
HAL Id: hal-02471078
https://amu.hal.science/hal-02471078

Submitted on 7 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Filtering, Decomposition and Search Space Reduction
for Optimal Sequential Planning

Stéphane Grandcolas, Cyril Pain-Barre

To cite this version:
Stéphane Grandcolas, Cyril Pain-Barre. Filtering, Decomposition and Search Space Reduction for
Optimal Sequential Planning. AAAI, Jul 2007, Vancouver, Canada. �hal-02471078�

https://amu.hal.science/hal-02471078
https://hal.archives-ouvertes.fr

Filtering, Decomposition and Search Space Reduction for
Optimal Sequential Planning

Stéphane Grandcolasand Cyril Pain-Barre
LSIS – UMR CNRS 6168

Domaine Universitaire de Saint-Jérome
Avenue Escadrille Normandie-Niemen
F-13397 Marseille Cedex 20 - France

stephane.grandcolas@lsis.org, cyril.pain-barre@lsis.org

Abstract

We present in this paper a hybrid planning system which com-
bines constraint satisfaction techniques and planning heuris-
tics to produce optimal sequential plans. It integrates its
own consistency rules and filtering and decomposition mech-
anisms suitable for planning. Given a fixed bound on the plan
length, our planner works directly on a structure related to
Graphplan’s planning graph. This structure is incrementally
built: Each time it is extended, a sequential plan is searched.
Different search strategies may be employed. Currently, it is
a forward chaining search based on problem decomposition
with action sets partitioning. Various techniques are used to
reduce the search space, such as memorizing nogood states
or estimating goals reachability. In addition, the planner im-
plements two different techniques to avoid enumerating some
equivalent action sequences. Empirical evaluation shows that
our system is very competitive on many problems, especially
compared to other optimal sequential planners.

Introduction
In the domain of planning, many approaches first convert
the problem into other formalisms of Artificial Intelligence.
Generally, a bound on the length of the searched plan is
specified, so that the problem is in NP. The first systems
based on these ideas used SAT encodings of the problems,
and required SAT solvers. The relative success of these ap-
proaches has led researchers to work on even better SAT en-
codings (Kautz & Selman 1999), and to explore other for-
malisms such as Integer Programming (Vossenet al. 1999)
or Constraint Satisfaction (van Beek & Chen 1999).

We propose in this paper a new constraint satisfaction
approach for planning. Usually planning as constraint sat-
isfaction consists in translating a planning problem into a
CSP, and then in using a CSP solver to search for a solu-
tion. The performances of the system depends on the CSP
encoding and on the efficiency of the solver. The encod-
ing may be either hand-made, as in CPLAN (van Beek &
Chen 1999), or automatically generated, often starting from
the well-known planning graph of Graphplan (Blum & Furst
1995), as in GP-CSP (Do & Kambhampati 2001). Most
systems generatemutual exclusion constraints, which help
to reduce the search space, the way BLACKBOX (Kautz &

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Selman 1999) orSATPLAN did with SAT encodings. Re-
cent systems generate even more constraints, deriving the
CSP encoding directly from the problem definition (Lopez
& Bacchus 2003). Although these approaches enable the use
of up-to-date solvers, heuristics rules and pruning properties
which are specific to the domain are not easily coded.

In fact, some systems handle SAT/CSP encodings but
do not use external solvers, thus controlling completely the
search. For instance, Rintanen planning algorithm (Rinta-
nen 1998) performs undirectional search on a SAT encod-
ing. The system generates new clauses which representin-
variants, and which help to better propagate assignments
of the propositional variables.DPPLAN (Baioletti, Marcug-
ini, & Milani 2000) works also on a SAT encoding of the
planning graph, implementing a specific Davis and Putnam
search procedure with different strategies.

The planning system which is described in this paper
search for optimal sequential plans. It combines constraint
satisfaction techniques like arc-consistency, with specific
planning techniques, that help to prune the search space. The
planner works on a structure similar to a planning graph.
This structure is incrementally extended until a solution is
found or a fixed bound on the length of the plan is reached.
To improve the search, state-space planning heuristics may
be employed, e.g. (Haslum, Bonet, & Geffner 2005; Hoff-
mann & Nebel 2001). Furthermore the consistency rules and
the filtering procedure are compatible with any decomposi-
tion mechanism of the structure. Hence, it is possible to per-
form undirectional search just as well any other approach
to planning as constraint satisfaction or satisfiability do,
e.g. (Rintanen 1998; Baioletti, Marcugini, & Milani 2000;
Lopez & Bacchus 2003).

Our search procedure is complete in the sense that the
solutions are optimal plans (that is they are minimal in the
number of actions since our planner generates only sequen-
tial plans). This feature is quite rare for nowadays plan-
ners, e.g. (Hoffmann & Nebel 2001; Blum & Furst 1995;
Do & Kambhampati 2001), but may be of interest for some
applications, in particular when the actions have costs. A fu-
ture development of this work will take into account valued
actions, so as to produce plans with minimal costs.

The paper is organized as follows: first we define the plan-
ning structure on which the system works, then we introduce
the consistency rules and we present the filtering procedure,

next the search procedure and some techniques to reduce the
search space are described. Finally, we present some exper-
imental results that show the competitiveness of our planner
compared to other optimal sequential planners, and we con-
clude with some future developments.

Framework and problem representation
The purpose of planning is to find aplan, which is a set
of actions taken in a given setA and an (partial or total)
ordering of them, such that the execution in a giveninitial
stateI of any sequence of the plan’s actions according to the
ordering achieves givengoalsG.

Definition 1 (Planning Problem) A planning problemP is
a 4-tuple(A, I, G, L) whereA is a set of actions,I is the
initial state,G are the goals, andL is the set of all the liter-
als constructed from any proposition that occur inI, G and
in A (in positive or negative form).

I andG are conjunctions of literals andI is interpreted
according to theclosed world assumption. The actions are
grounded (but the input language isPDDL with typing and
equality) : Every actiona ∈ A is described by its precondi-
tionspre(a), and its effectseff(a). pre(a) is a set of literals
that must be true fora to be applicable, andeff(a) is a set of
literals thata makes true.

Nowadays, many planners return a solution plan as a se-
quence of actions sets, where the actions of the same set
can be executed in any order, even in parallel. The planner
we present produces plans as totally ordered sequences of
actions that are optimal in terms of the number of actions,
what is usually not guaranteed by parallel approaches. The
system makes use of special CSP-like representations to find
valid plans of a given length, calledplanning-structures.

Definition 2 (planning-structure) Given a planning prob-
lemP = (A, I, G, L), let define a planning-structure forP
as a 4-tuple〈k, Va, Vl, d〉, where:

• k is the size of the planning-structure,
• Va = {y0, . . . , yk−1} is a set ofaction variables,
• Vl = {xi,l}0≤i≤k,l∈L is a set of literal variables,
• d is a function returning the variables domains :

– ∀yi ∈ Va, d(yi) ⊆ A, is denotedAi,
– ∀xi,l ∈ Vl, d(xi,l) ⊆ {>,⊥}, is denotedDi,l.

A planning-substructure of 〈k, Va, Vl, d〉 is a
4-tuple 〈k, Va, Vl, d

′〉 such that for eachx ∈ Va ∪ Vl,
d′(x) ⊆ d(x).

Any literal variable whose domain is{>,⊥} is unde-
fined. If v is the value> (resp.⊥), its opposite– denoted
opposite(v) – is the value⊥ (resp.>). A planning-structure
can be viewed as a graph similar to a planning graph (Blum
& Furst 1995). It is a leveled graph that alternatesliteral
levelsandactions levels. The i-th literal level, denotedFi,
represents the validity of all the literals at stepi: it is the
set of the literal variables{xi,l}l∈L. It is important to note
that there is a close relationship between any literal variable
in a level and the variable representing its opposite in the
same level. Indeed, for anyxi,l with domainDi,l, the do-
mainDi,¬l of xi,¬l should be{opposite(v) | v ∈ Di,l} (see

definitions 3.3 and 4.1). Astateis then defined as any literal
level whose literal variables are assigned a value. Thei-th
actions levelAi represents the possible values for the action
that is to be applied at stepi. Note that a planning-structure
does not containno-opactions.

Definition 3 (Valid Plan) A valid plan for the planning-
structure〈k, Va, Vl, d〉 is an assignmentθ of the variables
in Va ∪ Vl such that:

1. ∀yi ∈ Va, θ(yi) ∈ Ai,

2. ∀xi,l ∈ Vl, θ(xi,l) ∈ Di,l,

3. ∀xi,l ∈ Vl, θ(xi,¬l) = opposite(θ(xi,l)),
4. ∀l ∈ I, θ(x0,l) = >, and∀p 6∈ I, θ(x0,p) = ⊥, wherep

is a proposition
5. ∀l ∈ G, θ(xk,l) = >,

6. ∀yi ∈ Va,∀l ∈ pre(θ(yi)), θ(xi,l) = >,

7. ∀yi ∈ Va,∀l ∈ eff(θ(yi)), θ(xi+1,l) = >,

8. ∀l ∈ L, if θ(xi,l) 6= θ(xi+1,l) then l ∈ eff(θ(yi)) or
¬l ∈ eff(θ(yi)).

Searching for an optimal sequential plan consists in
searching for a valid plan with the smallestk.

Consistent planning-structures
Given a planning-structure, consistency rules aim to remove
values in the variables domains that cannot occur in any
valid plan. For example an action whose one precondition
can’t be true should not be considered, and then can be re-
moved without loss of completeness.

These built-in rules capture all the axioms of satisfiability
approaches to sequential planning. They correspond roughly
to the propagation rules ofDPPLAN, with the major differ-
ence thatDPPLAN is a parallel planner (which does not have
the same heuristics for reducing the search space).

Definition 4 (Inconsistent values of literal variables)
Given the planning-structure〈k, Va, Vl, d〉, the value> for
the literal variablexi,l ∈ Vl is inconsistent if any of the
following situations holds:

1. (logical consistency)0 < i ≤ k,⊥ 6∈ Di,¬l

2. (forward persistence)
0 < i ≤ k,> 6∈ Di−1,l and ∀a ∈ Ai−1, l 6∈ eff(a),

3. (all actions delete)0 < i ≤ k, ∀a ∈ Ai−1, ¬l ∈ eff(a),
4. (backward persistence)

0 ≤ i < k,> 6∈ Di+1,l and ∀a ∈ Ai, ¬l 6∈ eff(a),
5. (opposite always required)

0 ≤ i < k, ∀a ∈ Ai, ¬l ∈ pre(a)

One can note that the fifth rule does not exist inDPPLAN.

Definition 5 (Inconsistent values of action variables)
The valuea ∈ Ai for the action variableyi ∈ Va is
inconsistent if one of the following situations holds:

1. (falsified precondition)
∃l ∈ pre(a) such that> 6∈ Di,l,

2. (falsified effects)
∃l ∈ eff(a) such that> 6∈ Di+1,l,

3. (effect required)
∃l ∈ L such that> 6∈ Di,l,⊥ 6∈ Di+1,l andl 6∈ eff(a).

In the following we will distinguish values for literal vari-
ables with those of action variables only when necessary. A
value that is not inconsistent is consistent. One can note that
the third rule does not exist inDPPLAN since it is a parallel
planner.

Definition 6 (Consistent planning-structure) A planning-
structure〈k, Va, Vl, d〉 is consistentif and only if:

1. no domain values are inconsistent
2. no domains are empty

Property 1 (Consistency in a valid plan) Given a valid
plan θ for a planning-structure〈k, Va, Vl, d〉, then for each
x ∈ Va ∪ Vl the valueθ(x) is consistent.

Property 2 (Largest consistent substructure)A plan-
ning-structureS is equivalent (i.e. represents the same
valid plans) to its largest consistent substructureS′ if one
exists, and this substructure is unique. If no consistent
substructure exists then there is no valid plans forS.

Formalizing planning-structures as constraint satisfac-
tion problems is feasible, for example making use ofn-
ary constraints or dynamic CSP (van Beek & Chen 1999;
Do & Kambhampati 2001). Since our objective here is
just to reduce the structure removing inconsistent values, we
make the choice to use specific representation and filtering
procedures.

Filtering inconsistent values and actions
Making a planning-structure consistent consists in removing
inconsistent values until none exists or a domain becomes
empty. The functionMakeConsistent(not detailed in this
paper) makes the necessary removals in a given planning-
structure and returns eitherTRUE or FALSE whether the
planning-structure is consistent or not. Similarly to arc con-
sistency enforcing procedures in the domain of constraint
satisfaction (Mackworth 1977), the“values to remove”el-
ements are stored in a queueH. Until H is empty, an ele-
ment is extracted, the corresponding value is removed, and
the values which become inconsistent because of this dele-
tion are enqueued inH. The inconsistency rules are used
to detect these new inconsistencies (cf. definitions 4 and 5).
Maintaining counters and lists for actions preconditions and
effects and for literals allows to efficiently detect new incon-
sistencies. The removals are then propagated forward and
backward through the planning-structure.

If a domain becomes empty, the function stops and returns
FALSE. In the other case the function stops with a consistent
planning-structureS.

Search procedure and search space reduction
We now present the current search procedure. The system
starts searching from a planning-structure of length 1 and
increments its length until a plan is found or a given fixed
bound is reached. One can note that an improvement of the
procedure would be to start searching from an initial length
larger than 1, and to extend the structure with more than

one step after a failure. This can be achieved for example
by using the (additive)hm family of heuristics (Haslum &
Geffner 2000; Haslum, Bonet, & Geffner 2005). This will
be addressed in a future work.

When searching for a plan of lengthk, a planning-
structureS of lengthk is constructed. Initially each action
set ofS is set toA, and each literal variable is undefined.
Then, the values which are not in the initial state and the op-
posites of the goals are removed and a preliminary filtering
is performed onS. If S is inconsistent then the search stops
with failure, there is no plan of lengthk. In the other case the
function Search-Planis called with the planning-structure
S. This function returnsTRUE if the planning structure con-
tains a valid plan, and returnsFALSE otherwise.

A divide and conquerapproach is employed to search for
a plan in the planning-structure: The structure is decom-
posed into smaller substructures and the procedure searches
recursively each of them. The substructures are systemati-
cally filtered, in order to detect failures as soon as possible.
Several decomposition procedures have been experimented,
such asenumerating actions, assigning literal variablesor
splitting action sets. The latter gives the best results. Split-
ting consists in partitioning a set of actions so as to put to-
gether actions which have deletions in common. The split-
ting procedure search for an undefined literal variable such
that the number of actions that delete it and the number of
actions that do not are as close as possible. The structureS
is decomposed into two substructures corresponding to the
partition of an action set (line 12), and each substructure is
searched recursively (line 13 and line 15).

In fact, Search-Plan is a depth first iterative deepening
search, since it always chooses the first non singleton action
set for splitting, starting from the initial state (loop line 3 to
line 11). This ensures the optimality of the solution plan if
one exists. Then the current partial plan is extended step by
step until the planning-structure becomes inconsistent or a
valid plan is found (line 4: SinceS is consistent, if all the
action sets are singletons then no literal variables are unde-
fined inS, andS is a plan).

We now explain some techniques for pruning the search
space.

Nogood recording
During the search, each time a state is encountered and
the current call returns failure, this state is memorized as
a nogood in a hash-table. The distancek − i from Fi+1

to the final state is also memorized. Indeed, it is always
possible that the stateFi+1 could be extended to a valid
plan if there were more steps. WheneverFi+1 will be en-
countered at the distance less than or equal tok − i to
the final state the search will be aborted (line 6). No-
goods are preserved each time the structure is extended.
In addition, the memorization is done before the result of
the current call is established (line 8). Memorizing no-
goods improves drastically the performances of the search
as it does in many other planners (Blum & Furst 1995;
Kambhampati 2000). A possible improvement would be to
restrict the memorization to the literals which are involved
in the failures.

functionSearch-Plan(i, S, k)
{S is ak-steps structure}
{i is the current step (A0, . . . , Ai−1 are singletons)}
1 if not MakeConsistent(S) then
2 return FALSE.
3 while |Ai| = 1 do
4 if i = k − 1 then
5 return TRUE, (S is a valid plan)
6 if 〈Fi+1, k − i〉 ∈ NoGoodsthen
7 return FALSE,
8 NoGoods := NoGoods∪{〈Fi+1, k − i〉},
9 if GoalsAreUnreachable(S, i + 1, k) then
10 return FALSE,
11 i := i + 1,
12 〈A′, A′′〉 := SplitActionSet(Ai),
13 if Search-Plan(i, SAi←A′ , k) then
14 return TRUE,
15 if Search-Plan(i, SAi←A′′ , k) then
16 return TRUE,
17 return FALSE.

Estimating goals reachability
Anytime a literal levelFi is a state, the system checks if the
goals are possibly achievable. It is done by selecting at each
of the remaining steps the action which adds the most goals
which are not inFi. If the total number of goals added by the
selected actions is less than the number of missing goals at
stepi, then it is not possible to achieve all the goals and the
search procedure backtracks (line 9).GoalsAreUnreach-
able returnsTRUE if it can prove that achieving all the goals
from the current state is not possible.

Mutually exclusive literals and actions
Most planning systems take benefit from mutual exclusions
constraints between literals and between actions. Our cur-
rent implementation does not use such constraints. In se-
quential planning, the actions are mutually exclusive. Mu-
tual exclusion of literals may receive a particular attention.
Indeed, if two literalsl andl′ are marked as being mutually
exclusive in the sense of GRAPHPLAN, then the current fil-
tering process removes value> of l wheneverl′ is assigned
the value>. However, they may be of interest in our scope
as they can be used to remove actions that have mutually ex-
clusive preconditions. This will be addressed in the future.

Equivalent action sequences
Since the system constructs sequential plans, it can enumer-
ate equivalent permutations of actions (that is sequences of
actions which produce the same state, starting from a given
state) and perform as many redundant searches. To cope
with this problem, we experiment two different techniques.
With the first one, called2-sequence ordering, sequences
which contain two successive actions which are “indepen-
dent” and that do not respect an arbitrary order are discarded.
With the second one, calledlevel ordering, plans are viewed
as series of sequences of independent actions. Each action
is constrained to have a “predecessor”, that is an action with

which it is not independent, within the previous sequence.
We first introduce the notion of admissible 2-sequence.

Definition 7 (Admissible 2-sequence)The sequence of ac-
tions(a, a′) is admissible if and only if one of the following
situations holds:

1. ∃l ∈ pre(a) such that¬l ∈ eff(a′),
2. ∃l ∈ eff(a) such that¬l ∈ eff(a′),
3. ∃l ∈ eff(a) such thatl ∈ pre(a′),
In the situation1 the sequence(a′, a) is not valid, and then
the sequence(a, a′) must be considered. In the situation2,
a anda′ have some opposite effects, and then the sequences
(a, a′) and(a′, a) are not equivalent. In situation3 the se-
quence(a′, a) may be inapplicable and for completeness the
sequence(a, a′) must be considered.

Admissible 2-sequences represent a sort of dependence
between the actions. In particular an admissible 2-sequence
is not equivalent to the inverse sequence. This notion is close
to the relation of interference for mutual exclusive actions
(see (Blum & Furst 1995) for example). Interference is not
sufficient for our purpose since we can’t discard sequences
in situation3. It is also related tocommutativity pruning
(Haslum & Geffner 2000).

Definition 8 (Ordered 2-sequence)The sequence(a, a′) is
an ordered 2-sequence if and only ifa and a′ are not the
opposite one of the other, and either the sequence(a, a′) is
admissible or both(a, a′) and(a′, a) are not admissible and
a ≺ a′.

The 2-sequence ordering constraint is applied each time
an action setAi is reduced to a singleton. The actions at
stepsi−1 andi+1 which do not form valid sequences with
the action at stepi are removed. This filtering is not costly:
the status of each pair of actions (either ordered 2-sequence
or not) is computed once for all before the search starts and
memorized in a table.

However, 2-sequence ordering is not efficient with equiv-
alent permutations of more than two actions: consider for
example three actionsa1, a2, anda3 such thata1 ≺ a2 ≺
a3, and such that(a3, a1) is admissible, but none of the
sequences(a1, a2), (a2, a1), (a2, a3) and (a3, a2) are ad-
missible (in other wordsa1 and a2 are independent, and
so area2 and a3). The sequencess1 = (a3, a1, a2) and
s2 = (a2, a3, a1) are equivalent, and both satisfy the 2-
sequence ordering constraint. To tackle this problem we pro-
pose another approach called level ordering. First we define
the predecessors and the level of an action.

Definition 9 (Predecessors and level of an action)The
actiona is a predecessorof the actiona′ if either (a, a′) is
admissible, or

4. ∃l ∈ pre(a) such that¬l ∈ pre(a′),
PRED(a) denotes the set of the predecessors of the actiona.

The level of the action ai in the sequences =
(a1, . . . , an), denotedlevels(ai), is recursively defined as
follows: if E = {a1, . . . , ai−1} ∩ PRED(ai) is empty then
levels(ai) = 1 else

levels(ai) = 1 + max
a∈E

levels(a)

The precedence relation extends the notion of admissible
2-sequence. In the previous example the levels of the ac-
tions of the sequencess1 ands2 are respectively(1, 2, 1) and
(1, 1, 2). Note that moving backward an action in a plan un-
til one of its predecessors is encountered gives a plan which
is equivalent.

Definition 10 (Level-ordered sequences)The sequence
(a1, . . . , an) is level-orderedif any two consecutive actions
ai andai+1 verify level(ai) ≤ level(ai+1) and, in the case
level(ai) = level(ai+1), thenai ≺ ai+1.

A level-ordered sequence can be splitted intok consec-
utive subsequencess1, s2, . . . , sk, such that each sequence
si contains only actions whose level isi. Any action in a
subsequencesi has a predecessor in the sequencesi−1. As
the actions within each subsequence are≺-ordered, all the
permutations but one of the subsequence are discarded.

The level ordering constraint is applied each time a new
partial plan is constructed. If for instance, the planning-
structure begins with ai-step plan (i.e. the action sets
A0, . . . , Ai−1 are singletons), then the actions inAi whose
levels are less than the level of the action at stepi − 1 are
removed.

Relevant literals and actions
Searching for optimal plans, the actions which do not help
effectively to achieve the goals are useless and should not be
considered. In particular, this is the case of actions of the last
step not adding goals. This property propagates backwards
through the planning-structure.

Definition 11 (Relevant literals and actions) In a given
planning-structure〈k, Va, Vl, d〉, relevant actionsand rele-
vant literalsare recursively defined as follows:

1. each goal inG is relevant at stepk,
2. a literal l is relevant at stepi if either it is relevant at step

i + 1 or there exists an actiona ∈ Ai such thatl is a
precondition ofa anda is relevant at stepi,

3. an actiona is relevant at stepi if one of its effects is rele-
vant at stepi + 1.

Actions that are not relevant at a given step are removed
from this step as it could not serve in a minimal solution. It
is quite a standard technique in AI planning. However, the
relevance of the literals and actions is maintained during the
search when removals are performed. Actions which loose
their relevance are then removed.

Experimental results
We have compared our planner with some other planners
on classical benchmark problems and International Plan-
ning Competition problems (IPC3, IPC4 and IPC5). We
present here a very limited selection of problems (see
http://www.lsis.org/fdp/ for the full list of re-
sults). The objective is to exhibit the behavior of our planner
according to the characteristics of the problems and to evalu-
ate the interest of equivalent sequences discarding. For each
instance the numbers of actions and facts of the planning-
structure are listed (Figure 1). We also report the lengths of

the optimal sequential plans and the makespans, that is the
lengths of the optimal parallel plans. The makespans were
obtained withSATPLAN (Kautz & Selman 1999) that we run
with the Siege V4 SAT solver. All planners were run on the
same machine with a timeout of 10,000 seconds.

Three versions of our planner have been tested: with
2-sequence ordering constraints, with level ordering con-
straints, and with no ordering constraints. For each ver-
sion the total numbers of calls of the functionSearch-Plan
and the total computation times are listed. We have also re-
ported the results ofBFHSP (Zhou & Hansen 2004) with a
backward search (h3max option) andBFHSPwith a forward
search (h1max option), sinceBFHSP is at the moment one
of the most impressive sequential planner. Instances which
have resulted in some errors or timeout exceeding are re-
ported with –.

In all cases the ordering constraints help to prune the
search space, except for the xy-world problem. This prob-
lem is rather particular since its solutions involve only non-
interfering actions. Then 2-sequence ordering discards all
but one permutation of the actions of the solution. Each bad
choice for the first action will inevitably lead to a dead-end.

In few problems discarding equivalent sequences is more
costly in time. This is the case when there is a great number
of actions (see for example Mystery problems and PSR p25
problem). Indeed, ordered 2-sequences and predecessors of
actions are computed before the search, and these compu-
tations may be costlyO(|A|2). This is also the case when
ordering constraints are not efficient, because too many se-
quences are accepted. For example problems in which most
actions interfere will produce soft ordering constraints.

The 2-sequence ordering constraint is generally better
than the level ordering constraint. In fact they produce a
similar decrease of the number of calls, but in computation
time their efficiency is not comparable: testing level order-
ing is costly since the actions at the preceding steps must be
tested, while 2-sequence constraints are easy to test.

Our planner performs generally better thanBFHSP, spe-
cially for problems with a large number of operators and
propositions but short plans, as the mystery domains. On
these problems it seems that a breadth-first search will spend
a significant amount of time to compute huge layers of
states. On the contrary, when there are few actions and long
plans, as in Hanoi and FreeCell,BFHSPplanners dominate.

Of course, in general, parallel planners perform better
than sequential planners. In fact, optimal parallel planners
and optimal sequential planners are not comparable, as they
do not search for the same optimality, and parallel plans are
shorter than sequential plans. However, we have reported the
results ofSATPLAN since they serve as a reference. Though,
when there are many actions or large makespans and the
actions interfere (see for example Mystery, Hanoi or some
PSR problems),SATPLAN generates large formulas which
are hard to solve and overload the memory.

Finally the main advantage of the planner that we present
in this paper is its regularity. Computation times increase
gradually while the problems become harder.

serie problem actions facts length makespan
no ordering 2-seq ordering level ordering bfhsp bfhsp

satplan
calls time calls time calls time back forw

divers

hanoi7 238 94 127 572128 22.1 243271 17.1 243095 17.3 – – –

mystery-x-19 6521 562 6 6 3622 2.2 939 9.8 1087 24.3 736.4 99.7 12.04

mystery-x-20 7094 575 7 7 14569 5.17 2045 12.9 2555 31.05 1473 315.4 38.1

xy-world-f10 200 40 10 1 2668 0.04 194314 1.59 429714 3.84 63.7 249.9 0.03

IPC3

driverlog-3-3-6 252 93 13 6 1327338 23.1 458658 15.3 382279 15.7 1.61 664.3 0.07

zeno-travel-2-5 392 58 11 5 1589396 27.07 474647 11.1 431527 13.03 1.54 298.2 2.41

zeno-travel-2-6 408 64 15 6 1663353 28.1 718539 18.4 587468 19.6 10.8 773.2 0.87

IPC4

airport-p08 295 443 62 26 1018914 196.6 280170 46.6 290080 55.3 82.5 30.6 1.42

airport-p14 347 493 60 26 938428 209.2 261852 49.2 272277 59.5 125.6 33.7 1.94

PSR-p25 9400 58 9 9 4366 12.2 1063 21.5 989 52.3 17.02 63.8 129.2

PSR-p31 661 63 19 16 357316 21.9 123109 11.6 135203 14.2 3.59 256.4 9.37

PSR-p46 98 60 34 2051278 26.4 1355273 19.2 1611002 26.8 918.6 66.6 –

IPC5

pipesworld-p04 656 154 11 11 389901 33.7 203215 24.1 218205 29.6 – 631.7 384.7

pipesworld-p08 2672 204 11 7 5111567 959.3 3333348 857.7 3278869 1244 – – 273.2

pipesworld-p21 3272 376 14 1464159 594.3 412206 223.8 480791 285.1 – – –

storage-p11 460 146 17 11 1036518 41.2 340937 21.04 304312 19.3 359.1 85.3 332.1

storage-p12 690 164 16 9 5148404 256.3 1890755 142.3 1680587 135.7 3833 1479 53.1

storage-p14 564 203 19 11 8466543 368.5 6976067 421.8 6278393 391.1 4592 5076 294.3

truck-p02 336 117 17 14 45283 0.8 27058 0.72 30652 0.72 1.26 3.98 21.3

truck-p03 789 191 20 16 1276518 29.2 686433 23.4 850036 25.7 21.5 406.5 191.2

truck-p07 1104 275 23 18345815 510.1 10756026 443.8 11679349 422.5 154.6 5837 –

Figure 1: CPU times for different planners on a serie of selected problems (times are in seconds
on a Linux computer with a Pentium 3 GHz processor, and 1 GB RAM).

Conclusion and perspectives
We described in this paper a new planner which builds opti-
mal sequential plans. Compared to other optimal sequen-
tial planners it seems to be very competitive. Its consis-
tency rules and its decomposition strategies allow to operate
backward chaining search or bidirectional search and more
generally undirectional search. This planner should be im-
proved implementing backjumping, and we should also ex-
periment a concurrent bidirectional search which could co-
operate through valid and invalid states. The lack of termina-
tion criterion will be also addressed in future work. Finally
valued actions could be handled, with the objective to com-
pute plans of minimal costs. Also, planning with ressource
will be a matter of development.

Acknowledgments
We thank the anonymous reviewers for their usefull com-
ments and suggestions.

References
Baioletti, M.; Marcugini, S.; and Milani, A. 2000. Dpplan:
An algorithm for fast solutions extraction from a planning
graph. InAIPS, 13–21.

Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. InProceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
95), 1636–1642.

Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning graph by compil-
ing it into CSP.Artif. Intell. 132(2):151–182.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InAIPS, 140–149.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New ad-
missible heuristics for domain-independent planning. In
Veloso, M. M., and Kambhampati, S., eds.,AAAI, 1163–
1168. AAAI Press AAAI Press / The MIT Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.
Kambhampati, S. 2000. Planning graph as a (dynamic)
CSP: Exploiting EBL, DDB and other CSP search tech-
niques in graphplan.Journal of AI Research12(1):1–34.
Kautz, H. A., and Selman, B. 1999. Unifying sat-based
and graph-based planning. InIJCAI, 318–325.
Lopez, A., and Bacchus, F. 2003. Generalizing graphplan
by formulating planning as a CSP. In Gottlob, G., and
Walsh, T., eds.,IJCAI, 954–960. Morgan Kaufmann.
Mackworth, A. 1977. Consistency in networks of relations.
In Artificial Intelligence, 8:99–118.
Rintanen, J. 1998. A planning algorithm not based on
directional search. InKR, 617–625.
van Beek, P., and Chen, X. 1999. Cplan: A constraint
programming approach to planning. InAAAI/IAAI, 585–
590.
Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. S. 1999. On
the use of integer programming models in ai planning. In
IJCAI, 304–309.
Zhou, R., and Hansen, E. A. 2004. Breadth-first heuristic
search. In Zilberstein, S.; Koehler, J.; and Koenig, S., eds.,
ICAPS, 92–100. AAAI.

