nat Microbiol 3, 678-686.
585	Christie, P.J. (2001). Type IV secretion: intercellular transfer of macromolecules by
586	systems ancestrally related to conjugation machines. Mol Microbiol 40, 294-
587	305.
588	Chung, J.M., Sheedlo, M.J., Campbell, A.M., Sawhney, N., Frick-Cheng, A.E., Lacy, D.B.,
589	et al. (2019). Structure of the Helicobacter pylori Cag type IV secretion system.
590	Elife 8 .
591	Di Venanzio, G., Moon, K.H., Weber, B.S., Lopez, J., Ly, P.M., Potter, R.F., et al. (2019).
592	Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable
593	their dissemination. Proc Natl Acad Sci U S A 116, 1378-1383.

- 594 Erickson, J.L., Adlung, N., Lampe, C., Bonas, U. and Schattat, M.H. (2018). The
- 595 Xanthomonas effector XopL uncovers the role of microtubules in stromule
- 596 extension and dynamics in Nicotiana benthamiana. *Plant J* **93**, 856-870.
- Fasciano, A.C., Shaban, L. and Mecsas, J. (2019). Promises and Challenges of the Type
 Three Secretion System Injectisome as an Antivirulence Target. *EcoSal Plus* 8.
- 599 Frick-Cheng, A.E., Pyburn, T.M., Voss, B.J., McDonald, W.H., Ohi, M.D. and Cover, T.L.
- 600 (2016). Molecular and Structural Analysis of the Helicobacter pylori cag Type IV
 601 Secretion System Core Complex. *MBio* 7, e02001-02015.
- 602 Fuhrman-Luck, R.A., Silva, L.M., Hastie, M.L., Gorman, J.J. and Clements, J.A. (2017).
- 603Determining Protease Substrates Within a Complex Protein Background Using604the PROtein TOpography and Migration Analysis Platform (PROTOMAP).
- 605 *Methods Mol Biol* **1574,** 145-170.
- Galan, J.E., Lara-Tejero, M., Marlovits, T.C. and Wagner, S. (2014). Bacterial type III
 secretion systems: specialized nanomachines for protein delivery into target
 cells. Annual review of microbiology 68, 415-438.
- Galan, J.E. and Waksman, G. (2018). Protein-Injection Machines in Bacteria. *Cell* 172,
 1306-1318.
- 611 Ghosal, D., Chang, Y.W., Jeong, K.C., Vogel, J.P. and Jensen, G.J. (2017). In situ structure
- of the Legionella Dot/Icm type IV secretion system by electron
 cryotomography. *EMBO Rep* 18, 726-732.
- 614 Ghosal, D., Jeong, K.C., Chang, Y.W., Gyore, J., Teng, L., Gardner, A., et al. (2019).
- 615 Molecular architecture, polar targeting and biogenesis of the Legionella
 616 Dot/Icm T4SS. *Nat Microbiol* 4, 1173-1182.
- 617 Gonzalez-Prieto, C., Gabriel, R., Dehio, C., Schmidt, M. and Llosa, M. (2017). The
- 618 Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human
 619 Genome. *Appl Environ Microbiol* 83.
- Graf, F.E., Palm, M., Warringer, J. and Farewell, A. (2019). Inhibiting conjugation as a
 tool in the fight against antibiotic resistance. *Drug Dev Res* 80, 19-23.

- Green, E.R. and Mecsas, J. (2016). Bacterial Secretion Systems: An Overview. *Microbiol Spectr* 4.
- Hachani, A., Wood, T.E. and Filloux, A. (2016). Type VI secretion and anti-host
 effectors. *Curr Opin Microbiol* 29, 81-93.
- Harms, A., Liesch, M., Korner, J., Quebatte, M., Engel, P. and Dehio, C. (2017). A
 bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-
- 628 kingdom effectors of Bartonella. *PLoS Genet* **13**, e1007077.
- Hayek, I., Berens, C. and Luhrmann, A. (2019). Modulation of host cell metabolism by
 T4SS-encoding intracellular pathogens. *Curr Opin Microbiol* 47, 59-65.
- Ho, B.T., Basler, M. and Mekalanos, J.J. (2013). Type 6 secretion system-mediated
- 632 immunity to type 4 secretion system-mediated gene transfer. *Science* 342, 250-633 253.
- Hood, R.D., Singh, P., Hsu, F., Guvener, T., Carl, M.A., Trinidad, R.R., *et al.* (2010). A
 type VI secretion system of Pseudomonas aeruginosa targets a toxin to
 bacteria. *Cell Host Microbe* 7, 25-37.
- Hu, B., Khara, P. and Christie, P.J. (2019a). Structural bases for F plasmid conjugation
 and F pilus biogenesis in Escherichia coli. *Proc Natl Acad Sci U S A* **116**, 1422214227.
- Hu, B., Khara, P., Song, L., Lin, A.S., Frick-Cheng, A.E., Harvey, M.L., *et al.* (2019b). In
 Situ Molecular Architecture of the Helicobacter pylori Cag Type IV Secretion
 System. *MBio* 10.
- Hu, B., Lara-Tejero, M., Kong, Q., Galan, J.E. and Liu, J. (2017). In Situ Molecular
 Architecture of the Salmonella Type III Secretion Machine. *Cell* 168, 1065-1074
 e1010.

Ji, C., Du, S., Li, P., Zhu, Q., Yang, X., Long, C., *et al.* (2019). Structural mechanism for guanylate-binding proteins (GBPs) targeting by the Shigella E3 ligase IpaH9.8. *PLoS Pathog* 15, e1007876.

- Jiang, F., Wang, X., Wang, B., Chen, L., Zhao, Z., Waterfield, N.R., et al. (2016). The
- 650 Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host
- 651 Autophagy by Activating Endoplasmic Reticulum Stress. *Cell Rep* **16**, 1502-1509.
- Jiang, F., Waterfield, N.R., Yang, J., Yang, G. and Jin, Q. (2014). A Pseudomonas
- aeruginosa type VI secretion phospholipase D effector targets both prokaryotic
 and eukaryotic cells. *Cell Host Microbe* **15**, 600-610.
- Lara-Tejero, M. and Galan, J.E. (2019). The Injectisome, a Complex Nanomachine for
 Protein Injection into Mammalian Cells. *EcoSal Plus* 8.
- Leiman, P.G., Basler, M., Ramagopal, U.A., Bonanno, J.B., Sauder, J.M., Pukatzki, S., et
 al. (2009). Type VI secretion apparatus and phage tail-associated protein
 complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106,
 4154-4159.
- Li, P., Jiang, W., Yu, Q., Liu, W., Zhou, P., Li, J., *et al.* (2017). Ubiquitination and
 degradation of GBPs by a Shigella effector to suppress host defence. *Nature*551, 378-383.
- Li, Y.G. and Christie, P.J. (2018). The Agrobacterium VirB/VirD4 T4SS: Mechanism and
 Architecture Defined Through In Vivo Mutagenesis and Chimeric Systems. *Curr Top Microbiol Immunol* **418**, 233-260.
- Li, Y.G., Hu, B. and Christie, P.J. (2019). Biological and Structural Diversity of Type IV
 Secretion Systems. *Microbiol Spectr* 7.
- Lin, Y.H., Lucas, M., Evans, T.R., Abascal-Palacios, G., Doms, A.G., Beauchene, N.A., *et al.* (2018). RavN is a member of a previously unrecognized group of Legionella
 pneumophila E3 ubiquitin ligases. *PLoS Pathog* 14, e1006897.
- Low, H.H., Gubellini, F., Rivera-Calzada, A., Braun, N., Connery, S., Dujeancourt, A., et *al.* (2014). Structure of a type IV secretion system. *Nature* 508, 550-553.
- Llosa, M., Schroder, G. and Dehio, C. (2012). New perspectives into bacterial DNA
- 675 transfer to human cells. *Trends in microbiology* **20**, 355-359.

676	Moonens, K., Hamway, Y., Neddermann, M., Reschke, M., Tegtmeyer, N., Kruse, T. <i>, et</i>
677	al. (2018). Helicobacter pylori adhesin HopQ disrupts trans dimerization in
678	human CEACAMs. EMBO J 37 .
679	Nolan LM, Cain AK, Manoli E, Sainz-Polo MA, Dougan G, Mavridou DAE, et al. (2019).
680	Discovery of a Pseudomonas aeruginosa type VI secretion system toxin
681	targeting bacterial protein synthesis using a global genomics approach.
682	[Preprint] Available from : https://doi.org/10.1101/733030
683	Oikonomou, C.M. and Jensen, G.J. (2019). Electron Cryotomography of Bacterial
684	Secretion Systems. <i>Microbiol Spectr</i> 7.
685	Pearson, J.S., Giogha, C., Muhlen, S., Nachbur, U., Pham, C.L., Zhang, Y., et al. (2017).
686	EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to
687	block necroptosis and inflammation. Nat Microbiol 2, 16258.
688	Personnic, N., Barlocher, K., Finsel, I. and Hilbi, H. (2016). Subversion of Retrograde
689	Trafficking by Translocated Pathogen Effectors. Trends Microbiol 24, 450-462.
690	Pinero-Lambea, C., Bodelon, G., Fernandez-Perianez, R., Cuesta, A.M., Alvarez-Vallina,
691	L. and Fernandez, L.A. (2015). Programming controlled adhesion of E. coli to
692	target surfaces, cells, and tumors with synthetic adhesins. ACS Synth Biol 4,
693	463-473.
694	Pisano, A., Albano, F., Vecchio, E., Renna, M., Scala, G., Quinto, I. and Fiume, G. (2018).
695	Revisiting Bacterial Ubiquitin Ligase Effectors: Weapons for Host Exploitation.
696	Int J Mol Sci 19 .
697	Pissaridou, P., Allsopp, L.P., Wettstadt, S., Howard, S.A., Mavridou, D.A.I. and Filloux, A.
698	(2018). The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR
699	protein eliciting DNA damage to bacterial competitors. Proc Natl Acad Sci U S A
700	115, 12519-12524.
701	Ratner, D., Orning, M.P. and Lien, E. (2017). Bacterial secretion systems and regulation
702	of inflammasome activation. J Leukoc Biol 101, 165-181.

703	Ruano-Gallego, D., Alvarez, B. and Fernandez, L.A. (2015). Engineering the Controlled
704	Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation
705	into Mammalian Cells. ACS Synth Biol 4, 1030-1041.
706	Sana, T.G., Baumann, C., Merdes, A., Soscia, C., Rattei, T., Hachani, A., et al. (2015).
707	Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is
708	Promoted by Interaction of a T6SS Effector with the Microtubule Network.
709	<i>MBio</i> 6 , e00712.
710	Santin, Y.G., Doan, T., Journet, L. and Cascales, E. (2019). Cell Width Dictates Type VI
711	Secretion Tail Length. Curr Biol 29, 3707-3713 e3703.
712	Santin, Y.G., Doan, T., Lebrun, R., Espinosa, L., Journet, L. and Cascales, E. (2018). In
713	vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as
714	a protein that stops and holds the sheath. Nat Microbiol 3 , 1304-1313.
715	Sgro, G.G., Costa, T.R.D., Cenens, W., Souza, D.P., Cassago, A., Coutinho de Oliveira, L.,
716	et al. (2018). Cryo-EM structure of the bacteria-killing type IV secretion system
717	core complex from Xanthomonas citri. Nat Microbiol 3, 1429-1440.
718	Sun, H., Kamanova, J., Lara-Tejero, M. and Galan, J.E. (2018). Salmonella stimulates
719	pro-inflammatory signalling through p21-activated kinases bypassing innate
720	immune receptors. <i>Nat Microbiol</i> 3, 1122-1130.
721	Tsai, A.Y., English, B.C. and Tsolis, R.M. (2019). Hostile Takeover: Hijacking of
722	Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for
723	Intracellular Pathogens. Microbiol Spectr 7.
724	Wagner, A. and Dehio, C. (2019a). Role of distinct type-IV-secretion systems and
725	secreted effector sets in host adaptation by pathogenic Bartonella species. Cell
726	<i>Microbiol</i> 21 , e13004.
727	Wagner, A., Tittes, C. and Dehio, C. (2019b). Versatility of the BID Domain: Conserved
728	Function as Type-IV-Secretion-Signal and Secondarily Evolved Effector
729	Functions Within Bartonella-Infected Host Cells. Front Microbiol 10, 921.

730	Wagner, S., Konigsmaier, L., Lara-Tejero, M., Lefebre, M., Marlovits, T.C. and Galan, J.E.
731	(2010). Organization and coordinated assembly of the type III secretion export
732	apparatus. Proc Natl Acad Sci U S A 107, 17745-17750.
733	Walker, B.J., Stan, G.V. and Polizzi, K.M. (2017). Intracellular delivery of biologic
734	therapeutics by bacterial secretion systems. Expert reviews in molecular
735	<i>medicine</i> 19, e6.
736	Weber, B.S., Ly, P.M., Irwin, J.N., Pukatzki, S. and Feldman, M.F. (2015). A multidrug
737	resistance plasmid contains the molecular switch for type VI secretion in
738	Acinetobacter baumannii. Proc Natl Acad Sci U S A 112, 9442-9447.
739	Xu, Y., Zhou, P., Cheng, S., Lu, Q., Nowak, K., Hopp, A.K. <i>, et al.</i> (2019). A Bacterial
740	Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy. Cell 178,
741	552-566 e520.
742	Young, A.M., Minson, M., McQuate, S.E. and Palmer, A.E. (2017). Optimized
743	Fluorescence Complementation Platform for Visualizing Salmonella Effector
744	Proteins Reveals Distinctly Different Intracellular Niches in Different Cell Types.
745	ACS Infect Dis 3, 575-584.

746