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This work showcases a method to map the full deformation tensor in a single

micro-sized crystal. It is shown that measuring the position of two Bragg

reflections in reciprocal space is sufficient to obtain the full deformation tensor,

if the condition of incompressibility of the material is imposed. This method is

used to reveal the surface tension induced deformation at the edges of an as-

grown single-crystal VO2 microwire. All components of the deformation tensor

of the microwire were measured down to an absolute value of 10�4 in an

8 � 14 mm projected area of the wire. With a beam-defined spatial resolution of

150 � 150 nm, the measurement time was merely 2.5 h.

1. Introduction

Internal stresses are an often neglected property of a given

material. However, they can play a critical role in determining

the material properties, allowing for often surprising changes

to them. The most well known example must be Prince

Rupert’s drops (Aben et al., 2016), and also the properties of

semiconductors, such as Si, SiGe and Ge (Lee et al., 2005). In

particular, phase-change materials, such as the VO2 (Liu et al.,

2011) investigated here, can be significantly altered by

external or internal stresses leading to strain. A very powerful

method to measure strain in materials is X-ray diffraction

(XRD). Due to the small wavelength and excellent mono-

chromaticity of the available beams, XRD is a popular method

for strain analysis.

In recent years synchrotron sources have become available

to measure XRD down to a spatial resolution of tens of

nanometres. At these nano-diffraction beamlines typically a

sample is raster-scanned at multiple angles around the

diffraction condition for a specific Bragg reflection, as iden-

tified by the Miller indices (hkl). The Bragg reflection can thus

be imaged in three dimensions for each point of the raster

scan. Except when using advanced methods relying on the

coherent properties of the beam (such as ptychography;

Thibault et al., 2008), the position of the centre of mass of the

Bragg reflection in reciprocal space is typically identified as

the components of the scattering vector from the planes

associated with hkl. The relative change in the length of the

scattering vector is caused by the compressive/tensile strain in

that direction. The direction of the scattering vector can be

expressed as the pitch and yaw of the hkl planes. Therefore, a

relative change in these angles corresponds to shear in the

respective direction of the planes. Unfortunately, the experi-

menter is completely blind to any strain and shear in the
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remaining directions and must rely on symmetry arguments if

the interesting property happens to include contributions from

any other strain components. Alternatively, the same area can

be scanned at a different orientation to map an additional

Bragg reflection and gather the respective strain information

for that direction. Finally, the information from both scans

must be combined, which can become especially problematic

considering that the projection along which the strain is

probed changes for a different sample orientation.

Alternatively, strain measurements are conducted with

‘white’, i.e. broad-spectrum, X-ray beams. In these experi-

ments it is usual that multiple Bragg peaks fulfil the diffraction

condition and they are easily imaged. However, the photon

energy in the diffracted beams is not known a priori and must

be determined. Traditionally this was done with a mono-

chromatic reference measurement (Chung & Ice, 1999), which

has been facilitated with the recently developed rainbow-

filtering technique (Robach et al., 2013; Tardif et al., 2016).

Ongoing developments of energy-dispersive detectors are also

used in such strain mapping experiments. These are straight-

forward, but suffer from the inherently low count rate of

monochromatic pixel detectors (Abboud et al., 2017). As

outlined in the cited work and references therein, the poly-

chromatic methods are very successful in imaging strain,

including the full deformation tensor. However, compared

with the monochromatic experiment outlined here, the use of

a polychromatic beam has several disadvantages. Firstly, it

limits the focusing optics to non-dispersive devices and

sources to broad-spectrum X-ray sources. This implies some

restrictions in costs, focal point size, beamline layout, beam

intensity etc. Also, the total number of photons impinging on

the sample during an experiment must be much higher than

for a monochromatic experiment, as much of the spectrum is

not used. This can also negatively affect the measurement

time, as the heat load on the sample must be managed.

As synchrotron sources are getting brighter and 2D X-ray

detectors are getting larger and faster, we show that it has

become feasible to obtain accurate reciprocal-space maps of

more than one Bragg reflection simultaneously, using a

monochromatic nano-focused X-ray beam. This alignment of

the sample in such a way that two Bragg reflections simulta-

neously satisfy the diffraction condition in a monochromatic

beam is also called three-beam geometry. We proceed to show

that with the incompressibility condition this suffices to obtain

the full deformation tensor in any coordinates, notably those

aligned with characteristic directions (e.g. facets) of the

sample. As an example of the technique, an area of 8 � 14 mm

was mapped with 150 � 150 nm spatial resolution (beam size)

showing the intrinsic strain in an as-grown VO2 microwire.

2. Background and experiment

The following two sections illustrate the calculations required

to obtain the full deformation tensor in laboratory coordinates

from the measurement of at least two Bragg reflections in a

mutual projection. The following three sections concern the

sample, sample alignment and actual experimental conditions.

2.1. Components of a deformation tensor from a single Bragg
reflection

A monochromatic nano-diffraction experiment exploring

the planes (hkl) for a given position on the sample needs to

measure the 2D scattered intensity in the hkl Bragg reflection

at that position for a set of angles [e.g. � in Fig. 1(a)] around

the reflection condition for the Bragg reflection. The sum

intensity on the 2D detector expressed as a function of the

sample rotation angle represents the rocking curve for that

reflection, with its reflection at the scattering angle 2� which

fulfils the diffraction condition � ¼ 2dhkl sinð�Þ, where � and

dhkl are the incoming wavelength and lattice spacing, respec-

tively.

For each sample angle �i the 2D detector image can be

interpreted as an accordingly oriented slice through the scat-

tered intensity in reciprocal space. Thus, the whole Bragg

reflection in reciprocal space can be reconstructed from

multiple 2D diffraction intensity distributions, as shown in

Fig. 1(b). Thereby, the reciprocal length of the scattering

vector jqj ¼ jko � kij ¼ 4� sinð�Þ=� ¼ 2�=dhkl and its orien-

tation in the laboratory system are measured. A change in the

position of the Bragg reflection with respect to either an

externally defined value or an internal norm can be described

as a corresponding deformation of the set of planes (hkl)

investigated. We will use the mean value for all raster-scanned

points as an internal dmean reference. The normal strain

deformation along the direction perpendicular to the (hkl)

planes is then

�khkl ¼ �qq ¼ jd� dmeanj=dmean: ð1Þ

Figure 1
(a) Sketch showing coordinates for XRD mapping with ki, ko and q the
incoming, outgoing and scattering vectors, respectively, ex; ey; ez the
laboratory coordinates, and ea; eb; ec the sample coordinates. The sample
is aligned so that a diffraction reflection can be imaged on a 2D detector.
In this orientation, the sample is raster-scanned in the yz plane,
perpendicular to the incoming X-rays ki. The detector image for each
sample-incoming X-ray angle (� typically rotated around the z axis)
represents a slice of the 3D intensity distribution for the scattered X-rays
ko. Measuring multiple angles around the scattering condition allows the
reconstruction of the scattering vector q in three dimensions, as shown in
(b) for one point of the raster scan. The sketch (c) illustrates that when q
is expressed in spherical coordinates the difference between its
components and an expected (mean) value can be equated to the
components of the deformation tensor in aligned Cartesian coordinates
(x0y0z0); ‘pitch’ = �y0z0 ¼ ��� is illustrated.



The position of the Bragg reflection can of course be

expressed in arbitrary coordinate systems. By default we

measure the position with respect to the laboratory coordi-

nates ex; ey; ez which, respectively, point along the incoming

beam, vertically and horizontally, as shown in Fig. 1(a). These

are easily transformed to spherical coordinates (eq; e�; e�),

where eq is aligned along the scattering vector, e� rotates

around the z axis, in plane with respect to the xy plane, and e�,

the polar angle, rotates out of plane with respect to the xy

plane:

q ¼ jqj; � ¼ arctan x=yð Þ; � ¼ arcsin z=jqjð Þ: ð2Þ

As we are probing the small angular area around a Bragg

reflection, we can linearize these to local Cartesian coordi-

nates (ex0 ; ey0 ; ez0):

y0 ¼ q� qmean; x0 ¼ �� �mean; z0 ¼ �� �mean: ð3Þ

Thus, the locally aligned coordinates express the small relative

change of each component of the position of the Bragg

reflection with respect to the mean value across the whole

sample. We can associate these relative changes with the

corresponding component of the deformation tensor,

expressed in the same, primed coordinates, as shown in

Fig. 1(c):

‘stretch’ ¼ �y0y0 ;

‘yaw’ ¼ �x0y0 ;

‘pitch’ ¼ �y0z0 :

ð4Þ

For each Bragg reflection, we can thus calculate the compo-

nents of the deformation tensor expressed in the local coor-

dinates as defined by the mean position of the Bragg reflection

(superscript):

�x0x0 ���x0y0 �x0z0

� ���y0y0 ���y0z0

� � �z0z0

0
@

1
A

qmean;�mean;�mean

; ð5Þ

The components printed in bold denote the known compo-

nents: �x0y0, �y0y0, �y0z0. The unknown and symmetric components

are represented in normal print and by a simple dot, respec-

tively.

2.2. Combining Bragg reflections to obtain the full defor-
mation tensor

The defining property of tensors is that they do not change

under a coordinate transform. It is possible to simultaneously

measure two Bragg reflections and each Bragg reflection gives

us three of the six independent components of the deforma-

tion tensor in the respectively aligned coordinate systems. By

construction in Section 2.1, the respective components are

expressed in local, primed coordinates. To combine both

tensors we can express them in the mutual Cartesian basis

(ex; ey; ez) by coordinate transformation. We choose to

mutually align the directions of ey0, for which we know the

normal strain, with the horizontal ey axis. As we have the

coordinates qmean, the rotation matrix R that corresponds to

this alignment is on hand, but, because the calculation sets up

the system of equations to be solved later, we find it instructive

to illustrate it as a subsequent rotation around two axes in the

following.

As shown in Fig. 2, we start with the original direction eq.

First, rotate around the z axis by the in-plane component of

the scattering angle, �. Applying the corresponding rotation

matrix Rz to eq gives us e0, a unit vector in the yz plane. Next,

we rotate around the x axis by the out-of-plane component of

scattering, �, to get Rx. Now e00 ¼ Rxe0 ¼ RxRzeq is parallel to

the y axis. We can shorten this: R ¼ RxRz, which is the

expected rotation matrix. By this construction, the rotation by

R preserves the correct orientation of the other two coordi-

nates so that x0 transforms to x and z0 to z. See the supporting

information for an explicit implementation of this operation in

the programming language Python using the NumPy and

SymPy libraries.

From the experimental data we can immediately calculate

the two appropriate rotation matrices Rred and Rblue, named by

the colour used to indicate the region of interest on the

detector image in Fig. 3. Next, we express the two deformation

tensors in this mutual coordinate system and equate the

components:

ðRT
red�
0
redRred � RT

blue�
0
blueRblueÞij ¼ 0 ð6Þ

where �0red and �0blue denote the two deformation tensors as

calculated above for the respective colour-coded regions on

the detector. The deformation tensors expressed in rotated

coordinates are still symmetric (see the supporting informa-

tion); therefore, it may be tempting to believe that the above

system of equations represents six linear equations for the six

unknown components, three per Bragg reflection. Unfortu-

nately, this is not the case, and in the supporting information

we show explicitly for a random list of scattering angles that

the determinant of the equation matrix is zero. One can also

understand intuitively that there is no information in the

measured data for one of the normal strain components.

Consider the case where the two measured scattering vectors

Figure 2
(a) This illustrates the calculation of the coordinate transformation from
the Cartesian coordinates aligned along the scattering vector to
laboratory coordinates. The initial local coordinates ex0 ; ey0 ; ez0 are shown
as small blue, purple and red arrows which are transformed in parallel.
They follow as the unit vector eq is rotated first around the z axis by �
giving Rzeq, shown in green, to lie in the yz plane. Then a rotation around
the x axis by � aligns RxRzeq (yellow) and RxRzey0 with the y axis, RxRzex0

with the x axis and RxRzez0 with the z axis. The sketch (b) shows the
known components of the deformation tensor for the special case that the
blue and red scattering vectors are parallel to the x and y axes,
respectively. Note that now �zz remains unknown.



both lie in the xy plane, each parallel to one of the axes, as

sketched in Fig. 2(b). Now it is apparent that the deformation

tensor component �xy ¼ �yx is measured twice and that the �zz

component is not measured at all. Mutual alignment in this

case is only rotation around the z axis, explicitly performed by

Rz, which only mixes the known components. The sketched

case can be generalized to any arbitrary angle � between the

scattering vectors. Note that the underdetermined case, where

� = 0 or 180�, is physically impossible for scattering vectors.

Therefore, in the set of the six linear equations above, there is

exactly one that can be expressed as a linear combination (as a

function of �) of the others. We thus need to find a further

constraint to the deformation and naturally choose linear

incompressibility:

�xx þ �yy þ �zz ¼ 0 ð7Þ

which is generally well preserved in hard condensed matter

and crystals without pores, such as the present case of a free-

standing microwire. Now, solving for the unknown compo-

nents of both deformation tensors and expressing either in the

laboratory coordinates gives the desired full deformation

tensor.

Finally, from the data acquired in Section 2.4 (see below),

the relative orientation of the sample regarding the laboratory

coordinates will be known (see also the supporting informa-

tion). We can thus calculate the components of the deforma-

tion tensor for coordinates aligned to the sample facets

(ea; eb; ec), as shown in Fig. 2. We find a rotation matrix

Rabc!xyz ¼

�0:04893713 �0:16695799 0:9847488

0:83148366 �0:55306786 �0:05244857

0:55338955 0:81623584 0:16588841

0
@

1
A:

ð8Þ

The detailed calculations can be found in the supporting

information.

2.3. The sample

The material under investigation here is vanadium dioxide.

It shows a reversible phase transition at about 341 K (Liu et

al., 2011). The material changes from a low-temperature

insulating phase to a high-temperature metallic phase. Many

material properties such as the dielectric properties and

conductivity are abruptly changed. This has potential appli-

cations for smart optical components (Rensberg et al., 2016)

and window coatings (Zhou et al., 2013; Chen et al., 2011). It is

known that strain modifies the transition temperature (Cao et

al., 2009; Cao & Wu, 2011; Aetukuri et al., 2013), a key

requirement for the technological application of this material.

The sample investigated in this work is an as-grown VO2

microwire, grown from V2O5 powder on a rough quartz

substrate as described in the work of Cheng et al. (2012). The

wires grow in the rutile high-temperature phase, but we will

reference all crystallographic orientations in the monoclinic

phase, as present during the experiment, at room temperature.

The microwires have a rectangular base, facetted at {011} and

{01�11}, and the principal axis is oriented along (20�11) (Wang et

al., 2018). These three orthogonal directions will be our

reference coordinate system for the deformation tensor. Note

that in monoclinic VO2 (20�11) is almost parallel to [20�11],

because the structure has only a slight distortion of the rutile

crystal.

A single microwire with a length >100 mm was removed

from the growth substrate and one end was glued onto the

finely pulled point of a glass microcapillary using a very small

drop of two-component epoxy. The freestanding end of the

microwire was investigated using the ID13 microfocus X-ray

beamline at the ESRF Grenoble. The capillary was mounted

and centred on the home-built goniometer at ID13, as shown

in Fig. S2 (in the supporting information).

2.4. Sample alignment

To arrive at the diffraction condition for a given plane (hkl)

and X-ray wavelength �, it is necessary to correctly orient the

sample in three dimensions. A large variety of goniometers are

available for this task. Generally, the angles of rotation can be

decomposed into two orthogonal components �; �. The goni-

ometer used here allows for a full rotation around the axis �,

which can be tilted by an underlying cradle stage to an angle �
with respect to the laboratory z axis. As the wire is rotated in

an initially unknown way about its principal axis, a preliminary

scan to find its orientation was performed. The wire was

rotated for 270� around � and a diffractogram was measured

every 0.1� of rotation. The wire was scanned laterally for each

projection to ensure it was illuminated.

The individual reflections were identified and indexed. The

accumulated and selected indexed data of this scan are shown

in Fig. 3(a); the fully indexed frame can be found in Fig. S1.

The analysis confirms that the microwire was in the low-

temperature VO2 monoclinic structure with a* = 5.75,

Figure 3
(a) Integrated intensity of all diffraction patterns taken on the 2D X-ray
detector, while the VO2 microwire was rotated at fixed � by 270� around
�. To facilitate reflection detection, a large region in the centre of the
detector, around the shadow of the beam-stop, is masked. All visible
reflections were successfully indexed (see Fig. S1) and the two regions of
interest marked in blue and red correspond to the Bragg reflections (0�220)
and (�3310), respectively. The intensity measured in these regions is plotted
for a raster scan of the sample orientation angles � and � in (b). The
intensities form lines representing the respectively fulfilled diffraction
condition. At the crossing point the grey line indicates the angular range
in � used for the following measurement.



b* = 4.53, c* = 5.39 nm�1, � = 90.0, 	 = 122.6, 
 = 90.0�, in close

agreement with the expected structure (Inorganic Crystal

Structure Database 34033).

Fig. 3(b) indicates how to find an orientation of the sample

where the diffraction condition for two Bragg reflections is

simultaneously fulfilled. Depending on the crystal symmetry

and incoming X-ray wavelength, it can be shown by an Ewald

sphere construction that there are plenty of such crossing

points of fulfilled diffraction conditions [see the supporting

information and James (1982)]. Many high-symmetry points

even show more than two crossing points in very close

proximity.

It must be noted that the diffraction at one set of planes can

be influenced by the fact that a second set of planes also fulfils

a diffraction condition. Strictly speaking, the scattering

process cannot be treated kinematically as a superposition of

two independent scattering events, but must be treated

dynamically, considering the wavefield in the periodic poten-

tial of the crystal. The threshold for relevant deviations from

the kinematic approximation is found where the scattered

intensity approaches the same order of magnitude as the

incoming beam intensity. However, for the present case of a

very small sample (�mm), small scattering cross section and

large scattering angles, we are very far from this case.

The rotational scan data were used to calculate the sample

orientation with respect to laboratory coordinates (see the

supporting information). This relation will be very useful to

calculate the deformation tensor components in coordinates

aligned to the sample facets. For simplicity, we choose to call

the wire axis ea, the normal to the (01�11) facet eb and the

normal to the (011) facet ec, to obtain a Cartesian coordinate

system aligned to the sample facets (ea; eb; ec). It is most

useful to express the components of the deformation tensor in

these coordinates, which are naturally aligned with possible

stresses in the sample, rather than in the arbitrarily aligned

laboratory coordinates.

2.5. Summary of experimental conditions

The diffraction experiments were performed at the ID13

microfocus beamline with a 15.20 keV X-ray beam focused

down to 150 � 150 nm. The divergence of the beam was

around 4 mrad due to the focusing. The detector was a Dectris

Eiger4M with 2167 � 2070 pixels of size 75 � 75 mm. The

sample–detector distance was 127.53 mm, calibrated using

Al2O3 and pyFAI (Kieffer & Karkoulis, 2013).

The sample was mounted on a home-built two-axis goni-

ometer using SmarAct piezo stages. A base cradle stage

(SGO-60.5) rotated by � around the laboratory y axis and a

rotary stage (SR-2013) rotated by � around the laboratory z

axis when the base is at � = 0. The goniometer was completed

by two, crossed linear stages (SLC-1720) used to reduce the

sphere of confusion by following a look-up table of corrections

for rotation around the z axis. (Refer to Fig. S2 for a photo-

graph of the setup.) The goniometer was mounted on a PI

MARS xyz piezo stage, which performed the lateral scans in

laboratory y and z directions, as the fast and slow axis,

respectively.

The scanning parameters were y, z, �: 8 mm � 14 mm � 0.9�

in 80 � 140 � 26 points. The piezo y axis was scanned

continuously using the recently developed BLISS beamline

control system (Guijarro et al., 2018). The detector was read

out every 25 ms with a negligible readout time of 10 ms. These

time steps correspond to 100 nm steps in the direction of

travel. The z axis was raster-scanned in 100 nm steps, followed

by the angle �. The total exposure time was thus a little more

than 2 h. In practice, there is a little overhead incurred during

the return stroke of the y axis and the rotation, and thus the

full mapping took 2.5 h.

During all scans an X-ray fluorescence (XRF) detector

recorded fluorescence of the vanadium K line, which was used

to find any drift in vertical position for each map. After

vertical correction, the horizontal offset for every line of every

scan was corrected (see Fig. S4). As the outline of the

microwire in the fluorescence signal is an unmistakable and

sharp reference, this ensured true overlap of the maps for each

angle at a one-pixel (100 nm) accuracy.

The diffraction data were analysed for each point of the 3D

real-space map (y; z; �) by first extracting a generous region of

interest in the detector for each of the two Bragg reflections.

This greatly reduces the data-set size. The diffraction data

were then remapped to the corrected real-space positions

using the corrections measured by XRF and linear interpola-

tion. Next, the data were transposed and integrated in reci-

procal laboratory coordinates using xrayutilities (Kriegner et

al., 2013). Finally, the centre of mass was calculated in sphe-

rical coordinates, to give the scattering vector in the required

form. The map of these values is the input for the calculations

outlined earlier and in the supporting information.

3. Results

The diffraction results can be interpreted as the integral of the

diffracted intensity as the incoming X-ray beam traverses the

microwire. Note, for small samples and large beam coherence,

this approximation can fail spectacularly as coherent effects

appear. Working under the incoherent assumption, the results

represent the average of all the deformation contributions

along the beam’s path. As shown in the sketch at the left of

Fig. 4, the 2D raster map produces a projected view cutting

skew through the microwire’s cross section. The sketch was

aligned by hand to the features resembling the edges of the

rectangular volume of the microwire in deformation tensor

components. These features are most notable in the maps

showing �bb, �cc and �bc. The resulting alignment agrees well

with the alignment of the sample found in Section 2.4 and

Fig. S3.

The diagonal components of the deformation tensor

correspond to the normal strain deformation of the material.

In Fig. 4 one can see that as the wire forms a tip it is

increasingly compressed along the axial, a, direction. As

imposed by the analysis and expected for an incompressible

material, the compression along one axis is compensated in

the other two. Interestingly, this compensation appears much

stronger along the c direction than b. A strong interplay



between these two axes is also apparent in that the largest

shear component is �ac. This is attributed to the large aniso-

tropy of the mechanical properties of monoclinic VO2 (Gaillac

et al., 2016).

Finally, a faint lattice expansion on the faces of facets in �bb

and �cc is contrasted by a relative compression on the edges.

With the shear in �bc this may indicate a slight rounding of the

rectangular shape, which could be traced back to the mini-

mization of the surface energy.

4. Discussion

In the following we will try to outline the main factors in

arriving at an upper bound on the errors of the presented

method.

4.1. Measurement error

Firstly, the edges of the final data voxels were longer than

the projected width and height of the detector pixels, but

smaller than 1/3 of the width of the Bragg reflection. The

angular range of the scans in � map the scattered intensity

down to 1 � 10�3 in both directions. The 3D Bragg reflections

were evaluated by the centre of mass in three dimensions. The

minimum number of counts on the detector per reflection was

1 � 107 and the FWHM of the reflection 1 � 10�3 (relative

units), so that the statistical error of this estimator is <1� 10�6

and thus negligible. In the measurement geometry presented

here, the measured Bragg reflections did not impinge normally

onto the detector. Therefore, an error in the sample orienta-

tion � and � affects the position in reciprocal space of all three

coordinates of the Bragg reflection. Using a laser reflection

setup, the accuracy of both encoded rotational stages was

estimated to be better than 1 � 10�4 �. It must be noted that

this value is of course critically dependent on the sturdy

attachment of the sample to the stage, especially under the

excited conditions of a lateral raster scan.

An additional factor to consider is refraction at the facets of

the microwire (Kriegner et al., 2011). Fortunately, the refrac-

tive index of VO2 for X-rays at 15 keV differs from 1 only by

1� 10�5, leading to negligible changes in the scattering angles

in the presented data. However, for heavier materials and

lower X-ray energies, this contribution may become signifi-

cant.

For a sample larger than the beam size, the width of the

diffraction reflection is mainly determined by the divergence

of the incoming, nano-focused X-ray beam at roughly

0.4 mrad or 0.02�. Finally, the accuracy of the measured

parameters is influenced by the angular sampling step size, in

this case 0.03�. To optimize measurement time, this was chosen

to be approximately equal to the width of the Bragg reflection.

As is, it remains the largest single contribution to measure-

ment uncertainty. For the scattering angle of 35� this naively

corresponds to a relative measurement error of 2 � 10�4.

However, as the diffractograms are analysed as an ensemble

after projection into and resampling in reciprocal space, the

final error in the centre of mass calculation is somewhat lower.

Also, depending on the specific orientation of the scattering

vector, this error affects the various components unequally.

In summary, we conclude that the measurement of the

Bragg reflection coordinates we performed has a relative

uncertainty of around 1 � 10�4. As the components of the

deformation tensor are equal to the normalized difference

between the error-laden measured value and the fixed mean

value, this relative uncertainty in the Bragg coordinate

represents the absolute uncertainty of the deformation tensor

coordinate in local coordinates. We finally calculated the

standard error progression by partial derivatives of the

deformation tensor components with respect to the measured

variables, multiplied by the respective uncertainty and

summed. This gives an estimate for the experimental uncer-

tainty of around 2 � 10�4 for all the deformation tensor

components.

4.2. Fit error

We obtain the components of the deformation tensor in the

sample coordinate system, by rotation of the coordinate

systems for two generally directed Bragg reflections. We

arrived at an overdetermined set of equations which we solved

via an explicit least-squares fit (LSE, see the supporting

information). In Fig. 2 one can see that the expression of the

Bragg reflections in a mutual coordinate system involves

projecting the components onto the new axes. With the LSE in

mind, the phase space is filled most evenly with Bragg

reflections evenly dispersed in 3D space. Two Bragg reflections

should ideally be separated by an angle of 90�. Fortunately, the

three-beam geometry excludes the underdetermined cases of

0 and 180�, and generally this problem is well conditioned. For

the present case the angle between the two scattering vectors

is 110�.

The LSE fitting directly provides an estimation for the

standard error of the fitted parameters, which again can be

inserted in the error propagation evaluation chain. Now the

standard error is a function of the measured parameters, as

their spread is a measure for the goodness of the fit. As seen in

Fig. 5, there is large spread in the values for the standard error

Figure 4
Plot of the calculated components of the deformation tensor expressed in
coordinates aligned to the microwire facets (a, b, c). The lower inset
sketch illustrates the orientation of the facets c, b, �c and �b in black,
green, red and blue, respectively. The sketch is superposed onto the
raster-scanned map to guide the eye.



across the resultant variables and the mapped spatial coordi-

nates.

4.3. Reliability of results

A quick back-of-the-envelope calculation shows the order

of magnitude for surface tension induced deformation:

� ¼
�

Y
; ð9Þ

where Y is Youngs modulus and � the surface tension induced

stress. For � we insert

� ¼ 4
d

A
SE; ð10Þ

with d = 1 mm the side facet width, of which there are four; A =

1 mm2, the area of the top of the rectangular microwire; and

surface energy (SE) = 1 J m�2 (Wang et al., 2018). As

mentioned, the mechanical properties of monoclinic VO2 are

anisotropic, but for a very realistic value of 40 GPa (Gaillac et

al., 2016), we obtain � ¼ 1 � 10�4.

Comparing the magnitude of the measured deformation

tensor components with the estimated measurement error, we

see clearly that the observed effects are on the cusp of

resolvability. An argument can be made that measurement

errors are unlikely to correlate to the structure of the micro-

wire. However, as outlined in the previous discussion, the facet

surfaces and sample orientation drift are both sources of

systematic errors. We have tried to avoid their influence, but

they represent a certain risk for misinterpretation of results

obtained by the method outlined in this study and they must

be carefully considered for each sample and measurement

geometry.

5. Conclusion and outlook

We have outlined a method to map the full deformation tensor

for a micro-sized crystal. Compared with strain maps obtained

by analysing a single Bragg reflection, the presented method

reveals a more complete picture of the actual deformed state

of the sample. As XRD is already a well-established method

for strain analysis and 2D detectors are becoming larger, faster

and cheaper, we predict that the three-beam geometry,

simultaneously measuring two Bragg reflections, will become

more and more popular.

As outlined, we obtain a 2D projection of the deformation

within the sample volume. This can be viewed as the average

contribution of all differently deformed sub-volumes along the

path of the incoming X-ray beam. We also showed that for the

present sample symmetry and X-ray energy there are many

sample orientations where the diffraction conditions for two

Bragg reflections are simultaneously fulfilled. With enough

projections, the distribution in the 3D sample volume of each

component of the deformation tensor can be revealed, for

example by filtered back-projection. As we have shown, the

measurement times are sufficiently fast to make this feasible.

Considering the large penetration depth of X-rays, and the

important role micro- and nano-structured crystals play in

modern technology, this outlook opens a plethora of possible

studies, adding to the large number of possible correlative

studies (Ulvestad et al., 2019).

When envisioning 3D sample reconstructions, we must

compare our method with Bragg ptychography. The method

we present is based on straightforward XRD nano-diffraction

and as such does not rely on any coherent beam profile and

sample reconstruction. Only the centre of mass of the Bragg

reflection must be accurately measured for each point.

Therefore, it is much more stable with respect to changes in

the beam, allowing a much faster scanning and a much larger

field of view. Importantly, any sample drift can be easily

corrected post-measurement. The centre of mass estimation is

already accurate with very few detected photons compared

with the detailed reconstruction of the Bragg reflection

required for Bragg ptychography. The drawback is, of course,

that many projections are required to arrive at 3D information

and that there is no sub-beam size resolution.

These points aside, the presented calculation using two

Bragg reflections measured simultaneously can also be applied

to Bragg ptychography experiments. To date, these typically

limit themselves to a single reflection, yet the information

obtained per Bragg reflection is a 3D volume of the same

parameters we have measured here in two dimensions.

Therefore, when two or more Bragg reflections are measured

by ptychography, the calculations outlined in this work can be

performed voxel-wise to gain the full deformation tensor in

three dimensions.
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