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Abstract

In the domain of planning, searching for optimal
plans gives rise to many works. Most of the exist-
ing planners search for optimal parallel plans, that
is plans which are optimal in the number of steps.
FDP is an exception: it searches for optimal sequen-
tial plans, that is plans which are optimal in the
number of actions. FDP implements a depth-first
iterative-deepening search, using a CSP-like structure,
decomposition rules, and filtering techniques similar to
consistency-enforcing techniques.

We propose a new planner based on FDP, which gen-
erates optimal parallel plans. This planner has been
compared on a set of selected problems with the well-
known optimal parallel planner SATPLAN, and with
the planner FDP, so as to analyse the effects of the
optimization criteria in the performances.

1. Introduction

Searching optimal plans solving SAT formulas or
constraint satisfaction problems (CSP) is a commonly
used approach. Some planners use external solvers,
and can take advantage of solvers improvments, see
SATPLAN [7] or Gp-Csp [4] for example, or enhance
generic solvers with specific strategies like MAXPLAN
[10]. Others use their own engine like dpplan [1] or J.
Rintanen[11], thus controlling completely the search.
FDP [5] belongs to this second category: it com-
bines constraint satisfaction and planning specific tech-
niques. Simple rules propagate removals during the
search, as consistency enforcing procedures do, while
heuristics help to detect dead-ends. FDP distinguishes
from other planners since it searches sequential opti-
mal plans. Intuitively this optimization criteria should

make the search less efficient, since the plans are longer.
In fact FDP uses an ordering constraint which aims to
avoid redundant searches, discarding equivalent action
sequences. Is this constraint efficient and can it bridge
the gap are open questions.

FDP iterative-deepening strategy and removals
propagation procedure can easily be adapted to op-
timal parallel planning. We have implemented this ap-
proach. The aim of this work was, first to compare
FDP approach with parallel planners with the same
optimization criteria (at IPC-5 FDP competes against
parallel planners), and secondly to analyse the effects
of the optimization criteria on the performances.

In this paper we address STRIPS1-like proposition-
nal planning problems. A problem consists, given a set
of actions A, to find a sequence of compatible actions
sets called a plan, which achieves the goals of a given
set G when executed in a given initial state I. The ac-
tions are defined by their preconditions and effects ; the
preconditions are signed fluents, and the effects are ad-
ditions and deletions of fluents. Two actions are com-
patible if none of them deletes a precondition or an
addition of the other, or adds a fluent which is a nega-
tive precondition of the other. The transition states are
constructed starting from the initial state, adding the
actions additions and removing their deletions. Fluents
which are not int the effects of the actions remain un-
changed. F denotes the set of the fluents which occur
in I, G and in the definitions of the actions. A plan is
optimal if there is no shorter plan.

In the first part of this paper we present the plan-
ner FDP. Then we define the planning-structures that
represent the planning problems and we introduce the
consistency rules. Finally we describe a search pro-
cedure for optimal parallel plans, and we report some
experimental results.
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2. FDP

Depth-first iterative-deepening [8] is a well-known
strategy for finding optimal solutions in a state
space. The algorithm consists in performing succes-
sive searches at limited depths, while no solution is
encountered. The bound of the depth is incremented
after each unsuccessfull search. Starting with a null
initial bound guarantees that the first solution found
is optimal. This approach is well suited for planning:
states transitions correspond to the actions executions.

FDP implements a depth-first iterative-deepening
strategy to search for optimal sequential plans. When
searching for a plan of a given length k, FDP uses
a CSP-like structure, a specific search procedure, and
techniques closed to consistency enforcing procedures
to propagate removals[9]. In FDP, the variables are as-
signed in a predefined order, starting from the initial
state and progressing step by step towards the final
state. This corresponds to the usual choice when as-
signing variables in a CSP, since the most constrained
variables are the closest to the initial state. FDP then
performs a forward chaining search: at each step one
action is selected. After each assignment, inconsistent
values are removed, and an heuristic helps to determine
if the goals are reachable or not. To avoid redundant
searches, independent actions which occurs consecu-
tively have to respect a given ordering. Finally unsuc-
cessfull searches are memorized. For further details we
let the reader see [5].

3. Planning structures

Searching for a parallel plan of length k consists in
fixing or removing actions in a planning-structure of
length k (contrarily to FDP where only one action is se-
lected at each step). Our planning-structures, like FDP
planning-structures, are closed to Graphplan planning
graph [2]. A planning-structure S is a set of variables
organized into levels, that represent the fluents and the
actions at each step of the plan. A planning-structure
of size k comprises k + 1 levels of facts variables, and
k levels of actions variables. At each step i and for
each fluent f ∈ F , a variable indicates if f is true,
false or undefined at step i. At each step i and for
each action a ∈ A, a variable indicates if a is possible,
fixed or removed at step i. Levels are numbered from
0 to k for facts variables and from 1 to k for actions
variables. Ai denotes the set of the possible actions at
step i. Xi denotes the set of the fixed actions at step
i. T (resp. F) designates the value true (resp. false)
of fact variables. For convenience we will say that the

fact f is true (resp. false) at step i if the value of the
corresponding variable is true (resp. false).

Definition 1 (valid plan) A valid plan of length k is
a planning-structure S such that:

• the facts which are true (resp. false) in I are true
(resp. false) at step 0 in S,

• the goals of G are true at step k in S,

• at each step i, i > 0, the actions which are not
removed are fixed, their preconditions are true at
step i− 1 and their additions (resp. deletions) are
true (resp. false) at step i,

• at each step i, i < k, each fact f which is true
(resp. false) and which is not a deletion (resp. an
addition) of a fixed action at step i + 1, is true
(resp. false) at step i + 1,

• at each step i, fixed actions are compatible each
other.

Since the initial state is fully instantiated and ac-
tions at a same step have no opposite effects, then fact
variables are defined at each step of a valid plan. One
will easily verify from the definition that a valid plan
is a solution for the planning problem and that to any
solution plan corresponds a unique valid plan.

During the search some values are removed and
these removals may propagate through the structure.
For example, the deletion of the precondition of an ac-
tion at step i implies that this action will be useless
at step i + 1, and then may be removed with no effect
on the result of the search. Such values are said to be
inconsistent.

Definition 2 (inconsistent values) Given a
planning-structure of size k and a fact f ∈ F ,
the value T (resp. F) of the variable corresponding
to f at step i is inconsistent if one of the following
conditions holds:

• i > 0 and ∃a ∈ Xi s.t. a deletes f (resp. adds f),

• i ≤ k and ∃a ∈ Xi+1 s.t. a requires f to be false
(resp. to be true),

• i > 0, Xi = ∅ and ∀a ∈ Ai, a deletes f (resp. adds
f),

• i ≤ k, Xi+1 = ∅ and ∀a ∈ Ai+1, a requires f to be
false (resp. to be true),

• i > 0, f is false (resp. true) at step i− 1, and no
action in Xi ∪Ai adds f (resp. deletes f),

• i ≤ k, f is false (resp. true) at step i + 1 and no
action in Xi+1 ∪Ai+1 deletes f (resp. adds f).
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The action a is inconsistent at step i, i > 0, if one
of the following conditions holds:

• a precondition of a is falsified at step i− 1,

• ∃f ∈ F s. t. a adds f and f is false at step i,

• ∃f ∈ F s. t. a deletes f and f is true at step i,

• ∃a′ ∈ Xi s. t. a and a′ are incompatible.

A fact value or an action which is not inconsistent
is consistent.

The fourth rule for inconsistent values (if all actions
in Ai have a common precondition and Xi is empty then
the opposite of this precondition may be removed) is
specific compared to J. Rintanen [11] or dpplan [1]
approaches.

Definition 3 (consistent planning-structure) A
planning-structure is consistent if the actions and the
values of the fact variables are consistent.

As in FDP, during the search inconsistent actions
and fact values are discarded, changing the status of
the variables. The function Make-Consistent propa-
gates changes through the planning structure using the
consistency rules, as consistency enforcing procedures
do with CSP. The function stops either with a consis-
tent planning-structure and returns true, or because a
change is impossible (a fact variable should be true and
false), and returns false. In this last case no valid plan
may be extracted from the planning-structure. Note
that changes may propagate forward or backward in
the planning-structure.

4. Searching plans

The objective is to find optimal parallel plans, that
is plans which are minimal in the number of steps. The
main process starts searching in a planning-structure of
length one, then in a planning-structure of length two,
and so on, until a solution is found or a given bound is
reached (the system did not detect that no plan exists
at the moment). The function Search-Optimal-Plan
returns the minimal length of a plan for the problem
P , if one exists of length at most max. While no plan
is discovered, a planning-structure S of length k is con-
tructed whose fact variables are undefined and actions
variables are possible, the facts variable at the first step
are instanciated with the values of the facts in I, the
goals are fixed, and the removals are propagated. If the
planning-structure is consistent the function Search-
Plan is called to search a valid plan of length k.

function Search-Optimal-Plan(P,max)
{P is a planning problem}
1 for k := 1 to max do
2 S := Construct-Planning-Structure(P, k),
3 if Make-Consistent (S) then
4 if Search-Plan(S, k, 0) then
5 return k,
6 return NONE,

function Search-Plan(S, k, i)
{S is a k-steps planning-structure}
{Ai denotes the set of possible actions at step i in S}
1 if i = k then
2 return true,
3 else
4 return Choose-Actions (S, k, Ai, i),

function Choose-Actions(S, k, A, i)
{S is a k-steps planning-structure}
{Ai denotes the set of possible actions at step i in S}
1 if A ∩Ai = ∅ then
2 return Search-Plan(S, k, i + 1);
3 choose an action a ∈ A ∩Ai,
4 S′ := Fix-Action(a, i, S),
5 if Make-Consistent (S′) then
6 if Choose-Actions(S′, k, A− {a}, i) then
7 return true,
8 S′′ := Remove-Action(a, i, S),
9 if Make-Consistent (S′′) then
10 if Choose-Actions(S′′, k, A− {a}, i) then
11 return true,
12 return false.

Search-Plan performs a depth-first search, pro-
gressing forward from the first step. At each step i the
function Choose-Actions is called to choose the fixed
actions from the set Ai. The choice consists in fixing
(lines 4-7) or removing (lines 8-11) a possible action.
When there are no more possible action, the algorithm
proceeds to the next step. If the planning-structure
becomes inconsistent the procedure backtracks to pre-
vious choices. If the planning-structure becomes a valid
plan the search stops with success.

Fix-Action(a, i, S) fixes the action a at step i in
S: changes the status of the undefined preconditions
and effects of a and removes Ai actions which are not
compatible with a. Remove-Action(a, i, S) removes
the action a at step i in the planning-structure S.

Remark that when Search-Plan proceeds to the i-
th level of the planning-structure, the actions of the
previous steps are either fixed or removed. Since the
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initial state is fully instantiated and the fixed actions
at a same step are compatible, then the fact variables
before the step i are all true or false, defining a state.
Memorizing these states when the search is un success-
full or evaluating their capacity to achieve the goals are
well-known techniques to improve search efficiency.

Failures memorizing. As in FDP, failures are
memorized so as to avoid further similar searches: each
time Search-Plan returns failure, the state at the cur-
rent step is memorized in a hash table together with
the number of remaining steps. Next time this situa-
tion will be encountered, the procedure will backtrack
immediately. Note that if the planner did not perform
a forward search, the memorization of the invalid states
should be much more costly, since these states should
be only partially instanciated.

Detecting goals unreachability. FDP imple-
ments a procedure which computes, each time a new
level is explored, a maximal bound on the number of
unachieved goals which may be added at the remain-
ing steps. If the bound is less than the number of
unachieved goals then the goals are unreachable. We
have adapted this evaluation for parallel plans. For a
given size p, we enumerate at each remaining step i the
sets of compatible actions of size at most p (there are
O(|Ai|p) sets at step i). We consider the number of un-
achieved goals which may be added by such sets when
adding the remaining Ai actions compatible with its
actions, and then deduce a maximal bound of the num-
ber of unachieved goals additions at step i. The sum of
the bounds provides a criteria for goals unreachability.
This heuristic is admissible, but it is basic compared to
classic heuristics, see [6] for example. It focuses on the
number of goals, not considering the way they may be
achieved. It works well with sequential plans in which
many steps are necessary to add many goals.

Irrelevant actions. Actions at last step which add
no goal are useless for optimal solutions, and then can
be removed. This property propagates backward (see
[5]). As in FDP, irrelevant actions are removed from
the planning-structure before searching.

5. Experimental results

We have implemented the approach described in this
paper. In Figure 1 are reported the cpu times of FDP,
SATPLAN (with the Siege V4 SAT solver), DPPlan
(version 2.1), and different versions of our planner, de-
noted SPP, depending of the use of goals unreachability
detection: no detection, or detection with compatible
actions sets of size 1, 2 or 3. Experiments were all per-
formed on the same machine, a linux computer with a

Pentium 3 GHz processor and 1GB RAM, with a 1500
seconds timeout. Timeouts and planners crashes are
represented with a −−. Memory exceedings are indi-
cated with a m.e.. We have compared the planners on a
large selection of problems of IPC competitions (ICP3,
IPC4 and IPC5). We have listed here a selection of
problems which are representative of the different situ-
ations which were encountered. For each problem the
optimal length, the makespan, the number of facts and
the number of instanciated actions are reported.

First, one may notice that in most cases, length op-
timization is harder than makespan optimization. The-
oretically this is the case when the optimal sequential
plan is much longer than the parallel optimal one (at
the last step of the search, the size of the search space
is O(2nk

) for a parallel plan and O(nk) for a sequential
plan, where k is the length of the planning structure
and n the number of actions). Nervertheless there are
some exceptions, like PSR and Openstacks problems
and Storage-13. These are problems with few facts,
few actions, and large makespans. Openstacks prob-
lems and Storage-13 are particular since there is only
one action per step in their solutions. Parallel planners
are then penalized: they make useless verifications of
the compatibility between the actions, and FDP takes
advantage of its specific consistency rule which forces,
if the value of a fact f changes at step i, each possible
action at step i to have this change in its effects.

To evaluate the parallel version of FDP, we choose
SATPLAN as reference (it dominated among the op-
timal parallel planners at IPC-4 and IPC-5 planning
competitions). On many problems SATPLAN outper-
forms SPP. This can be explained by the increasing effi-
ciency of SAT solvers and their highly optimized imple-
mentations. In fact SPP results are good in the Freecell
serie, problems with a lot of actions, and Openstacks
problems, problems with few actions but long solutions.
Cpu times are very closed on Storage and Trucks prob-
lems. In all the other series SATPLAN is much better,
see PSR or Rover series for example. Compared to
SPP, DPPlan is less efficient on all problems exept on
a Rover problem, and the gap is sometimes very im-
portant. Since SPP and DPPlan approaches are very
closed, this is probably due to the fact that DPPlan
does not memorize failures during the search. We ob-
serve with SPP that this technique drastically improves
the search in many cases.

Finally Figure 1 reports the cpu times detecting
goals unreachability calculating the maximal numbers
of goals which may be added at each remaining step.
For very few problems (PSR series) the search has been
improved. Indeed the generation of the action sets is
very costly. Furthermore this heuristic causes very few
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problem actions facts span length fdp satplan dpplan spp 1-sets 2-sets 3-sets gain

Freecell3-4 1160 139 8 14 64.38 4.97 10.45 1.69 1.75 1.81 2.03 0.05
Freecell5-4 2086 225 13 – – m.e. 10.19 10.24 10.47 11.52 0.01
Freecell7-4 4943 318 15 – m.e. m.e. 354.49 354 358.57 382.26 0
Airport-14 347 493 26 60 59.23 2.96 28.71 3.17 3.2 3.18 3.18 0
Airport-16 498 630 27 – 5.86 – 42.17 42.18 42.14 42.08 0
Airport-19 488 840 30 – 13.06 – 391.37 385.92 387.65 385.39 0
PSR-S33 163 41 15 25 3.56 0.54 384.08 49.91 49.87 49.89 49.86 0
PSR-S37 112 56 25 33 39.44 17.46 – 162.68 157.3 125.68 122.39 27.36
PSR-S45 179 68 18 21 22.52 1.69 1222.78 1015.58 864.64 407.49 399.35 56.84
Openstacks-4 115 37 23 23 2.4 – – 3.82 4.01 4.63 5.04 4.12
Openstacks-8 115 37 23 23 2.39 – – 3.85 4.01 4.6 4.98 5.79
Pathways-4 153 120 8 17 2.37 0.12 6.43 0.03 0.04 0.04 0.04 0
Pathways-5 266 149 9 – 0.34 – 32.62 33.09 33.12 33.41 0
Rover-2435 148 113 7 – 0.07 0.04 3.39 3.52 4.47 9.22 0
Rover-2312 - 11 – 0.21 651.64 – – – –
Storage-9 390 115 7 11 0.97 0.55 24.48 0.43 0.45 0.64 1.85 3.1
Storage-11 460 146 11 17 21.16 95.58 – 14.95 15.41 25.83 141.96 0.46
Storage-12 690 164 9 16 136.53 37.52 – 64.36 66.25 162.48 1500
Storage-13 282 181 18 18 18.32 202.9 – 69.36 72.32 94.11 185.35 1.52
Storage-14 564 203 11 19 355.07 35.32 568.58 114.47 119.45 197.26 854.25 5.69
TPP-5 38 71 7 19 1.36 0.02 0.01 0.02 0.03 0.03 0.04 0
TPP-6 156 115 9 – 0.06 0.07 137.01 138.37 145.93 173.63 0
Truck-2 336 117 14 17 0.8 2.66 385.89 0.83 0.85 0.87 0.91 0
Truck-3 789 191 16 20 25.75 71.59 – 33.1 36.48 124.08 1314.9 0
Truck-4 936 226 18 23 1019.93 570.4 – 656.7 700.02 – –
Truck-7 1104 275 18 23 485.4 724.28 – 411.97 422.85 477.32 682.02 0

Figure 1: CPU times on a series of selected problems (times in seconds)

backtracks. The last column of the table contains the
percentages of gain of the total number of actions and
facts removals (this number is similar to the number of
constraints checks when solving CSP), when the 3-sets
heuristic is used. The gains are very low, and in many
cases the computation times for the heuristic are very
important (see storage series for example). The heuris-
tic produces important gains only in the PSR series,
in which SPP is really unefficient. Mutual exclusions
between actions should be considered to constrain the
compatible actions sets and to reinforce the heuristic.
This will be the taken into account in future work.

6. Conclusion and perspectives

At IPC-5 planning competition, FDP was the only
sequential planner to compete. It takes the second
place in three series. We have modified FDP search
engine so as to generate optimal parallel plans. The
experimental results that we report in this paper prove
that searching for optimal parallel plans is much eas-
ier than searching for optimal sequential plans. We
solved many instances which were not solved by FDP.
Compared with SATPLAN, our depth-first iterative-
deepening approach gives good results in some cases, in
particular when SATPLAN generates huge formulas.

Further developments will concern the combination
of parallel and sequential searches, so as to constrain
the number of actions and the number of steps. This
could serve to optimize parallel plans while limiting
the number of actions, or to minimize the number of

actions while limiting the number of steps, and could
compare with J. Rintanen approach [3].
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