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Highlights 9 

 Electrodeposition of superhydrophobic black NiO films on Cu is studied. 10 
 Superhydrophobicity is attributed to the formation of a rough surface.  11 
 An improvement of the corrosion resistance of Cu sub-layers is observed. 12 

 13 

Abstract 14 

Black finished surfaces have extensive applications in many domains, such as optics, solar cells, 15 

and aerospace. The single step electrodeposition of superhydrophobic black NiO films from a 16 

dimethyl sulfoxide based electrolyte is described in this paper. The physicochemical properties 17 

of the obtained film were characterized using Scanning Electron Microscopy, X-ray Diffraction, 18 

and electrochemical tests (Electrochemical Impedance Spectroscopy and potentiodynamic 19 

polarization). A rough surface with a low reflection of light was formed after the deposition 20 

process that increased the contact angle of water from about 87º (for bare Cu) to 163º (in 21 

presence of the black coating), which improved the corrosion resistance of the Cu substrate by 22 

about 30%. The formed black NiO film revealed a notably high stability and kept its appearance 23 

even after corrosion tests.  24 

Keywords: Black NiO, Superhydrophobic, Corrosion, Electrodeposition, thin films 25 

 26 

1. Introduction 27 

Black finished surfaces are useful for optical instruments, solar cells, black 28 

decorative coatings, and for defense and aerospace industries [1,2]. There are 29 

several studies regarding black finished surfaces, including black Si, black Cr, and 30 

black Ni [2–4]. Black Ni surfaces are normally obtained by etching a low P content 31 

Ni-P (1-4 wt.% P) in an oxidizing acid [5,6]. Etching forms several cracks on the 32 

surface of the Ni-P film. These cracks, providing multiple reflection and absorption 33 

sites for incident light, are responsible for the black aspect of the surface [7]. 34 

However, the film also becomes very vulnerable to corrosion due to these cracks 35 
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[1]. Furthermore, blackening the surface by chemical etching induces a huge 1 

material loss that is not economical [8]. 2 

The corrosion of metals can be effectively blocked by decreasing the contact of the 3 

surface with the corrosive media. Superhydrophobic materials, i.e. surfaces with a 4 

water contact angle larger than 150º [9], reduce the corrosion, because the contact 5 

between the oxidizing media and the surface of the sample is reduced. Therefore, 6 

superhydrophobic films are known to offer an outstanding corrosion resistance 7 

[10–12]. Superhydrophobic films also offer self-cleaning, anti-fouling, and frost 8 

prevention properties. Superhydrophobicity can be obtained by modification of a 9 

surface owing to the surface energy decrease and the formation of a rough 10 

hierarchical surface morphology [13]. 11 

NiO is formed by oxidation at the surface of Ni-P during chemical etching. NiO is 12 

a p-type semi-conducting oxide with a fcc crystalline structure exhibiting a good 13 

chemical stability [14,15]. Several methods including annealing [17], sol-gel 14 

chemistry [18], ionic layer adsorption and reaction (SILAR) [19], and 15 

electrodeposition [20] have been investigated to form NiO. Electrodeposition has 16 

various advantages such as the ability to coat large surfaces, a homogenous 17 

deposition, a controllable morphology and thickness, high adhesion to the 18 

substrate, and few problems related to inter-diffusion [20]. Koussi et al. [20] have 19 

successfully electrodeposited NiO from a dimethyl sulfoxide (DMSO) based 20 

electrolyte. The mechanism of the electrodeposition of NiO in DMSO was 21 

described by the following equations in the absence (1) and in the presence of a 22 

low content of water (2), respectively: 23 

 24 

                         ( 1) 25 

                                     ( 2) 26 

 27 

In this paper, we report for the first time the single-step electrodeposition of a 28 

black superhydrophobic NiO coating from a DMSO-based electrolyte. The coating 29 

was characterized using Scanning Electron Microscopy (SEM), grazing incidence 30 

X-Ray Diffraction (grazing XRD), Water Contact Angle measurements (WCA), 31 

Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization 32 

tests.   33 

 34 

2. Experimental procedure   35 
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The electrodeposition electrolyte was a DMSO based solution at 50°C, containing 1 

190 g.L
-1

 NiSO4. 6H2O, 10 g.L
-1

 NiCl2. 6H2O, 8 g.L
-1

 H3PO3, 16 g.L
-1

 H3BO3, and 2 

5 mL.L
-1

 H3PO4. All the chemicals, provided by Sigma-Aldrich, were highly pure 3 

and used as received.  4 

Cyclic voltammetry and potentiostatic electrodeposition experiments were 5 

performed with a potentiostat/galvanostat (VersaSTAT 3). Before the deposition, 6 

the Cu substrate was pre-treated according to reference [21]. A common 3-7 

electrode setup was used consisting of the Cu substrate as working electrode, a Pt 8 

plate as counter electrode, and an Ag/AgCl (KCl saturated) as reference electrode. 9 

For cyclic voltammetry tests, the potential was gradually decreased from 0 V vs. 10 

the reference electrode, to -1.5 V and then increased to 0 V. The scan rate was 20 11 

mV.s
-1

. The electrodeposition was achieved by chronoamperometry. A constant 12 

potential of - 1V vs. the reference electrode was applied on the working electrode 13 

for 1200 s, while the solution was stirred with a speed of 650 rpm. 14 

Two scanning electron microscopes (Philips XL 30 ESEM, and CARL 15 

ZEISS/Ultra 55) were used to study the surface and cross-section morphologies, 16 

respectively.  The chemical composition of the films was investigated by Energy 17 

Dispersive Spectroscopy (EDS).  18 

The sample reflectance was recorded using an UV−visible spectrophotometer 19 

(Varian Cary 300) equipped with an integrating sphere DRA-CA-30I in the 20 

380−800 nm range. Measurements were performed 4 times for each sample by 21 

rotating the sample holder in order to probe the whole surface of the samples.  22 

A Siemens D5000 diffractometer was employed to investigate the crystalline 23 

structure. XRD patterns were obtained over the 2θ range of 30–60° (with 0.04° 24 

step size) using Cu Kα radiation ( = 0.15406 nm) generated at 30 mA and 40 kV.  25 

A tensiometer (Adimec MX12P) was used to do the water contact angle 26 

measurements (2 µL droplets) at five different locations.  Drop analysis LB-ADSA  27 

plugin in ImageJ software was used to measure the contact angle [22].   28 

The corrosion resistance of the films was studied after 60 minutes immersion in a 29 

3% NaCl solution by EIS and Tafel tests. The EIS measurements were done at 30 

Open Circuit Potential (OCP) in a frequency range from 100 kHz to 10 mHz with 31 

10 mV peak-to-peak voltage amplitude. Zview was used to analyze the obtained 32 

EIS data. Potentiodynamic polarization experiments were carried out at a scan rate 33 
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of 0.5 mV/s from -300 mV (vs. OCP) to 500 mV (vs. reference electrode). The 1 

results were normalized by the exposed area to the corrosive media. 2 

 3 

3. Results and Discussion 4 

 Cathodic electrodeposition 5 

The cyclic voltammetry curves of the cathodic electrodeposition of Ni from the 6 

DMSO based electrolyte are presented in Figure 1. It can be seen that the current 7 

density at -1 V is relatively low. Such a low value makes it kinetically favorable 8 

for the nucleation and growth to occur at preferential sites. Such type of 3D 9 

“island” growth (described by the Volmer-Weber model) is known to form a rough 10 

deposit. Figure 2 depicts the current density during the deposition of the film in 11 

DMSO at -1 V. The current density for NiO deposition from DMSO is notably 12 

lower than previously reported for Ni deposition from an aqueous electrolyte [21]. 13 

This observation points to the higher resistivity and lower throwing power in 14 

DMSO than in aqueous electrolytes, leading to a reduced deposition rate.  15 

 Surface and cross-section morphology  16 

Figure 3 shows the surface and cross-section morphologies of the black coating. In 17 

Figure 3A, the black appearance of the coating is obvious. The SEM image 18 

presents a surface made of several hierarchical island shape features that are 19 

regularly distributed over the surface. Such a morphology (that is similar to the 20 

known lotus leave morphology [23]) highly decreases the light reflection (Figure 21 

4) and thus makes the surface look black. The increase in the reflection of the Cu 22 

substrate at around 550 nm is due to the natural color of Cu. Moreover, such a 23 

morphology offers a high roughness that increases the water contact angle (see 24 

below). The cross-section shows several well-distributed nanometric island shape 25 

features on the surface. Moreover, the formed black film was notably adhesive, 26 

since no cracks or delamination was observed at the interface between Cu and the 27 

coating. 28 

 Chemical composition and structure  29 

The chemical composition of the film is summarized in Table 1. A film composed 30 

of a mixture of NiO and Ni-P is formed on pure Cu. The high Cu content is due to 31 

the low thickness of the black film. The presence of S and C in the chemical 32 

composition is due to the incorporation of DMSO inside the film [20].  33 
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Figure 5 shows the grazing incidence XRD pattern of the black film. The strong 1 

sharp peak at 43.5 º is attributed to the NiO (200) reflection (NiO presents a NaCl-2 

type structure) [14,16] that shows the preferential growth of the film. The absence 3 

of Ni peaks can be attributed to the amorphous nature of the Ni-P film. The 4 

average grain size D was estimated to be around 100 nm using the Debye Scherrer 5 

formula [14], 6 

   
    

     
            ( 3) 7 

where λ is the X-ray wavelength, β is the full width at half maximum of the peak, 8 

and θ is the diffraction angle. The grain size of the black film is notably bigger 9 

than that previously reported elsewhere [14,16,24]. The formation of bigger grains 10 

might be related to the low deposition rate from DMSO.  11 

 Water contact angle  12 

The water contact angle of the Cu substrate and the black film are shown in Figure 13 

6. The contact angle values for the Cu substrate and the film were 83 ± 6º and 161 14 

± 3º, respectively. Therefore, applying the black NiO film changed the hydrophilic 15 

Cu surface to a superhydrophobic surface.  16 

The hydrophobicity of these films was previously found to be due to the roughness 17 

of the surface [25]. The superhydrophobicity of the surface comes from the 18 

heterogeneous wetting, which means that the trapped air prevents the liquid from 19 

penetration [26]. This can be expressed by the following equation: 20 

                           ( 4) 21 

Where f is the area fraction of the droplet in contact with the solid (and thus 1-f is 22 

the area fraction of the droplet in contact with the trapped air), and θ
*
 and θ are the 23 

contact angles of the rough coating and the substrate (or flat surface). The f value 24 

calculated for the black NiO film is 0.049: it has a very low wetting ability, notably 25 

lower than some previously reported values for superhydrophobic Ni films (0.25 26 

[27], and 0.13 [28]). 27 

 Corrosion resistance  28 

A typical impedance spectrum of the black NiO film is depicted in Figure 7. The 29 

film presents one time constant in its EIS data. The Randles model, which is the 30 

typical model to fit the EIS data of electrodeposited superhydrophobic NiO films 31 

[12,25,29], was employed to analyze the black NiO film. A Constant Phase 32 
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Element (CPE) was used to describe the non-ideal behavior of the interface. The 1 

impedance of a CPE is defined as: 2 

      
 

       
          ( 5) 3 

   is the constant of admittance, i is the imaginary unit, ω is the angular frequency, 4 

and n is the CPE exponent [30]. n is also sometimes considered as the roughness 5 

factor since it is affected by the surface roughness [31]. The analyzed data of the 6 

black NiO film and Cu substrate (that is reported in [21]) are presented in Table 2. 7 

Note that the Cu substrate had an extra Warburg element in its equivalent circuit 8 

that expressed the diffusion-limitation of corrosion. The value of n for the Cu 9 

substrate and the black NiO film were 0.80 and 0.76, respectively. The n value for 10 

the substrate is low due to the presence a Warburg element. This observation is 11 

pointing out that the black NiO has a rougher surface. The modulus Y° is higher 12 

than the value expected for a “metallic” electrode. Rough surfaces have a higher 13 

specific capacitance than flat ones, and increasing the roughness of thin films will 14 

enhance their capacitance [32]. Moreover, electrodeposited NiO has been shown to 15 

have a high pseudocapacitance, useful for supercapacitor applications [33–35], 16 

attributed to some contribution of chemical capacitances.  17 

Applying the thin black NiO film increased the corrosion resistance by about 25% 18 

(8.1 vs. 6.1 kΩ.cm
2
 for NiO and Cu, respectively).  19 

Figure 8 shows the polarization curves performed on the black NiO film and the 20 

bare Cu substrate. The Tafel extrapolation method was used in a potential range of 21 

 250 mV around OCP, to obtain the corrosion potential (Ecorr), corrosion current 22 

density (icorr), and anodic and cathodic slopes (βa and βc). The Stern-Geary equation 23 

was used to calculate the polarization resistance [36]. Table 3 summarizes these 24 

data for the black NiO film. 25 

    
    

                 
          ( 6) 26 

In comparison with the reported data for the Cu substrate [21], the black NiO film 27 

notably shifted the corrosion potential (+155 mV) to more anodic regions. This 28 

means a significant decrease in corrosion inclination [37]. The polarization 29 

resistance (6.4 and 9.5 kΩ for Cu and black NiO, respectively) shows about 33% 30 

increase, in good agreement with EIS results. The black NiO coating presents 31 

especially a lower current density at high potentials showing its high chemical 32 

stability. 33 
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Figure 9 shows that the surface morphology of the black NiO after the corrosion 1 

tests is clearly unchanged. The chemical composition of the surface after the 2 

corrosion tests is presented in Table 1. A comparison of the chemical composition 3 

of the black NiO film before and after the corrosion tests reveals that the amount of 4 

O increased, while the content of Ni decreased. A part of the Ni of Ni-P was 5 

dissolved, so the surface was enriched with other components (i.e. O and S), in 6 

agreement with the common corrosion mechanism of Ni films [37]. Therefore, the 7 

superhydrophobicity of the electrodeposited black NiO film strengthens the 8 

chemical stability and substantially improves the corrosion resistance. 9 

 10 

4. Conclusions 11 

The single step electrodeposition of superhydrophobic black NiO coatings from a 12 

DMSO based electrolyte is presented in this paper. A very rough surface 13 

containing many well-distributed island shaped features is formed that decreases 14 

the light reflection and increases the water contact angle.  15 

The corrosion resistance increases by about 30% due to the superhydrophobicity of 16 

the surface that limits the contact between the surface and corrosive media. The 17 

effect of the deposition parameters on the properties of the black NiO film and the 18 

possibility to form it on other substrates, such as Al or Ti, is interesting for 19 

aerospace applications and will be the subject of a future study.   20 

 21 
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 1 

Tables 2 

 3 

Table 1. Chemical composition of the black coating before and after corrosion tests 4 

Element  Before corrosion tests: Wt.% After corrosion tests: Wt.% 

C 3.6 3.2 

O 11.0 13.9 

P 2.6 2.8 

S 7.8 8.8 

Ni 61.8 56.2 

Cu 13.2 15.1 

 5 

 6 

Table 2. EIS fit values of the black NiO film and Cu substrate 7 

Sample 
Rs 

(Ω.cm
2
) 

CPEdl 
Rct 

(kΩ.cm
2
) 

W 

Q 

(µF.cm
-2

.s
n-1

) 
n 

W-R 

(kΩ.cm
2
) 

W-T 

s 

W-P 

 

Black NiO 7.5 578.2 0.76 8.1 - - - 

Cu Sub. [21] 20.3 129.8 0.80 0.02 6.1 165.9 0.43 

 8 

 9 

Table 3. Corrosion current density, corrosion potential, anodic and cathodic slopes, and polarization resistance of the black NiO 10 
film 11 

Sample 
icorr 

(µA.cm
-2

) 

Ecorr (mV) 

vs. Ag/AgCl 

Average Tafel slope 

(mV. dec
-1

) Rp 

(kΩ.cm
2
) 

βa βc 

Black NiO 1.64 -45 44 149 9.5 

Cu Sub. [21] 3.32 -200 66 195 6.4 
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Figures 2 

 3 

 4 

Figure 1. CV curve for the cathodic electrodeposition of Ni from the DMSO based electrolyte on Cu with a scan rate of 20 mV.s
-1

.  5 

 6 

Figure 2. Current density as a function of the coating time for a black NiO film obtained in DMSO.  7 
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Figure 3. (A) Black NiO film on Cu and its surface (B) and cross-section (C) morphology. 2 
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Figure 4. Reflectance of Cu substrate and black NiO film as a function of the wavelength of light.  2 

 3 
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Figure 5. Grazing incidence XRD pattern of the black NiO coating. 2 
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 1 

Figure 6. Contact angle between a 2µL water droplet and (A) the Cu substrate, (B) the black NiO film.  2 
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Figure 7. (A) Nyquist, (B) bode Z, and (C) bode phase plots of the black NiO film and the Cu substrate.  2 

 3 

 4 
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Figure 8. Tafel plots of the black NiO film and the Cu substrate. 2 
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Figure 9. The general aspect and surface morphology of the black NiO film after the corrosion tests. 2 


