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Abstract  

Although there is evidence of a significant rise of neuroendocrine tumours (NETs) incidence, 

current treatments are largely insufficient due to somewhat poor knowledge of these tumours. 

Despite many efforts achieved to expose driver oncogene mutations in NETs, the genetic 

landscape of NETs is characterized by relatively few mutations and chromosomal aberrations 

per tumour compared with other tumour types. In addition, NETs display few actionable 

mutations providing compelling rationale for targeted therapies. Recent works aiming at 

characterizing currently used NETs in vitro models at the genomic level raised concerns on 

their reliability as bona fide tools to study NETs biology. However, the lack of actionable 

mutation in NETs implies that sole use of genomic is not sufficient to describe these models 

and establish appropriate therapeutic strategies. Several kinases and kinase-involving 

signalling pathways have been demonstrated as abnormally regulated in NETs. Yet, kinases 

have only been investigated regardless of their involvement in large intracellular signalling 

networks. In order to assess the validity of in vitro NETs models to study NETs biology, 

“next-generation” high throughput functional technologies based on “kinome-wide activity” 

will demonstrate the similarities between signalling pathways in NETs models and patients’ 

samples. These approaches will significantly assist in identifying actionable alterations in 

NETs signalling pathways and guide patient stratification into early-phase clinical trials based 

on kinase inhibition targeted therapies. 

Keywords: neuroendocrine tumours cell lines, signalling pathways, kinases, proteomics 
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Résumé 

Malgré une augmentation significative de l'incidence des tumeurs neuroendocrines (TNE), les 

traitements actuels sont largement insatisfaisants en raison d'une connaissance insuffisante de 

ces tumeurs. Malgré les nombreux efforts déployés pour identifier des mutations 

oncogéniques dans les TNE, le profil génétique des TNE est caractérisé par relativement peu 

de mutations et aberrations chromosomiques en comparaison avec d'autres types de tumeurs. 

En outre, les TNE possèdent peu de mutations conductrices justifiant de manière 

convaincante des stratégies de thérapies ciblées. Des travaux récents visant à caractériser les 

modèles in vitro de TNE actuellement utilisés au niveau génomique ont émis des doutes quant 

à leur fiabilité pour étudier la biologie des TNE. Cependant, l’absence de mutation 

conductrice dans les TNE signifie que la génomique à elle seule ne permet pas de caractériser 

les modèles d’étude de TNE ni d’établir des stratégies thérapeutiques appropriées. Plusieurs 

kinases et voies de signalisation ont été démontrées comme anormalement régulées dans les 

TNE. Cependant, ces travaux n’ont pas pris en compte l’implication de ces kinases dans de 

grands réseaux de signalisation intracellulaire. Afin d’évaluer la validité des modèles de TNE 

in vitro pour étudier la biologie des TNE, des technologies fonctionnelles à haut débit dites 

«de nouvelle génération», basées sur l’activité du « kinome », permettront de révéler les 

similitudes entre les voies de signalisation des modèles de TNE et les échantillons de patients. 

Ces approches aideront de manière significative à identifier des perturbations dans les voies 

de signalisation dans les TNE et guideront la stratification des patients pour développer des 

essais cliniques basés sur une pharmacologie ciblée des kinases. 

 

Mots clés: lignées cellulaires de tumeurs neuroendocrine, voies de signalisation, kinases, 

protéomique 
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1. Introduction 

High throughput genomics technologies, such as next-generation sequencing (NGS), allowed 

the identification of actionable mutations in tumours, to which targeted therapies can be 

developed with the potential to improve therapeutic index aiming at targeting the tumour 

versus normal tissues in contrast to conventional cytotoxic agents. Increasingly, NGS of 

patient tumour samples guides patient stratification into clinical trials, such that only the 

patients bearing specific molecular alterations will receive the corresponding targeted therapy. 

In parallel, extensive use of well-characterized in vitro preclinical models (e.g. cell lines) 

improved significantly our knowledge of tumour biology. Despite initial success and clinical 

deployment of this concept, several limitations have emerged [1, 2], such as the lack of driver 

mutations in a majority of tumours that are sequenced in the clinic and the differences 

between in vitro models and original tumours. These obstacles are particularly accurate in rare 

tumours or tumours with few, if any, actionable mutations, like neuroendocrine tumours, 

representing a significant unmet challenge in precision oncology. This highlights the need to 

bring forward cost-effective complementary approaches that will assist in identifying 

activated pathways that can be targeted therapeutically [2].  

 

2. Genomic pitfalls and caveats of in vitro neuroendocrine tumours models 

Neuroendocrine tumours (NETs) are neoplasms originating in hormone producing cells of the 

endocrine system. NETs can exhibit functional and non-functional symptoms and represent a 

heterogeneous group of neoplasm. Based on pathological analysis, NETs are generally 

classified into well-differentiated low-to-intermediate grade (grade 1 and 2) versus aggressive 

poorly differentiated tumours (grade 3, also named neuroendocrine carcinomas or NEC). 

Alike more frequent type of tumours, the understanding of NETs biology depends essentially 

on advances in techniques such as tumour tissue and cell culture [3]. Patient tumour-derived 
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cell lines have been widely used to study the molecular mechanisms of tumours, their 

response to therapy and thus have considerably contributed to improve cancer research over 

recent decades. Cell lines, as disease models, present several outstanding advantages, such as 

their ease of manipulation and low cost, facilitating also their use for drug screening (e.g. 

concomitant study of multiple cell lines and multiple combinations of drugs). When a model 

system is used, it is essential to consider the similarities and differences between the model 

and reality, so that the model can be validly applied. There are also important limitations, 

such as the occurrence of changes/transformations in the original cell required for in vitro 

growth or differences from the original tumour microenvironment (deficit in vascularization 

and hypoxia). In addition, cell lines do not exactly reflect their tumour of origin and can differ 

substantially in terms of genomic alterations, protein expression and therapeutic sensitivity [4-

8]. These biological differences between in vivo/in vitro tumour cell lines and human 

neoplasms must be considered when experimental systems are used as models for human 

cancer [9]. 

The establishment of NETs cell lines has proved to be difficult. This has been attributed, at 

least in part, to the low proliferation rate of NETs [10]. Despite these challenges, several cell 

lines of human and rodent origins have been established from small intestinal and pancreatic 

NETs [11]. The most commonly used human neuroendocrine cell lines origin include the 

pancreatic cell lines BON-1 [12] and QGP-1 [13], as well as the small intestinal cell lines 

GOT1 [14], P-STS, L-STS and H-STS [15], the neuroendocrine carcinoma cell lines NEC-

DUE1, NEC-DUE2 [16] and N-TAK1 [17] and carcinoid lung cell lines, such as H727. As it 

stands, authentic NETs cell lines are rare, their genomic and mutational features poorly 

described and comprehensive information regarding their therapeutic sensitivity is 

incomplete. Recently, efforts have been made to characterize pancreatic NET-derived cell 

lines BON-1 and QGP-1 by exome sequencing and genome-wide copy number analysis. 
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These studies have raised questions regarding their relevance as models due to their 

deficiency in pancreatic NET-associated mutations [18, 19]. In addition, several NET-derived 

cell lines were recently comprehensively characterized, including evaluation of their 

neuroendocrine phenotype, genomic alterations and therapeutic sensitivity profiles [20]. This 

work found that neuroendocrine phenotype was preserved in only a subset of these NETs cell 

lines and that they harbour additional genomic alterations than those depicted for NETs. One 

major concern is the origin of NETs cell lines and whether they were derived from well-

differentiated neuroendocrine tumours or poorly differentiated neuroendocrine carcinomas. It 

is straightforwardly questionable that available NET cell lines were established from more 

aggressive tumours than expected and thus should be classified as NEC. The occurrence of 

TP53 mutations in several NET cell lines (P-STS, BON-1 and QGP-1) further strengthens this 

concern [19, 20]. The original publications on NETs cell lines do not contain sufficient data to 

determine the grade of the tumours from which cell lines were derived. As a consequence, 

these observations emphasises the need to be cautious when drawing conclusions from studies 

performed on NET cell lines. 

In addition to traditionally obtained patient-derived cell lines, our group recently developed a 

new method for culturing primary pancreatic NETs cells using bovine extracellular matrix 

[21, 22]. This culturing method established on 30 pancreatic NETs allowed maintaining cells 

with neuroendocrine features and assessing their genomic mutations and drug responses [21, 

22]. Primary cultures of pancreatic NET, as well as NEC models, have also been achieved by 

other laboratories [16, 23-25] and can be considered as appropriate models to use. 

The common objective of cancer researchers and clinicians is to better match patients with 

therapies. So far, NGS-based matching has been the most advanced technology applied to this 

problem. Cancers accumulate genetic alterations, but we may be approaching a running time 

limit regarding detection these driver oncogenes [26]. Indeed, multiple studies revealed that 
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most malignancies lack actionable mutations or harbour mutations either in non-druggable 

oncogenes (e.g. RAS, MYC family proteins) or in genes of poorly characterized therapeutic 

value [27-30]. Moreover, even the best achievements demonstrate that identifying well-

characterized mutations in an individual patient may generate transient, if any, benefit from 

single-agent targeted therapy. For instance, while mutation-directed therapy often achieves a 

remarkable initial response, this is almost inevitably followed by relapse and emergence of 

drug resistance [31, 32]. Finally, widespread analysis of hundreds of cell lines and compounds 

shows that, with some remarkable exceptions (e.g. BRAF, HER2/ERBB2, EGFR inhibitors), 

mutations are poor predictor of drug sensitivity [33, 34].  

Therapeutic management of NETs faces multiple challenges due to tumour heterogeneity and 

relatively poor knowledge of their biology. The therapeutic route for NETs has recently 

rapidly evolved and the increasing number of treatment options for patients unveiled matters 

such as timing, sequencing and selection of therapies as core priorities [35]. Since traditional 

treatments usually induce tumour stabilization for limited length of time, there is a need to 

develop novel approaches to overcome treatment-related resistance in patients with advanced 

and progressive NETs. With this goal in mind, many efforts were recently put together in 

order to expose driver oncogene mutations in NETs [36, 37]. However, despite growing 

evidences that poorly differentiated NETs may harbour mutations commonly observed in 

pancreatic or colorectal adenocarcinomas [38-42], the genetic landscape of NETs is 

characterized by relatively few mutations and chromosomal aberrations per tumour compared 

with other tumour types [36]. In addition, whole-genome integrated analysis confirmed 

previous observations that NETs display few, if any, actionable mutations providing 

compelling rationale for targeted therapies [36]. As such, only a small proportion of mutations 

identified from whole-genome sequencing have functional data suggesting that they should be 

targeted with drugs [11, 36]. The overwhelming complexity of the cancer genome suggests 
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we are in the earliest phases of interpreting such results and translating that data into 

knowledge that is useful to clinicians. Thus, new transversal technologies are needed to 

hasten the era of precision medicine in cancer. 

 

3. Kinome study to the rescue 

In recent years, much attention has focused on identifying key cellular signal transduction 

pathways that are abnormally regulated in the cancer cell. Such pathways regulate cancer-

relevant cellular processes, such as cell growth, cell division and cell survival. Typically, 

these pathways involve cascades of cytoplasmic kinases that ultimately impact on gene 

transcription. Recent advances in our understanding of the fundamental molecular 

mechanisms underlying cancer cell signalling have elucidated a crucial role for kinases in the 

carcinogenesis and metastases of various types of cancer [43, 44]. Since most protein kinases 

promote cell proliferation, survival and migration, when overexpressed or activated by 

unlicensed inputs (e.g. by constitutively active mutations or permanently activated by 

abnormally upstream signalling partners), they are also directly associated with tumorigenesis 

and/or tumour progression. Genome-wide studies of kinase mutations have revealed that 

genetically inherited variants of specific kinases are causally associated with cancer initiation, 

promotion, progression as well as recurrence [45-47]. Over the last decades, multiple human 

malignancies have been identified to be associated with modulation and dysfunction of 

protein and lipid kinases and deactivated phosphatases on account of chromosomal 

reshuffling and genetic mutations. Deregulation of kinases has also been demonstrated in 

many human disorders including immune, neurological and infectious diseases. However, 

there is probably no greater clinical niche for kinases as key targets for developing drugs than 

in cancer therapy. Kinome, the complete set of protein kinases encoded in its genome, has 

become an attractive target for the treatment of numerous types of cancer. Single and multiple 
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kinase inhibitors, both synthetic and natural molecules, are now targeted therapeutic strategies 

for treatment of human malignancies. As such, there is keen interest in elucidating the specific 

pathways altered in a given tumour in order to identify relevant targets and help predict 

treatment responses. 

Several signalling pathways involving multiple kinases regulate NETs tumorigenesis and 

tumour progression (for extensive reviews, see [48] and [49]). To briefly summarize, 

pathways such as PI3K/Akt/mTor, Ras/MAPK and Notch have been shown as deregulated 

NETs. In particular, the PI3K/AKT/mTor pathway has been highlighted as a key player in the 

development of NETs, particularly from pancreas [50, 51]. In this context, the mTor inhibitor 

Everolimus has been largely studied in NETs and approved by both Food and Drug Agency 

(FDA) and European Medical Agency (EMA) for patients with advanced well/moderately 

differentiated pancreatic NETs. However, comprehensive clinical studies relying on 

Everolimus did not allow observing any improvement of overall survival of NETs patients 

despite a significant increase in progression free survival [52-55]. This relative lack of 

efficiency has been attributed to feedback mechanisms acting as compensation between 

Ras/MAPK and AKT/mTor pathways in order to maintain a prosurvival signal and cell 

homeostasis in the presence of these inhibitors [21, 56, 57]. Overall, studies focusing on 

specific candidate kinases sporadically identified abnormalities in expression and/or 

activation levels of isolated kinases in NETs [58-65] without considering their multiple 

interactions within signalling modules. 

The human protein kinome comprises over 500 proteins controlling intracellular signalling 

networks. There is increasing appreciation among researchers and clinicians of the value of 

investigating biology and pathobiology at the level of cellular kinome activity. Kinome 

analysis provides valuable opportunity to gain insights into complex biology (including 

diseases), to identify biomarkers of critical phenotypes (for prognosis and therapeutic 
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efficacy) and targets for therapeutic intervention through kinase inhibitors [43]. Although 

genomic and transcriptomic approaches have identified many driver kinases in human cancer, 

the map portrayed by these approaches is incomplete. This is because protein kinases are 

regulated at multiple levels, including protein translation, stability and post-translational 

modification, presenting further mechanisms for deregulation in cancer that are not revealed 

by interrogation of samples at the DNA and mRNA levels. Consequently DNA- or mRNA-

based studies can result in false negatives by not identifying protein kinases deregulated at 

one or more post-transcriptional levels, and false positives — for example, mutated kinases 

with low protein stability or kinases that are not overexpressed upon cognate gene 

amplification [43, 44]. A further confounding issue is that protein kinases usually function as 

components of larger pathways and networks, in which signal output can be subject to control 

mechanisms that act on separate pathway or network components. As such, kinases can also 

be deregulated as a result of molecular perturbations of interacting and/or regulatory partners. 

Consequently, pathway and network activity also needs to be taken into consideration when 

assessing the potential driver role of a given protein kinase. Importantly, these shortcomings 

can be addressed using proteomics. 

Recently, considerable advances in methods to assess the activity of the kinome were 

achieved (for review see [66-68]). These technological innovations allow a comprehensive 

interrogation of kinome activity in different conditions, e.g. drug response. Two general 

approaches have emerged to assess the activity and architecture of the kinome in cells: one 

based on activation state-specific antibodies and another based on mass-spectroscopic 

analysis of phosphorylated substrates or of kinases captured in their activated state on 

inhibitor-coated beads. While there are obviously conceptual linkages in these approaches, 

they are based on distinct experimental techniques and priorities. It is important to emphasize 

that kinome analysis serves to define the activities of kinases that are responsible for 
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mediating many phosphorylation events to regulate distinct, but probably complementary, 

biological responses. In contrast, mass-spectrometric based phosphoproteome analysis seeks 

to provide information about the phosphorylation status of every kinase substrates 

(byidentification of phosphor-acceptor sites) within the proteome. The conceptual difference 

between the two approaches is perhaps best demonstrated by the consideration that complete 

coverage of the kinome could be achieved with around 500 data points, whereas 

comprehensive coverage of the phosphoproteome would require in the order of 100 000 data 

points.  

In order to better depict NETs models, speed up acute data acquisition and thus establish a 

precise mapping of key signalling modules important for NETs biology, we have recently 

been using a novel micro-array based method to study kinome activity developed by 

PamGene (Hertogenbosch, The Netherlands). This highly sensitive method not only channels 

the study of kinomics from NETs cell lines, but also from tumour samples and then be an 

asset for the design of therapeutic strategies based on kinomics (unpublished data). It also 

provides a unique opportunity to compare kinome profiles from in vitro models and patients’ 

samples in order to assess the relevance of preclinical models based on a functional assay 

despite their genetic discrepancies with NETs. This study will then fulfil the ID card of NETs 

in vitro models and will enable a better judgement towards their validity as good models to 

study NETs biology. Additional complexities arise from the ability of microenvironmental 

factors to influence phosphorylation-dependent signalling and from the tendency for some 

signalling processes to occur heterogeneously among tumour cells. However, kinomics 

profiling offers the prospect to select a therapeutic option not only based on proliferation rate 

or mutational background, as set by current standard strategies for NETs, but also on selective 

activated kinases identified by global kinome activity analysis. 
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4. Concluding remarks 

Precision medicine is about matching the right drugs to the right patients and its application 

into clinical practice has considerably impacted the management of cancer over the last 

decade. Although this approach is technology agnostic, there is a clear inclination to make 

precision medicine synonymous with genomics in cancer. However, lack of detection of 

actionable mutations by sole use of genomic techniques is a frequent problem in the clinic. A 

recent cancer genomics study has shown that half of driver mutations in tumours occur 

outside of well-characterized cancer genes [69]. Such mutations will not be identified in 

tumour sequencing studies. Therefore, clinical implementation of unbiased signalling 

pathway analysis technologies to large patient cohorts or rare tumour cases, such as NETs, 

could improve (i) validation of preclinical models used for investigation, (ii) selection of 

patients to early-phase clinical trials for kinase-inhibition-based targeted therapies. Such need 

to broaden the spectrum of techniques to detect genetic and non-genetic targetable cancer 

vulnerabilities is currently increasingly raised in precision oncology. 
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