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Gene regulatory regions contain short and degenerated DNA binding sites recognized by transcription
factors (TFBS). When TFBS harbor SNPs, the DNA binding site may be affected, thereby altering the tran-
scriptional regulation of the target genes. Such regulatory SNPs have been implicated as causal variants in
Genome-Wide Association Study (GWAS) studies. In this study, we describe improved versions of the
programs Variation-tools designed to predict regulatory variants, and present four case studies to illus-
trate their usage and applications. In brief, Variation-tools facilitate i) obtaining variation information,
ii) interconversion of variation file formats, iii) retrieval of sequences surrounding variants, and iv) calcu-
lating the change on predicted transcription factor affinity scores between alleles, using motif scanning
approaches. Notably, the tools support the analysis of haplotypes. The tools are included within the
well-maintained suite Regulatory Sequence Analysis Tools (RSAT, http://rsat.eu), and accessible through
a web interface that currently enables analysis of five metazoa and ten plant genomes. Variation-tools can
also be used in command-line with any locally-installed Ensembl genome. Users can input personal
collections of variants and motifs, providing flexibility in the analysis.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Genomic DNA sequence harbors the gene regulatory informa-
tion necessary spatial and temporal gene expression patterns
[38,31]. Gene regulatory regions encompass short, highly redun-
dant DNA motifs recognized by transcription factors (TF) [36].
These regulatory regions may contain genetic variants, Single
Nucleotide Polymorphisms (SNPs) or indels, that alter the DNA
TF binding site (TFBS), and thereby the binding of TF [20]. More-
over, it has been reported that 93.7% of variants that have been
associated with human traits or diseases have been found to be
located in non-coding regions [43,40], and particularly enriched
in open chromatin regions [57], indicating that these variants
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may affect transcriptional regulatory mechanisms, and thereby
explain the observed phenotypes.

The Regulatory Sequence Analysis Tools (RSAT, http://rsat.eu)
[47,26] has established itself in the last 20 years as a major soft-
ware suite dedicated to the analysis of regulatory regions, with five
public servers supporting more than 500 eukaryote and 9,000
prokaryote genomes. With a major focus on usability and accessi-
bility to users with or without formal bioinformatics training, RSAT
provides tools to retrieve sequences, perform motifs analysis, eval-
uate TF motif quality, compare and cluster motifs, convert file for-
mats, etc. Here we describe Variation-tools, a subset of tools
included in RSAT that enable users to analyse regulatory variants
and assess their putative impact on TF binding sites.

1.1. Current approaches for detecting potential regulatory variants

The fact that many variants are located in non-coding regions
triggered the development of bioinformatic tools to identify the
regulatory potential of these genetic variants. Starting from a list
of SNPs, computational analyses can help formulating hypotheses
on which TF may be impacted by a genetic variant. However, there
are numerous challenges for in silico analysis to unravel the impact
of genetic variations in gene regulatory regions. Several tools and
resources have been published, providing alternative methods to
tackle this problem (Table 1). Most of them are either based on
pattern-matching approaches to evaluate the impact of alleles on
TF binding, or on machine learning models built using functional
annotations of the regulatory regions, e.g. epigenomics and tran-
scriptomics data. Still, these resources and tools have limitations
hampering their usage in several organisms [68,28,35], on new
annotated variants [5,63,54], and/or on analyses with personal col-
lections of TF motifs [68,28,41].

All tools in the Pattern Matching category, (labeled PM in
Table1) use Position-Specific Scoring Matrices (PSSMs) to evaluate
the affinity of a TF to a given sequence with an allele. Major differ-
ences between these tools can be found in (i) their availability:
web pages [5], command line [12] or both [69]; (ii) flexibility for
the user to input their own data [61]; (iii) usability: the possibility
to use several variant formats [28]; (iv) results representation: fig-
ures and/or tables [63]; (v) available organisms: only human [62],
or other organisms [61]; and (vi) the possibility to calculate results
on-the-fly [41] or access pre-calculated ones [5].

Another set of tools (labeled ML in Table1) aim for the identifi-
cation of potential regulatory variants by integrating several types
of data, beyond taking into account potential disruption of TF bind-
ing. Particularly, Lee, et al. [37] integrated DNaseI-seq data with
SVM approaches to identify variants that could potentially disrupt
TF binding. DeepSea [68] integrates functional genomic data from
ChIP-seq, DNaseI-seq, RNA-seq and other functional genomic
high-throughput data to assess the potential damage of variants
across the human genome. Precalculated results for annotated
variants can be accessed on their website.

Both tools can be trained on other organisms, provided that
functional genomic data are available. The main limitation of these
resources is the required expertise in bioinformatics and/or com-
putational resources for users to analyse their own data sets. Other
tools identify potential regulatory effects of a variant by comparing
the measured affinity of a TF to the different possible alleles. Our
tool, named variation-scan, falls within this category.

1.2. Variation-tools

In this context, we have developed Variation-tools to address the
main limitations identified in existing programs (Table 1).
Variation-tools are composed of four programs that enable (i)
retrieval of information of Ensembl annotated variants when avail-
able for a given genome in RSAT (variation-info), (ii) conversions
between variant file formats (convert-variations), (iii) retrieval of
the sequences surrounding variants (retrieve-variation-seq), and
(iv) scanning of different alleles of a variant with one or several
motifs, comparing the scores and p-values in order to identify
affected TFBS (variation-scan) (Fig. 1). Earlier versions of these pro-
grams were reported in 2015 as part of a RSAT update article [45],
these first versions were developed in perl and were refactored and
improved for the 2018 update [47]. In this article we present the
latest versions of the tools, with optimized memory usage, and
novel support for the inclusion of haplotype information.

In summary, RSAT Variation-tools provide an accessible resource
for experienced and non-expert users to analyze regulatory vari-
ants in a web interface for fifteen organisms (five metazoa
(http://metazoa.rsat.eu) and ten plants (http://plants.rsat.eu), with
flexibility to upload personal variant and PSSM collections. We
describe here Variation-tools methodology, along with four case
studies demonstrating the flexibility of the tools, enabling the anal-
ysis of data sets from different origin (Ensembl variants, Genome-
Wide Association Study (GWAS) data, ChIP-seq regions, etc.), com-
plexity, and organisms.
2. Methods

2.1. Variation-tools: from variants to identification of regulatory
effects

Variation-tools consist in a subset of four tools within RSAT
devoted to the identification of genetic variants putatively affect-
ing TF binding

1) variation-info: this tool relies on the Ensembl genetic varia-
tion information [29] annotated and installed on the corre-
sponding server for each particular genome (i.e. human
variants are installed in the Metazoa server). It can take
two different inputs: 1) variant rsID or 2) genomic loci in
bed format. This tool will retrieve the information of the
variants matching the IDs or the information of the variants
located in the genomic loci. Variants installed in RSAT ser-
vers have been processed to remove variants with incom-
plete annotations (no alleles) or ambiguous coordinates
(non matching alleles coordinates). When users have their
own variants collections, they can skip this tool and use
directly convert-variations.

2) convert-variations: enables the interconversion of variant file
formats such as VCF, GVF and varBed. varBed is an internal
format of RSAT that facilitates the retrieval of the sequence
surrounding the variant (Supplementary Fig. 1A).

3) retrieve-variation-seq: retrieves the sequence surrounding
the variant, and produces one sequence for each allele (Sup-
plementary Fig. 1B). The tool can take as input a varBed file
(see convert-variations). For organisms with Ensembl anno-
tated variants, it can take a list of IDs or a bed file listing
genomic loci. The output is provided in a format named var-
Seq, with each row giving one allele with its surrounding
sequence. Each variant has a specific internal ID to accom-
modate several variants with various alleles in the same file.

4) variation-scan: performs the scanning of alleles with a PSSM
and compares the scores and p-values between alleles to
assess the putative effect on TF binding (see details below)
(Supplementary Fig. 2). It requires as input a varSeq file
(see retrieve-variation-seq), a motif or collection of motifs
(over twenty supported file formats), and a background
model (for methodological details on background model,
refer to [59] Box n�3). Different backgroundmodels are read-
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Table 1
Tools similar to variation-scan with available implementation. PM stands for Pattern Matching, ML stands for Machine Learning.

Name PMID Source Approach Organism Input Output rix flexibility Type Last
update

deltaSVM 26075791 http://www.
beerlab.org/
deltasvm/

Gapped k-mer SVM classifier. Any organism DNaseI-seq data;
putative regulatory
regions as positive
training set and
randomized sequences as
negative training set.

deltaSVM, predicted impact of
variant in chromatin accessibil
which is measured by adding u
the contribution of all 10-mers
which the SNP is present for
chromatin accessibility.

n only be trained for
TF at a time.

ML, non-
static.

Last
update
Sept 2015.

DeepSea 26301843 http://deepsea.
princeton.edu/
job/analysis/
create/

Deep convolutional network. Human SNPs in VCF format. Chromatin feature probabilitie
for reference and alternative
alleles, chromatin feature
probability log fold changes fo
each variant, chromatin featur
probability differences for each
variants, e-values for chromati
feature effects, functional
significance score for each varia
There are 919 chromatin featu
evaluated.

ntains 690 TF binding
files for 160 different
, but does not support
addition of new
rices.

ML, non-
static.

Last
update
May 2017.

atSNP 26092860 https://
github.com/
keleslab/atSNP

Importance sampling algorithm
for p-value calculation, first-
order Markov Model to
generate random background
sequences.

Any organism
whose
genome is
included in
the
Bioconductor
BSGenome
package.

SNP list, motif file. p-value for binding affinity wit
alternative and reference allele
value for binding affinity chan
based on log-likelihood ratio a
log-rank ratio. It also provides
composite logo plots for direct
visualizing the SNP effects on
motif matches.

ccepts several
rices, and several
erent formats. It
udes a motif library of
5 PSSMs from
ODE and JASPAR, but
allows user-defined
if libraries.

PM, non-
static.

Last
update
Nov 2018.

BayesPI-BAR 26202972 http://folk.uio.no/
junbaiw/BayesPI-
BAR/

Biophysical modeling of
protein-DNA interaction,
estimation of TF chemical
potential (through a bayesian
nonlinear regression model)
and differential binding affinity.

Any organism ChIP-seq experiment for
TFs to be tested, DNA
sequences for selected
SNPs,PSSMs for selected
TFs.

Given a SNP and a PSSM list, it
produces two lists sorted by
significance: one composed of
binding motifs disrupted by th
SNP, and one by sites with an
increased affinity to the TF cau
by the SNP.

use several PSSMs
ultaneously.

PM,
biophysical
modeling.
Non-static.

No
updates
listed,
software
created
July 2015.

GWAS4D 29771388 http://mulinlab.
tmu.edu.cn/
gwas4d/gwas4d/
gwas4d/gwas4d_
server

Variant prioritization method,
followed by an integrative
analysis of genome-wide
association.

Human Accepts VCF-like,
coordinate only, dbSNP
ID and PLINK-like
formats.

Regulatory variant prioritizatio
table: includes the most likely
affected motif by alternative
variant effect.

model includes
ifs of 1,480
scriptional regulators
13 different

urces. It is not
sible to upload user-
cified matrices.

PM, static Last
update
Sept 2018.

sTRAP 20127973 http://trap.molgen.
mpg.de/cgi-bin/
home.cgi

Prediction of local binding
affinity followed by a
normalization of binding
affinities to determine
difference between reference
allele and SNP.

Organisms
available in
TRANSFAC.

Accepts only two
sequences in FASTA
format.

List of TFs ranked according to
changes induced by the SNP.

re is no option for
r-specified matrices,
rices from TRANSFAC
ions can be selected.

PM, non-
static

No
updates
listed,
software
created in
2011.

(continued on next page)
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Table 1 (continued)

Name PMID Source Approach Organism Input Output Matrix flexibility Type Last
update

SNP2TFBS 27899579 https://ccg.epfl.
ch//snp2tfbs/

Estimation based on PSSM
model.

Human. When working with the
code, the input required
is the reference genome,
a SNP catalogue and a
PSSM collection.
The web interface
accepts SNP IDs and VCF
format, as well as a
specification of a
genomic region through a
bed file or by specifying
the start and end
positions.

List of affected TFBSs, sorted by
the magnitude of the effects.

On the web interface,
only matrices from
JASPAR can be used.
Nonetheless, it is possible
to download the code
used to generate the
database and use a
different input.

PM, static. Last
update
July 2017.

atSNP
Search

30534948 http://atsnp.
biostat.wisc.edu/

Used atSNP algorithm with
dbSNP build 144 for human
genome assembly 38 against
JASPAR and Encode motifs to
create a repository with all the
SNP-motif combinations
resulting from the previous
resources.

Human. It can receive a set of
rsIDs, a rsID and a
window size around the
SOI, genomic coordinates,
a gene symbol and a
window size around the
gene of interest, or a TF
name.

Table including p-values for motif
matches for both reference and
alternate alleles, as well as the
change in the motif matching and
the direction of said change.
Output includes logo plots,
displaying the sequence logos
aligned to best motif matches
with reference and SNP alleles.

Only JASPAR or ENCODE
matrices can be selected,
and it is possible to select
only one transcription
factor at a time.

PM, static. Last
update Jan
2018.

HaploReg 22064851,
26657631

https://pubs.
broadinstitute.
org/mammals/
haploreg/haploreg.
php

It contains data from multiple
genome annotation resources.
PSSMs are scored against
reference and alternative
alleles, and change in log-odds
is calculated.

Human Users can provide a list of
rsIDs or chromosome
regions. Users can also
select GWAS studies from
the NHGRI catalog.

Provides data on allelic
frequencies, conservation,
chromatin states, and near genes.
For each of the regulatory motifs
altered by the SNP, it provides the
change in log-odds and a logo.

HaploReg contains a
library created from
literature sources,
TRANSFAC, JASPAR and
PBM experiments. There
is no option for user-
specified matrices.

PM, static. Last
update
November
2015.

RegulomeDB 22955989 http://www.
regulomedb.org/

RegulomeDB uses information
from several datasets, as well as
manual curation and a heuristic
method to distinguish between
functional and non-functional
variants.

Human. Users can provide a list of
dbSNP IDs, hg19
coordinates in BED, VCF
or GFF3 format, or hg19
chromosomal regions in
the same formats.

Table sorted by likely
functionality, containing variant
coordinates, score assigned by the
algorithm, and evidence of
function including protein
binding, motifs, chromatin
structure, eQTLs and histone
modifications.

RegulomeDB includes all
PSSMs from TRANSFAC,
JASPAR CORE, and
UniProbe. There is no
option for user-specified
matrices.

PM, static. No
updates,
listed,
software
created in
Sept 2012.

motifbreakR 26272984 https://
github.com/
Simon-Coetzee/
MotifBreakR

It has three options of
algorithms: the standard sum
of log probabilities, weighted
sum, and an information
content method.

Organisms
included in
BSgenome.

SNPs can be imported
from an R package or
provided to the algorithm
in BED or VCF format.
PSSMs can be selected
from the MotifDb
package or be user-
specified.

Table containing statistics
describing the percent of
maximum score for a matrix and
matrix values for both alleles, as
well as the strand. It also reports
whether the TFBS is disrupted
strongly or weakly.

PSSMs can be imported
from the MotifDb
package or be user-
specified. More than one
matrix can be used at a
time.

PM, non-
static.

Last
update Jul
2018.

variation-
scan

http://rsat.eu Estimation based on PSSM
model.

web
interface:
installed
Ensembl
organisms.
command-
line: any
locally
installed
organism.

A collection of PSSMs and
a set of variants in varSeq
format. This format can
be obtained using
retrieve-variation-seq.

A table with one line per pair of
alleles per motif (if there are more
than two, there will be one line
per possible pair) reporting the
position, weight and p-value of
each allele, weight difference and
p-value ratio.

Users can select for the
collections available in
RSAT (JASPAR,
HOCOMOCO, CisBP), but
they can also use
personal collections.

PM-non
static.

April 2019.
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Fig. 1. Schematic representation of Variation-tools: This set of tools, included in the Regulatory Sequence Analysis Tools (RSAT), focuses on assessing the impact of different
allelic variants on Transcription factor binding sites. A) convert-variations allows users to input their own variants and convert them to other formats (VCF, GVF and varBed,
the latter is the format used in the next step), while variation-info retrieves the annotated information of Ensembl variants installed in RSAT servers. B) The tool retrieve-
variation-seq retrieves the surrounding sequence of variants (including possible haplotypes) and generates a text file with one line per allele and per variant or haplotype
(varSeq format). C) Users can input their variants in varSeq format and a collection of motifs (direct input by the user or selected from RSAT available collections) to variation-
scan; the tool then scans the corresponding sequences with all motifs and perform pairwise comparisons between the binding scores of each transcription factor onto all
alleles of a variant or haplotype.
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ily available through the web interface. However, depending
on the biological question and related potential biases, we
recommend the creation of a dedicated background model,
which can be done using the RSAT tool create-background,
also available via the RSAT web interface.

2.2. Haplotype processing

Genetic variants can be detected using high-throughput tech-
niques. This has enabled the identification of millions of variants
in the HapMap [30] and 1000 genomes projects [1]. However, the
information on the variants alone is less useful than knowing
which groups of alleles are co-located on the same chromosome
(haplotype). The process of identifying the variants that belong
to each chromosome is known as phasing. Including haplotype
phasing information facilitates the identification of relations
between variants [6].

VCF files can include haplotype phasing information. The tool
convert-variations identifies and retrieves the phasing information
of the variants, while the tool retrieve-variation-seq builts the cor-
responding haplotype with all the SNPs that lay within a defined
window (default: 30 bp).
2.3. Computing binding specificity of a transcription factor to a DNA
sequence

variation-scan uses PSSMs to assess the binding specificity of a
TF to a DNA sequence with different alleles in a given position.
The first step of variation-scan (i.e., scanning of the sequences with
a given PSSM) is delegated to the RSAT tool matrix-scan. The scor-
ing scheme and p-value calculation are described in detail in [59],
Box n�1 and Box n�2, respectively. In brief:

PSSM are used to assess the binding specificity of a TF. This
affinity is calculated as a weight score (Ws). The Ws of a site in
variation-scan is calculated using [27]:

Ws ¼ lnð PðSjMÞ
PðSjBÞ

� �

where S is a sequence segment of the same length of M, M is the
PSSM, and B is the backgroundmodel. Hence, P(S|M) is the probabil-
ity of the sequence given the PSSM and P(S|B) is the probability of
the sequence given the background model. Ws has been related to
the affinity of the TF to the sequence, as it assesses similarity of a
sequence to a known set of binding sites, providing information
about the probability of a sequence to be a new instance of a bind-
ing site [56].

Moreover, it is possible to calculate the p-value of a given score
as:

P � value ¼ PðW � wjBÞ

where the P-value is calculated as the probability of observing a
score of at least W given a background model w|B.

When a sequence is longer than the PSSM, the PSSM is shifted
base by base until the full sequence has been scored. This scanning
step is performed on the sequences of all reported alleles, so that
each allele is compared with all the positions of a given motif.

Background models represent the nucleotide composition of a
set of sequences (whole genome, all promoter sequences, etc.).
These models are used to estimate the expectancy of a nucleotide
being found. Background models can represent dependency
between nucleotides in sequences (e.g. taking into account the fre-
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quencies of dinucleotides to build a Markov model of order 1 [59]
Box n�3). As background models are used to calculate weight
scores for a binding site (P(S|B)), it is important to select an appro-
priate model for each analysis. Examples of selected background
models are presented in the different study cases matching each
particular biological question.

2.4. Assessment of allele effect on transcription factor binding

In the second step, i.e., evaluating the impact of SNPs, variation-
scan compares the obtained Ws (Ws difference = Ws_Allele1 –
Ws_Alelle2) and the P-value (P-value ratio = P-value_Allele1/P-val
ue_Allele2) of each of the alleles, position by position throughout
the scanning window. To evaluate indels, variation-scan compares
the highest Ws and its corresponding P-value for each sequence of
the reported alleles. When more than two alleles of a variant are
reported, all alleles are compared to all alleles in a pairwise
manner.

2.5. variation-scan performance test

2.5.1. Computing efficiency
The tools variation-info and convert-variation are coded in Perl,

while retrieve-variation-seq and variation-scan are coded in C, to
enable the analysis of large numbers of variants from eukaryotic
genomes in a reasonable time. To further improve performance,
we reduced the data transfer from the hard drive to memory.

variation-scan performance was assessed by randomly selecting
a variant from the 1000 genomes project [1] and a motif from the
RSAT non-redundant motifs collection [8]. The randomly selected
variant was used to create sets with different numbers of repli-
cates, ranging from one thousand to nine millions, to estimate
the relation between running time and the amount of evaluated
variants. The processes were run on a Dell PowerEdge C6145 server
with 2 AMD Opteron(tm) Processor 6386 SE, 16 cores each, Proces-
sor speed of 2.8–3.5 Ghz, RAM 256 Gb and with an operating sys-
tem CentOS 7 (7.6.1810).

2.5.2. Dataset: experimentally-determined regulatory variants in red
blood cells

The regulatory activity of 2,756 red blood cell variants has been
systematically measured using Massively Parallel Reporter Assays
(MPRA) [60]. MPRA is a high-throughput assay in which a library
of putative regulatory elements, each followed by a unique bar-
code, is inserted into a plasmid, then transfected into a cell, and
transcripts are then quantified through the abundance of barcodes.
These variants are known to be in strong linkage disequilibrium
(LD) with 75 variants associated with common traits of this cell
type. Three sliding windows per variant (left, right, and center)
were synthesized, barcoded and used to study the effect of slight
changes in their genomic context. Following methods described
by Ulirsch, et al. [60], for each sequence mRNA/DNA ratio was com-
puted to obtain a quantitative evaluation of the regulatory effect of
a sequence variant.

2.5.3. Evaluation of variation-scan
The variant dataset was used as input for variation-scan; the

variants assessed in the red blood cell assay were annotated with
the Ensembl GRCh37 human genome release, and given as input
to convert-variations followed by retrieve-variation-seq. Since three
sliding windows were used for each variant in the MPRA, the cor-
responding windows were merged before computing a background
model using the create-background-model tool.

According to the original study [60], binding sites for the fol-
lowing TF were enriched in the sequences of interest: GATA1,
KLF1, DHS, TAL1, ETS, FLI1 and AP-1. Therefore, a total of 48 PSSMs
annotated as related to these TF were retrieved from the non-
redundant RSAT motif collection [8], and given as input to
variation-scan.

A negative control set of motifs was created using the RSAT tool
permute-matrix [47]; five pemuted motifs were created for each of
the 48 motifs, generating a collection of 240 control motifs.

For a variant to be reported in variation-scan as positive, we
requested that at least one of the allele sequences was evaluated
as a binding sites with a p-value of at most 10�4 (using the param-
eter -uth pval 1e-4 in the command line), and that the p-value ratio
was greater or equal to ten (a change of one order of magnitude
between the best and the worst allele p-values) (-lth pval_ratio
10).

We compared variation-scan to two other tools previously used
to assess the same set of variants by Ulirsch, et al. [60]: DeepSea
[50] and [37] deltaSVM. In order to avoid personal biases when cal-
ibrating tool parameters, we decided to rely on the published ones
[60]. For this analysis variation-scan was run without thresholds to
identify the impact of the parameters, particularly the threshold on
p-value ratio.

2.6. Case studies

2.6.1. Case study 1: Identification of regulatory variants in the
‘‘Platinum” genomes haplotypes

The set of high-confidence variants from the two CEU (Northern
Europeans from Utah) human Platinum Genomes NA12877 and
NA12878 [23] were downloaded through the Amazon Web Service
(AWS) Command Line Interface from the Illumina Platinum Gen-
omes AWS S3 bucket (https://github.com/Illumina/Plat-
inumGenomes). The downloaded VCF files contained phasing
information of each CEU individual haplotype configuration. The
genome version used was GRCh37.

We selected SNPs intersecting with the annotated DNAseI-seq
clustered peaks V3 from the ENCODE project [4]. The VCF file with
the selected SNPs was processed using convert-variations with the
option phased and then the haplotype sequences were recon-
structed with retrieve-variation-seq.

For a haplotype SNP set or single position variants to be
reported in variation-scan, we requested that at least one of the
sequences was evaluated as a binding site with a p-value of at most
10�4 (-uth pval 1e-4) and that the p-value ratio between the two
alleles was greater or equal to 100 (a change of two orders of mag-
nitude between the best and the worst alleles p-values) (-lth
pval_ratio 100). In addition, we require a change of sign between
the best and worst score as an additional filter.

We annotated the predicted disrupted TFBS with the TF ChIP-
seq non-redundant peak collection and with the Cis-Regulatory
Modules (CRM) regions from ReMap [10] using bedtools intersect
version 2.27 [49]. We also calculated the enrichment for annota-
tions in the provenance sequence segments of the predicted haplo-
types sites.

2.6.2. Case study 2: prediction of regulatory variants associated with
susceptibility to Mycobacterium tuberculosis infection

We collected SNPs associated with the phenotypic trait ‘‘suscep-
tibility to Mycobacterium tuberculosis infection measurement” (dis-
ease ID EFO_0008407) from the 1.0.2 version of the GWAS
catalog [40] (https://www.ebi.ac.uk/gwas/). This query returned
one study [58] with 67 distinct variants, of which 48 had a valid
reference SNP identifier (rsID) and could be further used (denoted
hereafter as disease-associated SNPs, or DA-SNPs). To predict the
TF binding sites putatively affected by these selected SNPs, we
designed an approach combining Variation-tools with different
external resources. We further collected from Ensembl REST inter-
face (http://rest.ensembl.org/) 564 SNPs in linkage disequilibrium

https://github.com/Illumina/PlatinumGenomes
https://github.com/Illumina/PlatinumGenomes
https://www.ebi.ac.uk/gwas/
http://rest.ensembl.org/
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(LD-SNPs) in the European population [62], with a threshold on the
regression coefficient (r2 � 0.8) and a maximal distance of 200 bp.

Annotations (chromosomal location, type of genomic region) of
the resulting 612 SNPs (48 DA + 564 LD) were collected from
Ensembl BioMart [22,21]. We then restricted the selection to SNPs
in non-coding regions, resulting in a set of 572 SNPs of interest
(SOIs) for the detection of regulatory variants. Using SNPs in LD,
we determined LD-Block regions. These were then annotated based
on overlaps with ChIP-seq peaks collected from the ReMap data-
base [10]. We also calculated enrichment for disease annotations
using the R XGR package [24].

Finally, we used retrieve-variation-seq to retrieve the sequence
variants around each SOI, and predicted the impact of the variation
on TF binding for each motif of the JASPAR non-redundant RSAT
motif collection [8] using variation-scan, with the thresholds of
1e-4 on the p-value and 100 on the p-value ratio.
2.6.3. Case study 3: Assessment of the regulatory effect of GWAS
reported variants in promoters with enhancer function

The STARR-seq assay [2] is in its principle similar to the MPRA,
and helps identify self-transcribing active regulatory regions that
have enhancer potential. Using this approach Dao et al. [17], anal-
ysed the enhancer potential of annotated RefSeq promoters [48]. In
the two cell lines K562 and HELA, they identified 632 and 493 pro-
moters with enhancer potential (ePromoters), respectively. More-
over, the authors identified enrichment of eQTL variants reported
by GTEx [25].

To identify ePromoters variants that could be affecting TF bind-
ing, we retrieved the GWAS catalog version 1.0 (downloaded on
7/01/19) [40]. Using bedtools overlap version 2.26.0 [49], we com-
puted the overlap between SNPs and the ePromoter coordinates
reported in [17]. PSSMs representing TF enriched in ePromoters
were also obtained from [17], corresponding to SMRC1, JUN, FOS,
ATF:MAF:NEF2, YY1, ETS family, Creb and USF1/2.

Using the selected GWAS variants that fall within ePromoters
and the TF motifs enriched in these regions, we applied variation-
scan to assess the potential regulatory effect of these variants.
variation-scan was run with the parameters – lth w_diff 1 – lth
pval_ratio 10, with a background model built using create-
background with all RefSeq promoter sequences. In order to filtrate
variants with the highest putative regulatory disruption, we fur-
ther selected variants that showed a change of sign in the weight
score between alleles.
2.6.4. Case study 4: identification of regulatory variants affecting VRN1
binding in barley

The latest version of Hordeum vulgare (barley) reference gen-
ome [42] and a panel of mapped genetic variants were imported
from Ensembl Genomes release 42 [34] and installed in the RSAT
Plants server (http://plants.rsat.eu). We obtained experimentally
determined binding sites (ChIP-seq) for VRN1 from [19]. Since
these peaks were originally positioned within contigs of the 2012
genome assembly [14], they had to be matched to the correspond-
ing regions of the current assembly with BLAST + v2.9.0 (blastn)
local alignments against the repeat-masked genome sequence
(perfect matches) [7]. Using bedtools overlap version 2.26.0 [49],
we selected variants falling within the VRN1 reported binding
peaks. The selected variants in VCF format were then processed
using convert-variations and retrieve-variation-seq to obtain the
sequences with the alternative alleles.

The VRN1 DNA motif used to scan the variants was obtained
from the footprintDB plant collection [16] version: 2018-06
(http://floresta.eead.csic.es/footprintdb/index.php?motif=
AY750993:VRN1:EEADannot). variation-scan was used with a pre-
computed background Markov model (order 1) for barley to assess
the effect of variants in TF binding, with the following parameters:
– lth score 1 – lth w_diff 1 – lth pval_ratio 10 – uth pval 1e-3.

2.7. Availability

Variation-tools are available on the web (Metazoa: http://meta-
zoa.rsat.eu/, Plants: http://plants.rsat.eu/, Teaching: http://teach-
ing.rsat.eu/). The tools can be also installed for command-line
usage with the RSAT suite (http://download.rsat.eu/).

The code and material to reproduce the results presented in the
article can be accessed through GitHub (https://github.com/RSAT-
doc/supp-material-publications.git).
3. Results

The Variation-tools provide complementary programs enabling
the retrieval of variants (variation-info) and of their surrounding
sequences (retrieve-variation-seq), as well as interconversion
between file formats (convert-variation). The main predictive pro-
gram is variation-scan, which can be used with any set of variants
provided by the user (in VCF or GVF formats) or annotated in
Ensembl (from a list of rsIDs or a bed file to identify overlapping
variants in genome coordinates), with any set of motifs selected
from the collections available in RSAT, or provided by the user.

3.1. variation-scan accurately assesses the effect of experimentally
validated regulatory variants

The original version of variation-scan [45] required approxi-
mately five hours to assess the allele effect of nine millions vari-
ants. The novel version [47] significantly reduces the processing
time to about one hour (Supplementary Fig. 3).

To evaluate the performance of variation-scan, we used an
experimentally validated regulatory variant set obtained from a
MPRA experiment [60]. For all of the assessed allele pairs, we com-
pared the weight score differences computed with variation-scan
with the mRNA/DNA ratio of the MPRA (see methods). As shown
in Supplementary Fig. 4A, we are able to recover only 9.37% of
the experimentally validated variants with variation-scan, as we
requested at least one of the alleles to have a binding site of high
confidence (p-value � 10�4). Focusing on the variants reported as
positive in the MPRA data set, we observed a weak correlation
between the weight difference and the MPRA mRNA/DNA ratio in
positive variants. However, this correlation is not significant, as
MPRA values do not scale with the variation-scan weight differ-
ences. Nevertheless, all variants show a p-value ratio indicative
of allele binding effects, showing that variation-scan gives accurate
measurements of the impact of regulatory variants (Fig. 2A).

With the proposed thresholds, we can confidently reject 96.35%
of MPRA negative sequences, which could be improved using more
restrictive parameter, with a concomitant reduction in true posi-
tives. Noteworthy, as any high-throughput assay, MPRA has its
limitations [51] and sequencing biases could increase the number
of false negatives.

We performed a negative control, consisting of 240 permuted
matrices (five permuted versions of the 48 motifs). With this col-
lection, it was still possible to recover a group of variants, but it
only represented 31.2% of the MPRA positive variants (Supplemen-
tary Fig. 4B).

We compared the performance of variation-scan to two other
tools that had been previously used by Ulirsch, et al [60] to assess
the same set of MPRA variants: DeepSea [68] and deltaSVM [37].
We decided to use the same parameters in order to avoid personal
biases when calibrating the tools. Therefore, training weights for
DNAse I hypersensitivity sites were used in the deltaSVM analysis.

http://plants.rsat.eu
http://floresta.eead.csic.es/footprintdb/index.php%3fmotif%3dAY750993%3aVRN1%3aEEADannot
http://floresta.eead.csic.es/footprintdb/index.php%3fmotif%3dAY750993%3aVRN1%3aEEADannot
http://metazoa.rsat.eu/
http://metazoa.rsat.eu/
http://plants.rsat.eu/
http://teaching.rsat.eu/
http://teaching.rsat.eu/
http://download.rsat.eu/
https://github.com/RSAT-doc/supp-material-publications.git
https://github.com/RSAT-doc/supp-material-publications.git
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Fig. 2. Identification of experimentally validated regulatory variants using variation-scan. A) Correlation of the Massively Parallel Reporter Assays (MPRA) p-value of the
mRNA/DNA ratio of positive variants and the variation-scanweight difference for the MPRA variants with significant change. B) Receiver Operating Characteristic (ROC) curve
comparing the performance when aiming to classify MPRA experimentally analyzed variants using variation-scan (turquoise), DeepSea (purple), deltaSVM (green), and a
negative control which consists of permuted motifs scored with variation-scan (red). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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As for DeepSea, the web implementation of the tool was used, with
the metric Functional Significance Score.

Tools were compared based on ROC curves (Fig. 2B), we addi-
tionally ran variation-scan using a set of permuted matrices as neg-
ative control (Fig. 2B, red line). The three tools show very similar
sensitivity vs specificity at the beginning of the curves, but only
variation-scan and DeepSea further remain separated from the neg-
ative control. As expected DeepSea performs slightly better than
variation-scan at the beginning of the curve, nevertheless this tool
requires training using epigenetic data, while variation-scan
requires only a motif and a set of variants.

3.2. Variation-tools case studies

To illustrate the diverse applications of Variation-tools to tackle
various biological questions, we designed four different case
studies:

1. Impact of regulatory variants in the same haplotype on TF bind-
ing sites.

2. Identification of the regulatory potential of variants reported in
GWAS.

3. Assessment of the regulatory potential of GWAS variants within
experimentally determined regulatory regions.

4. Determination of regulatory variants within TF binding regions
identified using ChIP-seq [19].

3.2.1. Genome-wide haplotype variant information can be used to
identify sets of regulatory variants affecting the same TFBS

The lowering costs in sequencing have made it possible to
obtain whole genome sequences of more individuals, opening the
possibility of knowing, not only the variants of a genome, but also
the haplotypes, and determining which variants are passed linked
within the same chromosome. This enables the assessment of the
regulatory effects of sets of variants within the same haplotype
in a given TFBS.

Using the high-confidence SNPs from two ‘‘Platinum” Genomes
[23], we determined haplotype variants that are likely to affect one
TFBS. We selected variants 30bps apart, located in open chromatin,
to be analysed with variation-scan using the non-redundant motif
collection at RSAT [8]. We detected 7,406 haplotype sites with at
least two heterozygous variants and a probable effect in binding
of 361 TFs. Overall the number of heterozygous variants within a
haplotype increases the measured weight difference. This is
expected as more changes in the binding sites are more likely to
change TF affinity (Fig. 3A).

To assess the biological relevance of all the putative disrupted
TFBS predictions, we annotated 7,485 predicted haplotypes sites
containing two or more variants with at least one heterozygous
variant and 15,396 predicted sites containing a SNP (singletons)
with the TF ChIP-seq peaks and the Cis-Regulatory Modules
(CRM) regions from ReMap [10]. We found that almost all the pre-
dicted disrupted TFBS (~85%) contain a CRM or peak annotation or
both (Fig. 3B). Interestingly, we found enrichment of CRM and peak
annotations in the provenance sequence segments of the 7,485
predicted haplotypes sites compared to the provenance sequence
segments of the single variants (Fisher exact test, p-value < 2.2e-
16).

One of these annotated haplotypes is composed of the minor
alleles of two SNPs (rs2732317 and rs2732318), where we
observed a potential regulatory effect likely affecting three binding
motifs, for EHF/ELF2, ETV4/ELK1/ETS1/FLI1/ELK4/ETS2/FEV/GABP1,
and ELK3/ELF1/ERG/GABPA (Fig. 3C).
3.2.2. Genetic variants associated with Mycobacterium tuberculosis
infection show potential regulatory effects

The second case study illustrates a knowledge-free use of
Variation-tools to identify regulatory variants from GWAS studies
for a user-specified disease, without prior indication about the
potentially involved transcription factors or binding motifs. The
approach is based on the prediction of regulatory variants with
RSAT Variation-tools, narrowed down by selecting the regulatory
SNPs that overlap ChIP-seq peaks in ReMap [10], in order to iden-
tify convergent indications for a potential impact of the variants on
the binding of a TF.



Fig. 3. Haplotype analysis in high-quality human genomes. A) The number of heterozygous variants (X-axis) within the same putative binding site tend to have a greater
impact on the TF binding probability. This is expected as the increase of weight difference observed on the violin plot corresponds to the expected cumulated impact of
variations affecting different positions of the same binding site. B) Number of predicted disrupted Transcription Factor Binding Sites (TFBSs) with Cis-Regulatory Modules
(CRMs) and TF ChIP-seq peak annotation (blue), with only peak annotation (yellow), and non-annotated predictions (grey). C) University of California Santa Cruz (UCSC)
browser [48] screen shot, showing a locus encompassing two SNPs that compose an heterozygous haplotype in one of the Northern Europeans from Utah (CEU) individuals.
The figure shows the reference genome haplotype. The variants are located in the FUT10 promoter (top). variation-scan predicts an effect in three motifs that represent
binding sites for GABPA, ETS1 and ELF2, factors that have been proven to have binding sites in this region by the ENCODE project. The variant rs2732317 has been associated
with effects in gene expression by the GTEx project. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Interestingly, the 572 SNPs of interest (SOIs, see methods) show
a significant enrichment for diseases related to respiratory func-
tions (lung carcinoma, respiratory neoplasm, squamous cell carci-
noma, lung disease), as well as for schizophrenia (Fig. 4),
confirming the relevance of the collection of SNPs.

The scanning of the SOIs with the 579 matrices of Jaspar core
non-redundant Vertebrate collection predicted 107 modifications
of TF binding, covering 66 distinct SNPs and 181 distinct motifs.
There are 4,847 overlaps between the 80 million ChIP-seq peaks
of the ReMap catalog and 263 of the 572 initial SOIs, but only
two of them show a match between the TF of the ChIP-seq peak
and that corresponding to the motif returned by variation-scan:
CEBPB for reference SNP rs3131071 and ELF1 for rs3132397.
Noticeably, CEBPB has been reported as the main regulator for
genes differentially expressed between tuberculosis patients and
control cases [39]. CEBPB has also been associated with the patho-
Fig. 4. Enrichment of the set of SNPs of Interest (SOIs) for diseases. The SNPs of interest in
tuberculosis infection and the SNPs in linkage disequilibrium with those. The genes asso
genesis of tuberculosis. This factor is involved in the differentiation
and activation of macrophages and in the regulation of the
immune and inflammatory response. It also plays a crucial role
in the stimulation of IgG immune compounds [39]. In summary,
the convergence between ChIP-seq and motif scanning results
enabled the identification of two promising candidates among
the 66 candidate regulatory SNPs. The same approach can be
applied to other association studies in order to predict regulatory
variations potentially involved in user-specified diseases.
3.2.3. Assessment of the regulatory effect of GWAS reported variants in
promoters with enhancer function

ePromoters are regulatory regions with dual functions: as pro-
moters, they regulate the gene downstream, but they also show
enhancer potential according to [17]. ePromoters have been
described to be enriched for eQTLs, suggesting that their function
cludes SNPs reported by a GWAS to be associated with resistance to Mycobacterium
ciated with these SNPs were compared to each term of a catalogue of diseases.
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could be affected by genetic variants. We thus set out to investigate
if GWAS reported variants could be affecting TF binding in
ePromoters.

We identified five and twelve GWAS reported variants falling
within the reported coordinates of ePromoters corresponding to
the human cell lines HELA and K562, respectively. Using
variation-scan with the motifs of TF reported as enriched in ePro-
moters, we were able to detect two variants (rs3771180,
rs3822259) affecting two TF binding motifs in HELA (MAF::NFE2,
FLI1/FEV/ETS2/ELK4/ELK4/GABP1/Gabpa), and two variants
(rs147997200, rs62229372) affecting three binding motifs in
K562 (Creb3l2, Atf3/MAFG::NFE2L1/MAFG/NF2L1, FOS::JUN).

Noteworthy, in HELA ePromoters, we found the SNP rs3771180,
which is also described as an eQTL in the whole blood dataset by
the GTEx project. This variant has been associated with asthma
and is upstream the Interleukin Receptor 1 gene, which is consis-
tent with ePromoters related to inflammatory response in HELA
[17].

3.2.4. Population genetic variations in barley can potentially affect
VRN1 binding

Variation in traits in crops can be due to changes in TF binding
that likely affect gene regulation. As a proof of concept that
Variation-tools can be used for this purpose, we set out to identify
reported variants in Hordeum vulgare (barley) that can putatively
affect binding of VRN1, a TF involved in vernalization response.
We focused this analysis on VRN1 ChIP-seq reported regions
[19], selecting only variants that overlapped them (n = 1604).

Using the VRN1 motif annotated in footprintDB and the barley
variants annotated in Ensembl Plants, we identified a total of thir-
teen variants likely to affect VRN1 binding. Of these, two are prox-
imal to genes MLOC_73196 and MLOC_79452, which belong to a
set of 38 genes known to change their expression level upon
VRN1 binding in RNA-seq experiments [19].

3.3. Limitations and parameter selection

One issue arising from the analysis of big data sets is the num-
ber of false positives [44], due to the weak information content of
TF binding motifs relative to genome sizes. This is one of the lim-
itations of any bioinformatics approach to predict TF binding sites,
and thus also affects the performances of variation-scan (Supple-
mentary Fig. 4A and B).

Taking advantage of specific biological insights (e.g. identifica-
tion of relevant TF, reduction of genomic regions using functional
genomic information) can significantly improve results, reducing
the number of false positives [9,55]. In this respect, Case Studies
3 and 4 focused on the analysis on TF known to bind on the regions
of interest, which enabled us to consistently assess the perfor-
mance of the tool in the evaluation set, and further helped us to
identify biologically relevant regulatory variants, affecting ePro-
moters function in Case Study 3, or affecting VRN1 binding in bar-
ley in Case Study 4. Regarding Case Study 2, the usage of ChIP-seq
information enabled the identification of potentially relevant vari-
ants related to tuberculosis.

Furthermore, the selection of adequate thresholds to select vari-
ants with variation-scan has an impact on reducing the number of
false positives:

� P-value (-uth pval): This option refers to the upper threshold set
on the p-value; this criteria has to be valid for the binding site
prediction associated to at least one of the alleles; this means
that at least one of the alleles allows for the prediction of a reli-
able binding site.
� Weight difference (-w_diff): This option determines minimal
allowed weight differences between the predicted binding sites
of two alleles (see methods for a description of how the weight
difference is calculated).

� P-value ratio (-lth pval_ratio): This option determines the lower
threshold for the p-value ratio between the predicted binding
sites of two alleles (see methods for a description of how the
weight difference is calculated).

Depending on the biological question, users should decide to
use more or less restrictive thresholds. As shown in Case Studies
3 and 4, when the biological hypothesis is well defined, lower
thresholds return manageable numbers of predictions with inter-
esting biological insights. For more general biological questions,
as in Case Studies 1 and 2, using a larger number of data, we rec-
ommend to select more stringent thresholds to reduce the number
of false positives, and thereby focus the analysis on the best
predictions.

Regarding the selection of a particular set of motifs, there are
multiple databases installed within RSAT, which provide easy
access to several reference collections (i.e. JASPAR, HOCOMOCO,
etc.). The selection will depend on the biological question. For
some TF and TF families there are structural descriptions of the
protein-DNA interfaces. In some cases these structures can be used
to map TF residues to particular bases within the DNAmotif. Motifs
from 3D-footprint [15], which are part of the footprintDB collection
(http://floresta.eead.csic.es/footprintdb), allow users to further
investigate the effect of variants in the light of structural
information.
4. Discussion

The lowering costs of sequencing technologies has facilitated
the identification of genetic variants associated with traits and dis-
eases in humans and other species [64]. For this reason, the iden-
tification of variants affecting TF binding sites has become
mainstream [3,53,32], calling for efficient computational
approaches to analyse large sets of variants [18].

The case studies presented here demonstrate the application of
RSAT Variation-tools to a diverse selection of real-world problems.
Current genotype information facilitates the characterization of
haplotypes, but this requires tools designed to take advantage of
this information [13,52,11]. In Case Study 1, we show how the tool
convert-variations facilitates the usage of this information, by
enabling users to analyse the impact of combinations of several
variants located within a 30 bp window of a chromosome. Indeed,
a specific combination of variations in the same haplotype may
have a synergic impact on a given TF binding site, whilst the anal-
ysis of individual variations may fail to reveal some actual regula-
tory impact. In the absence of information enabling TF
preselection, we decided to use the complete collection of motifs.
Nevertheless, by requiring more than one SNP affecting one TF
binding site, we were able to identify haplotypes with potential
regulatory effects. In the advent of new genome-wide characteriza-
tion in population studies, this function will facilitate the integra-
tion of phasing information in the search of regulatory variants.

The identification of causal regulatory variants is a real chal-
lenge, for several reasons: (i) GWAS, which typically cover one mil-
lion SNPs (‘‘tag SNPs”), only represent a small fraction of the actual
variants (150 millions currently known); (ii) the information con-
tent of a TF binding motif is relatively small, so that testing the
potential impact of hundreds – or thousands – of candidate SNPs
on the binding of hundreds of TF will unavoidably return an impor-

http://floresta.eead.csic.es/footprintdb
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tant number of false positives. A strategy to circumvent this intrin-
sic limitation is to take into account TF binding regions evidenced
by ChIP-seq peak experiments, in order to prioritize the predictions
of regulatory variants. Case Study 2 shows that this approach ranks
first SNPs highly relevant for susceptibility toMycobacterium tuber-
culosis infection. It has to be noted that the absence of ChIP-seq
peak does not preclude a predicted regulatory variant from being
valid. Indeed, ChIP-seq data are only available for a subset of tran-
scription factors, and only indicate the TF binding locations for the
specific cell types or tissues in which the experiments have been
performed, which may differ from those involved in the aetiology
of the considered disease. The consistency between ChIP-seq peaks
and predicted regulatory variants should thus be considered as a
way to identify the most promising candidates rather than as a
strict requirement to consider a prediction as valid.

The third case study focuses on ePromoters, defined as are reg-
ulatory regions with the capacity to act both as promoters and as
enhancers, and thus the potential to affect more than one gene.
Hence, regulatory variants associated with human diseases in
these loci can have complex effects on gene regulation. We were
able to identify four variants affecting TF binding within ePromot-
ers in HELA and K562, ePromoters function has been linked to
quick response gene expression related to inflammation and stress
[46]. We were able to identify four SNPs (rs3771180, rs3822259,
rs147997200 and rs62229372) putatively affecting TF binding,
which are associated with traits related to inflammation and stress,
supporting the relevance of ePromoters in inflammatory response.

The fourth case study takes published barley data and enlights
natural variations in two regulatory regions bound by transcription
factor VRN1 that are predicted to have an effect on the expression
of two downstream genes. One of them is annotated as an amino
acid permease (MLOC_73196), but the other one (MLOC_79452)
is a protein-coding gene of unknown function. Further work would
be required to confirm whether these natural variants display rel-
evant phenotypes.

Finally, while Variation-tools provide a flexible framework to
assess the effect of variants in TF gene regulation, there are other
factors affecting regulatory mechanisms that may be taken into
account, such as i) DNA accessibility [33], ii) DNA shape [66], iii)
DNA methylation (Xuan [65] and iv) TF protein availability [67].
5. Conclusions

Variation-tools enables the prediction of the effect of sequence
variants on TF binding. In addition to reasonable computing time,
the focus is put on usability and high flexibility: annotated variants
can be retrieved from specific genomic loci, as well as from per-
sonal collections of variants, motifs (provided as PSSMs) can be
chosen from the collections available in RSAT (JASPAR, HOCO-
MOCO, CisBP, etc.), as well as from user-provided PSSM sets. The
tools supports various organisms in selected RSAT servers: cur-
rently Metazoa, Plants and Teaching. In addition to the web inter-
face, Variation-tools can also be used on the command line to
facilitate analysis of custom data sets. Variation-tools can be used
in combination with external databases, as exemplified with the
study of GWAS data. Finally, as part of the long-lasting RSAT suite,
Variation-tools programs are continuously maintained and
updated.
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