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Abstract. The Orthogonal Packing Problem (OPP) consists in determining if
a set of items can be packed into a given container. This decision problem is
NP-complete. S. P. Fekete et al. modelled the problem in which the overlaps
between the objects in each dimension are represented by interval graphs. In this
paper we propose a SAT encoding of Fekete et al. characterization. Some results
are presented, and the efficiency of this approach is compared with other SAT
encodings.

1 Introduction

The multi-dimensional Orthogonal Packing Problem (OPP) consists in determining if
a set of items of known sizes can be packed in a given container. Although this prob-
lem is NP-complete, efficient algorithms are crucial since they may be used to solve
optimization problems like the strip packing problem, the bin-packing problem or the
optimization problem with a single container.

S.P. Fekete et al. introduced a new characterization for OPP [1]. For each dimen-
sion 4, a graph G represents the items overlaps in the i dimension. In these graphs,
the vertices represent the items. The authors proved that solving the d-dimensional or-
thogonal packing problem is equivalent to finding d graphs G, . . ., G4 such that (P1)
each graph G; is an interval graph , (P2) in each graph G, any stable set is i-feasible,
that is the sum of the sizes of its vertices is not greater than the size of the container
in dimension %, and (P3) there is no edge which occurs in each of the d graphs. They
propose a complete search procedure [1] which consists in enumerating all possible d
interval graphs, choosing for each edge in each graph if it belongs to the graph or not.
Initially all the graphs are empty. The condition (P3) is always satisfied, forbidding the
choice for any edge which occurs in d — 1 graphs in the remaining graph. Each time a
graph G; is an interval graph, the i-feasibility of its stable sets is verified, computing its
maximum weight stable set (the weights are the sizes of the items in the i dimension).
As soon as the three conditions are satisfied the search stops and the d graphs represent
then a class of equivalent solutions to the packing problem. Figure 1 shows an example
in two dimensions with two packings among many others corresponding to the same
pair of interval graphs.

There are very few SAT approaches for packing. In 2008 T. Soh et al. proposed a
SAT encoding for the strip packing problem in two dimensions (SPP) [2]. This problem
consists in finding the minimal height of a fixed width container containing all the items.
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Fig. 1. Two packings corresponding to the same interval graphs in a two-dimensional space

For that purpose they perform successive searches with different heights (selected with
a dichotomy search strategy). Each time, the decision problem is encoded in a SAT
formula which is solved with an external SAT solver (Minisat). In their formulation the
variables represent the exact positions of the items in the container. Additional variables
represent the relative positions of the items one with the others (on the left, on the right,
above, under). T. Soh et al. also introduce constraints to avoid reconsidering symmetric
equivalent packings. Finally the new clauses that the SAT solver Minisat generates to
represent the conflicts are memorised and re-used in further searches. This is possible
since successive searches are incremental SAT problems. T. Soh et al. SAT encoding
involves O(W x H x n + n?) Boolean variables for a problem with n items and a
container of width W and height H.

2 A new SAT encoding

We propose a new SAT encoding based on Fekete et al. characterization for the d-
dimensional packing problem. Recall that each graph GG; must be an interval graph, and
that if this is the case, then there exists a linear ordering of the maximal cliques of G;
such that each vertex occurs in consecutive cliques. This ordering is called a consecutive
linear ordering and its size, the number of maximal cliques, is less then or equal to the
number of items.

Basically, for each dimension ¢, Boolean variables indicate the presence of the edges
in the graph G, that is the overlaps between the objects in dimension . Furthermore,
Boolean variables represent a linear clique decomposition of the graph G, ensuring that
the graph is an interval graph if this decomposition is a consecutive linear ordering. The
cliques are numbered from 1 to n. Then, Boolean variables indicate for each item and
for each clique if the item occurs in the clique. Finally additional variables have been
introduced to simplify the formulation of the constraints. The variables used in our
formulation are defined as follows (note that some of these variables are not necessary
in the basic formalisation of the packing problem):

e;,y : true if the edge {z, y} is in G;,

Cy.q - true if item z is in clique a,

p;y’a : true if items x and y both occur in clique a,
u?, : true if clique a is not empty,

The stable set feasability of the graph G, is verified with clauses that forbid the
unfeasible stable sets. The set of all the unfeasible stable sets in dimension ¢ is denoted
S, Then the packing problem is encoded by the following formulas:
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The formulas (1) force each item to occur in at least one clique, while the formulas
(2) force each item to occur in consecutive cliques (Fekete et al. property P1: the graphs
are interval graphs). The formulas (3) state that no two objects may intersect in all the
dimensions (Fekete et al. property P3). The stable set feasability is enforced by the
formulas (4): for each unfeasible stable set N € S° in the i-th dimension a clause
ensures that at least two items of the stable set intersect each other. In fact only the
minimal unfeasible stable sets are considered. For example, if two items x and y are
too large to be packed side by side in the i" dimension, then {z,y} is a stable set of S*
and the unit clause eiyy is generated. Then the SAT solver will immediately assign to
the variable eiyy the value true and propagate it. The formulas (5) forbid empty cliques.
Finally the formulas (6) establish the relations between the Boolean variables.

The following constraints are not necessary but they may help during the search:

7. [Consective linear ordering (bis)] z € O,1<a<n,1 <17 <d,
(c;,a A —\c;aﬂ) = (—w:;)a_ﬂ A ﬂc;,n)
(Czr,a A _'Clm,afl) = (_'Céz,a72 TARERWA _'c?c,l)
8. [Maximal cliques] 1<a<mn,1<i<d,
up & (1o V. Ve , _
(uz A u;+1) = ((ciq A _'Ci,a+1) V...V (C;,,q, A _‘CZn,a-H))
(ulLl A uZ’J,Jrl) = ((ﬁczl,a A CYi,a+1> V...V (ﬁcil,a A dﬁ,a«kl))
9. [Identical items ordgring] T,y € ‘O, r=yandz <y,1 <a<n,a<b<n,
1<i<d, (Cha NCop) = Coa

The formulas (7) propagates the consecutive cliques ordering property, the formulas
(8) forbid cliques which are not maximal, and the formulas (9) force identical objects
to respect a given a priori ordering, so as to avoid the generation of equivalent permu-
tations of these objects. This SAT encoding involves O(n?) and O(n* + 2") clauses.
However, since only the minimal unfeasible stable sets are encoded, in the general case
there are much less than 2" clauses of type (4).



3 Experimental results
3.1 Orthogonal Packing Problem

The problem consists to determine if a given set of items may be packed into a given
container. We have compared our approach with that Fekete et al. on a selection of two-
dimensional problems, using as reference the results published by Clautiaux et al. [3].
Table 1 shows the characteristics of the instances, the results of Fekete et al. (FS), and
the results of our approach with two modelisations: the modelisation M1 corresponds to
the formulas from (1) to (6) and (9), while the modelisation M2 contains, furthermore,
the facultative formulas (7) and (8). All of our experimentations were run on Pentium
IV 3.2 GHz processors and 1 GB of RAM, using Minisat 2.0.

Table 1. Comparison with Fekete et al.

Instance FS M1 M2
Name Space Fais. n|Time (s)| Time (s) #var.  #claus.| Time (s) #var.  #claus.
EO02F17 02 F 17 7 4.95 5474 26167 13.9 6660 37243
E02F20 02 F 20 - 5.46 8720 55707 1.69 10416 73419
E02F22 02 F 22 167 7.62 11594 105910 21.7 13570 129266
EO3N16 03 N 16 2 39.9 4592 20955 473 5644 30259
EO3N17 03 N 17 0 4.44 5474 27401 9.32 6660 38477
E04F17 04 F 17 13 0.64 5474 26779 1.35 6660 37855
EO04F19 04 F 19 560 3.17 7562 46257 1.43 9040 61525
E04F20 04 F 20 22 5.72 8780 59857 2.22 10416 77569
E04N18 04 N 18 10 161 6462 32844 87.7 7790 45904
EO5F20 05 F 20 491 6.28 8780 59710 0.96 10416 77422
[ Average [ > 217[ 239 7291 46159[ 18.8 8727 60894]

Our approach outperforms FS on satisfiable instances, and even the instance E02F20
is not solved by Fekete et al. within the timeout (15 minutes). On unsatisfiable instances
they have better performances, probably because they compute very relevant bounds
(see DFF in [4]) which help them to detect dead ends during the search very early.

3.2 Strip Packing Problem

We have also compared our approach with Soh and al. on two-dimensional strip pack-
ing problems of the OR-Library available at http://www.or.deis.unibo.it/
research.html. The problem is to determine the minimal height of a fixed width
container which may contain a given set of items. As Soh et al. we perform a sort of
dichotomy search starting with a lower bound given by Martello and Vigo [5] and an
upper bound which is calculated using a greedy algorithm. In table 2 we have reported
the sizes of the encodings (numbers of variables and clauses) and the minimal height
which was found within the timeout of 3600 seconds. Optimal heights are in bold (this
occurs when the minimal height is equal to the lower bound or when the solver proves
that there is no solution with a smaller height). Instances in which the number of items
is large have been discarded, since the number of unfeasible stable sets becomes too
important and so the number of corresponding clauses. Note that Soh and al. used also
the solver Minisat. For 16 instances among 22 our system discovers the optimal height.
Furthermore, among these 16 instances, 14 are solved in less than 30 seconds with one
of our two modelisations. The ability of Soh and al. solver to reuse the conflict clauses



Table 2. Results for OR-Library instances

Instance Soh et Ml M2
Name n Width LB al. Height #var.  #claus. Time| Height #var.  #claus. Time
HTO1 16 20 20 20 20 4592 22963 133 20 5644 32267 19.4
HT02 17 20 20 20 20 5474 28669 744 20 6660 39745 444
HTO3 16 20 20 20 20 4592 24222 18.5 20 5644 33526 255
HTO04 25 40 15 15 16 16850 271500 1206 19 19396 305392 521
HTO5 25 40 15 15 16 16850 337395 438 16 19396 372287 536
HT06 25 40 15 15 16 16850 494500 146 16 19396 528392 295
CGCUTO1 |16 10 23 23 23 4592 26745 5.89 23 5644 36049 9.71
CGCUT02|23 70 63 65 66 13202 115110 1043 70 15360 188222 1802
GCUTO1 |10 250 1016 1016 1016 1190 4785 0.11 1016 1606 7237 0.04
GCUT02 |23 250 1133 1196 1259 8780 105810 37.3 1196 10416 123522 1241
NGCUTO1 |10 10 23 23 23 1190 5132 0.23 23 1606 7584 0.09
NGCUTO02|17 10 30 30 30 5474 29662 1.6 30 6660 40738 2.74
NGCUTO03|21 10 28 28 28 10122 108138 273 28 11924 128542 580
NGCUTO04| 7 10 20 20 20 434 1661 0.01 20 640 2577 0.01
NGCUTO05| 14 10 36 36 36 3122 15558 6.01 36 3930 21906 4.44
NGCUTO06|15 10 31 31 31 3810 18629 1.92 31 4736 26361 291
NGCUTO7| 8 20 20 20 20 632 2535 0 20 900 3855 0
NGCUTO8| 13 20 33 33 33 2522 11870 2.74 33 3220 17010  9.73
NGCUT09|18 20 49 50 50 6462 33765 391 50 7790 46825 533
NGCUT10(13 30 80 80 80 2522 11790 0.75 80 3220 16930  0.39
NGCUTI11|15 30 50 52 52 3810 18507 19.7 52 4736 26239 259
NGCUTI12|22 30 79 87 87 11594 173575 886 87 13570 196931 24.5

that Minisat generates during the search is a real advantage since many unsuccessfull
searches are then avoided.

4 Conclusions and future works

We have proposed a SAT encoding which outperforms significantly Fekete et al. method
on satisfiable instances. Moreover, we have experimented this encoding on strip-packing
problems. In future work we will try to integrate the DFF computation to improve the
search on unsolvable problems. We will also try to characterize the situations in which
the conflicts clauses which are generated by the SAT solver, may be re-used. This oc-
curs in particular when successive calls to the solver are performed, for example when
searching the minimal height in strip-packing problems.
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