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More than half of tuberculosis cases in the world are due to resuscitation of dormant

Mycobacterium tuberculosis (Mtb) sequestered into cell-derived structures called

granulomas. It is fairly admitted that cytokines and more particularly Tumor Necrosis

Factor (TNF)-α is critical in the control of Mtb infections and that anti-TNF-α drugs

constitute one of the main risk factors for reactivation of latent Mtb infection. The aim

of this study was to evaluate the role of etanercept, a dimeric fusion protein consisting

of the extracellular ligand-binding portion of the human p75 TNF receptor linked to

the Fc portion of human IgG1, in an in vitro model of human tuberculous granuloma.

We showed that etanercept slightly delayed the formation of granuloma and reduced

the generation of multinuclear giant cells (MGCs). In addition, etanercept exacerbated

the expression of M1 polarization genes but also induced interleukin (IL)-10 release. In

addition, our results indicated that etanercept inhibited cell fusion in an IL-10-dependent

manner. Moreover, adalimumab, a human monoclonal anti-TNF-α IgG1 inhibited MGC

formation in granuloma, without altering IL-10 secretion and induced macrophage

apoptosis. Taken together, our data provides new insights into the role of TNF-α blockers

in MGCs formation and the impact of such immunomodulatory drugs on tuberculous

granuloma maturation.

Keywords: etanercept, granuloma, Mycobacterium tuberculosis, multinucleated giant cells, interleukine-17,

interleukin-10, tumor necrosis factor

INTRODUCTION

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which remains
a major threat in terms of mortality and morbidity. While nearly one fourth of the global
population is latently infected by Mtb (1.7 billion individuals), only 5–10% of infected people
develop active tuberculosis (1). Most exposed individuals remain asymptomatic and are referred as
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latent tuberculosis individuals (2). Reactivation of tuberculosis
depends on high-risk factors such as poverty, promiscuity,
diabetes, malnutrition, immunodeficiency, or human
immunodeficiency virus (HIV) infection (3). Protective
immunity against Mtb requires efficient innate and adaptive
immunity. Infection of macrophages and dendritic cells by Mtb
leads to T cell activation and cytokine production (4, 5), among
which interleukin (IL)-12 and interferon (IFN)-γ have been
shown essential for the protection against Mtb as revealed by
murine models and human immune deficiencies (3). In addition,
among cytokines secreted by Mtb-activated immune cells and
infected individuals, tumor necrosis factor (TNF)-α has been
considered as necessary for bacterial killing (6).

The hallmark of the immune response to Mtb is the
formation of an organized cellular structure called granuloma
to control the infection. In the early stage, granulomas exhibit
a core of infected macrophages enclosed by foamy macrophages
and surrounded by lymphocytes. Mature granulomas develop
a fibrous capsid isolating macrophage core and reducing
vascularization, thereby restraining Mtb dissemination, without
overt symptoms in patients (7). Disease progression from latent
to active tuberculosis is associated with a defect of the host
immune response to control the infection. Several high-risk
factors reviewed in Ai et al. (8) have been shown to significantly
increase latent tuberculosis rate and includes HIV infection (9),
organ transplantation with use of immunosuppressive drugs (10),
silicosis (11), contact with active tuberculosis patients (12), TNF-
α blockers (13), and hemodialysis in patients with chronic renal
failure (14). Latent tuberculosis reactivation involves caseous
necrosis of macrophages in mature granulomas; caseous center
then liquefies and allows the release infectious Mtb in the
airways (15–17).

Among the diversity of immune effectors involved in
granuloma formation, IFN-γ and TNF-α are considered as
positive regulators whereas IL-10 is a negative regulator
(18). Center to the mycobacterial granuloma formation is
the remodeling of macrophages. Indeed, granuloma foamy
macrophages represent 10–20% of the total macrophages and
are characterized by intracytosolic accumulation of neutral lipids
forming lipid bodies, also known as lipid droplets or lipid
vacuoles (17, 19–21). In addition, macrophages can fuse to
form multinucleated giant cells (MGCs) (22). Although the
mechanisms leading to MGC formation are poorly understood,
cytokines such as IFN-γ, IL-4, IL-10, and IL-17 have been
involved (5, 23–26). However, the limited clinical material
availability may explain why functional studies remain scarce. In
addition, animal models of granulomas provide divergent results.
Indeed, while murine models confirmed the protective role of
granuloma, zebrafishmodel ofM.marinum infection reappraised
protective role for granulomas (27). Thus, in vitro models of
granulomas have been developed by co-culturing peripheral
blood mononuclear cells (PBMCs) and Sepharose beads coated
with bacterial extracts from Mtb or M. bovis (16, 28, 29). Using
this approach, we previously showed that monocytes migrate to
the beads, maturate into macrophages which then polarize and
fuse to form MGCs under the influence of lymphocytes (30, 31).
In addition, we also showed that defective granuloma formation

was associated with low TNF-α expression and monocytopenia
in septic patients (32).

Several studies have highlighted the role of TNF-α in the
formation and the stability of granuloma (33, 34). Other
data have shown that TNF-α blockade, by the use of TNF-
deficient mice or anti-TNF-α drugs, induced delayed formation
of granuloma, necrosis, disorganization, or disintegration of
granuloma structures (35, 36). Kapoor et al. showed that
treatment of in vitro Mtb granuloma with anti-TNF-α was
associated with the reactivation of latent Mtb (37). These
observations suggest that anti-TNF-α interfere with granuloma
formation and/or stability. Interestingly, clinical observations
revealed that the risk of tuberculosis reactivation is associated
with anti-TNF-α treatment but also depends on the type of anti-
TNF-α agent. Indeed, monoclonal antibodies, such as infliximab
or adalimumab are associated with a 5–10-fold increased risk
of reactivation of tuberculosis, while etanercept, which consist
of a fusion protein between two extracellular domains of the
human TNF receptor 2 and the Fc fragment of human IgG1, is
associated with no or only few cases of tuberculosis reactivation
(13, 38–41). Interestingly, experimental investigations suggested
that etanercept prevent complement activation and cell death
but also preserve granuloma formation whereas anti-TNF-α
antibodies did not (42). In addition, it has been showed that
etanercept treatment impact on the remodeling process involved
in the formation and the maintenance of granuloma in a Mtb
infection using rabbit model (43).

Thus, the aim of this study was to clarify the effect of
etanercept on granuloma formation. Using an in vitro model
of granuloma formation, we showed that etanercept treatment
did not alter granuloma formation. Interestingly, we report here
that etanercept treatment affects granulomatous macrophage
population and polarization and inhibits MGC formation in an
IL-10-dependent mechanism.

MATERIALS AND METHODS

Bacteria Culture and Preparation of
Bacterial Extracts
Mycobacterium tuberculosis (H37Rv) was cultivated in
Middlebrook 7H10 agar medium supplemented with 10%
of Oleic acid-albumin-dextrose-catalase (OADC) (Beckman
Dickinson). Bacteria (109 per assay) were sonicated in a coupling
buffer (NaHCO3 0.1M pH 8.3 with NaCl 0.5M) for seconds
at 70% amplitude five times (Vibra Cell 75185) and protein
concentration was determined by Nanodrop as previously
described (30).

Isolation of PBMCs and Granuloma
Formation
Human blood was obtained from leukopack left over from
voluntary whole blood donations after informed consent of the
donors according the convention n◦7828 established between
our laboratory and the “Etablissement Français du Sang”
(Marseille, France). PBMCs were recovered using density
gradient centrifugation as previously described (16, 28, 44, 45).
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Isolated PBMCs (2 × 105 cells/well) were suspended in RPMI
1,640 medium supplemented with 10% fetal calf serum (FCS, Life
Technologies), 100 IU/ml penicillin and 50µg/ml streptomycin
(Life Technologies) and incubated with activated 4B Sepharose
beads that were previously coated with [Mtb] extracts (0.5mg
of proteins) at 37◦C with 5% CO2. The kinetics of granuloma
formation was evaluated using inverted microscope after 3, 6,
and 9 days of culture in the presence or absence of etanercept,
a humanized soluble recombinant TNF receptor fusion protein.
In some experiments, we used adalimumab, a human IgG1
monoclonal antibody directed against TNF-α. According to the
therapeutic range of residual serum concentration of anti-TNF-
α in treated patients, we used 10µg/ml of anti-TNF-α drugs in
our experiments, as previously described (46–48). Concentration
of anti-TNF-α drugs is maintained at concentration 10µg/ml
during the kinetics of granuloma formation.

RNA Extraction and Real-Time
Quantitative RT-PCR (qRT-PCR)
Individual granulomas were manually collected, and granuloma
cells were dissociated by incubation with phosphate-buffered
saline (PBS, Life Technologies) buffer containing 2mM EDTA
(Invitrogen). Total RNA from granuloma cells was extracted
and treated with DNase using RNeasy R© Mini Kit (Qiagen).
Reverse transcription was performed as previously described
(49). Quantitative PCR was carried out using Light Cycler Fast
Start DNA master SYBR Green I kit (Roche) and the primers
listed in Table 1 (31). Real-time PCR was performed as follows:
initial denaturation at 95◦C for 10min, followed by 39 cycles
of denaturation at 95◦C for 15 s and an annealing/extending
step at 60◦C for 1min. The results were normalized with the
housekeeping gene β-actin. Transcript relative quantity (RQ)
and the fold change (FC) of target genes relative to β-actin
were calculated using the formula RQ = 2−1Ct and FC =

2−11Ct, respectively.

Immunophenotyping and
Immunofluorescence Analysis
Dissociated granuloma cells were analyzed by flow cytometry
to identify macrophages and lymphocyte populations with
appropriate antibodies and isotype controls listed in Table 2. For
apoptosis assay, granuloma cells were labeled with an anti-CD64
antibody (Beckman coulter) following by Annexin-V/7AAD
staining according to themanufacturer instructions (BioLegend).
Flow cytometry analysis were performed on a BD Canto II and
data were analyzed using Flow Jo software.

May-Grünwald-Giemsa (MGG) staining was used to identify
mononuclear and multinuclear giant cells on dissociated
granuloma cells. The percentage of mononuclear and
multinuclear giant cells was quantified using an inverted
microscope after 9 days of culture in the presence or absence
of anti-TNF-α agent (5 different fields were analyzed for
each condition).

For immunofluorescence, cells were fixed in 4%
paraformaldehyde in PBS for 20min and stained with
Phalloidin and 4′,6-diamidino-2-phenylindole (DAPI) (both

TABLE 1 | Primer sequences for qRT-PCR.

Gene symbol Forward primer sequence Reverse primer sequence

β-actin ggaaatcgtgcgtgacatta aggaggaaggctggaagag

IL15RA atcttccgtccctcatcctaac ctcagcatctctcccaccttt

TNFSF10 gaaaataatccccacacacgctac gtcactctctccaccctcaca

SLC4A7 ccctcaaaacagtcctccttct tttcctcattcttctgctcctc

CLECM4 ggcatttctggtagagttcaca atactttctgactgggcagga

HESX1 gctcggggaaaacaaacc ttcttctggcattgggtga

CXCL9 acacttgcggatattctggact gggagatggtgtgtaattgat

IL15 agaatgtgaggaactggaggaa tgtctaagcagcagagtgatgt

TNF catctatctgggaggggtcttc aggagggggtaataaagggatt

CCL13 gagcagagaggcaaagaaaca atgtgaagcagcaagtagatgg

FN1 acacctggagcaagaaggataa ccacagagtagaccacaccagt

HRH1 acttggaggtggtatgtgctg ctcagggcttgcttcttgtagt

ALOX15 aacttccaccaggcttctctc gggggctgaaataaccaaag

CTSC gaggttgtgtcttgtagccagt cccctttttgtagtggaggaag

IL2RA gagacttcctgcctcgtcacaag gatcagcaggaaaacacagcc

CCL23 catcttcctacaccccacgaa cattctcacgcaaacctgaact

IDO1 tcatctcacagaccacaagtca caaaataggaggcagttccaagt

IL17 gaaacctcccaaaatacaag taaagttcgttctgccccatc

TABLE 2 | List of fluorescent reagents (mouse IgG1 antibodies).

Antibody Clone Fluorochrome Manufacturer

CD68 KP1 FITC Dako

CD163 GHI/61 PE Becton Dickinson

CD56 N901 APC Beckman Coulter

CD8 SK1 PerCP/Cy5.5 Bio Legend

CD3 SK7 APC-H7 BD Pharmingen

CD4 13B8.2 FITC Beckman Coulter

CD20 B9E9 PC7 Beckman Coulter

CD127 HIL-7R-M21 PE BD Pharmingen

IL-17 BL128 Pacific Blue BD bioscience

from Thermo Fisher Scientific) to label filamentous actin and
DNA, respectively. Pictures were observed on LSM 800 Airyscan
confocal microscope (Zeiss) with a 63X oil objective.

Cytokine Measurement
IL-10, IL-6, TNF-α, IL-17, and IFN-γ were quantified in cell
supernatants using specific ELISA kits and processed according
to the manufacturer’s instructions (eBioscience, Clinisciences
and R&D systems). Supernatants were collected at day 9 after
cell stimulation.

Cell Fusion Assay
CD14+ monocytes were selected from PBMCs using CD14-
microbeads (Miltenyi) and cells (5 × 105) were stimulated with
IFN-γ (100 U/ml, Biolegend) and concanavalin (ConA, Sigma-
Aldrich, at 5µg/ml) as previously described (50, 51) in the
presence or not of etanercept (10µg/ml), isotype control, IL-
17 [10 ng/ml, PreproTech, (52)], IL-10 [50 ng/ml, R&D systems,
(26)] or TNF-α (50 ng/ml, Euromedex) and incubated for 9 days.
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Statistical Analysis
All experiments have been repeated at least 3 times. Data were
analyzed using GraphPad Prism 5 (GraphPad Software, Inc.)
and Mann-Whitney U test. Results were presented as mean
± standard error of the mean (SEM) and were considered
significant at P ≤ 0.05.

RESULTS

Etanercept Does Not Affect Tuberculous
Granuloma Formation
In order to investigate the effect of etanercept in Mtb-
induced granuloma formation, we used an in vitro model
of granuloma with Sepharose beads as previously described
(16, 31). As depicted in Figure 1A, the use of beads coated
with Mtb extract lead to a recruitment of PBMCs around
the beads first and initiating the formation of rosetta and
then of granuloma, defined as bead fully covered with cells.
PBMCs from healthy donors were incubated with Mtb extract-
coated beads in the presence or not of etanercept and
granuloma formation was followed over time. In untreated
conditions, nearly 40% of the beads display a granulomatous
structure after 3 days and this percentage steadily increased to
reach 70% after 9 days. In contrast, when cells were treated
with etanercept, the formation of granuloma was significantly
decreased (21.5%) at day 3 as compared with untreated cells
(Figure 1B). However, after 6 and 9 days, the percentage of
granuloma was similar in the presence or absence of etanercept
(Figure 1B and Supplemental Figure 1). Hence, these data
suggest that etanercept does not affect but delays in vitro
granuloma formation.

Etanercept Affects the Formation of
Multinucleated Giant Cells
Wenext wondered whether granuloma composition was affected.
PBMC and Mtb extract-coated beads were co-cultured with or
without etanercept and the composition of the cell aggregates
was assessed after 9 days by flow cytometry for CD4+ and
CD8+ T cells, B cells and macrophages or May-Grünwald-
Giemsa staining for multinucleated giant cells (MGCs). In
untreated conditions, granulomas were composed of 14.19
± 2.43% of CD4+ T cells, 12.51 ± 2% of CD8+ T cells,
2.84 ± 0.57% of B cells, and 11.18 ± 1.81% of CD68+

macrophages (Figure 2A). Treatment with etanercept did not
affect lymphocytic composition of cell aggregates. In contrast,
it significantly reduced the proportion of CD68+ macrophages
without affecting the expression of CD163 (Figure 2A). Finally,
May-Grünwald-Giemsa staining revealed that in untreated co-
cultures, 17 ± 2% of the granuloma cells were MGCs containing
2–3 nuclei. Interestingly, in the presence of etanercept,
multinuclear GC proportion was significantly reduced while the
number of mononuclear giant cells was increased (Figure 2B).
Taken together, these results suggest that etanercept affects the
formation of MGCs in tuberculous granulomas.

Etanercept Affects M1/M2 Polarization of
Granuloma Cells
We previously reported that BCG- and Coxiella burnetii-induced
granulomas were characterized by expression of genes related
to macrophage polarization (31). Hence, we next wondered
if etanercept treatment affected the transcriptional profile of
granuloma cells. PBMC from 3 donors were cultured in
the presence of Mtb extract-coated beads with or without
etanercept and macrophage polarization was evaluated after 9
days by qRT-PCR targeting M1 and M2 genes. Analysis of
gene expression by hierarchical clustering clearly showed that
etanercept modulated gene expression of granuloma cells since
untreated and etanercept-treated cultures were localized on
separated branches (Figure 3A). However, further clustering of
transcripts in response to etanercept highlighted 2 main clusters
(Figure 3A). The first cluster encompassed genes for which
etanercept had no or discrete effect on gene expression and
included the M2 genes SLC4A7, ALOX15, HRH1, CTSC, and
the M1 gene IL15. In contrast, in the second cluster were found
genes that were highly induced by etanercept, including the M1-
associated genes CXCL9, IL17,HESX1, IDO1, IL15RA, TNFSF10,
IL2RA, andTNF as well as someM2-related genes such asCCL13,
FN1, CCL23, and CLECM4 (Figure 3A).

Finally, we investigated cytokine release by granuloma cells
treated or not with etanercept. Supernatants were collected
after 3, 6, and 9 days of co-cultures and were assessed for the
presence of IFN-γ, IL-6, IL-10, and IL-17. In untreated cultures,
we found that IFN-γ and IL-6 levels were not really affected
during the 9 days of culture, while IL-17 was increased between
day 3 and day 6 and IL-10 gradually decreased from day 3 to
day 9 (Figure 3B). Etanercept treatment did not alter IFN-γ
and IL-6 release by granuloma cells as compared to untreated
conditions (Figure 3B). However, at day 9, IL-10 was significantly
increased in granuloma cells treated by etanercept as compared to
untreated cells. Similarly, IL-17 levels were significantly increased
confirming transcript measurements (Figure 3B). Altogether,
these results suggest that inhibition of TNF-α alters macrophage
polarization and cytokine release inMtb-induced granulomas.

Etanercept Inhibits the Formation of
Cell-Cell Fusion-Induced MGCs
To further clarify the role of TNF-α in MGC formation, we
performed a cell-cell fusion assay mediated by ConA and IFN-
γ stimulation. Adherent CD14+ cells from healthy donors
were treated with IFN-γ and ConA and cell-cell fusion was
measured by the appearance of MGCs (≥2 nuclei). As depicted
in Figure 4A, MGCs (2–15 nuclei) were found in untreated
cultures at day 9 after ConA/IFN-γ stimulation. In contrast,
treatment with etanercept decreased the number of MGCs and
was associated with the appearance of large mononuclear cells
(>60µm, Figure 4A). After quantification, we showed that upon
etanercept treatment, the number of these large mononuclear
cells increased from 10 to 80% while that of MGCs decreased
from 90 to 20% as compared with untreated cells (Figure 4B).
Hence, these results suggested that etanercept interferes with
the formation of MGCs and that TNF is required for the
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FIGURE 1 | Etanercept delays the formation of tuberculous granulomas. Isolated PBMCs from healthy donors were incubated with Sepharose beads coated with Mtb

extracts for different periods of time in the presence or not of etanercept. (A) Representative pictures of beads, rosetta and granuloma are shown. (B) The number of

granulomas was counted after 3, 6, and 9 days and shown as mean ± SEM (n = 10) ***P < 0.001.

development of MGCs. To confirm the role of TNF-α in MGCs
formation we cultured CD14+ cells with ConA and IFN-γ in the
presence of TNF-α. As shown in Figure 4C, the addition of TNF-
α significantly increased the percentage of MGCs as compared
with cells cultured with ConA and IFN-γ alone. Taken together,
these data showed that TNF-α is required for the formation of
MGCs and that inhibition of TNF-α by etanercept favors the
development of large mononuclear cells.

IL-10 Inhibits the Formation of MGCs
As IL-17 and IL-10 expression and secretion were strongly
increased in Mtb-induced granuloma upon etanercept, we
wondered if it was alsomodulated in cell-cell fusion assay. Hence,
we measured IL-17 and IL-10 in supernatants from ConA/IFN-
γ-treated PBMCs and found that anti-TNF-α treatment lead
to a 4-fold and a 1.3-fold increase of IL-17 and IL-10 release,
respectively as compared with untreated cells (Figure 5A). To
further understand their role in MGC formation, we performed
cell-cell fusion assay in the presence of IL-17 or IL-10. As shown

in Figures 5B,C, we found that IL-10, but not IL-17 affected the
development of MGCs.

Etanercept and Adalimumab Inhibit
Differently MGC Formation
TNF blockade using rabbit polyclonal antibodies or human
monoclonal antibodies (adalimumab) has also been shown
to inhibit formation of MGC in ConA-induced cell-cell
fusion experiments (53, 54). In order to see if inhibition of
MGC formation in tuberculous granuloma was restricted to
etanercept or a common feature of TNF inhibition, we co-
cultured PBMC and Mtb-extract coated beads in the presence
of adalimumab, a fully human IgG1 monoclonal antibody.
We found that adalimumab also lowered the percentage
of Multinuclear GC (Figure 6A) to levels similar to those
obtained when cells were treated with etanercept (Figure 2B).
As IL-10 was associated with reduced MGC formation in
etanercept-treated co-cultures (Figure 3B), we next wondered if
adalimumab treatment affected IL-10 expression. Supernatants
were collected after 3, 6, and 9 days and assessed for IL-10
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FIGURE 2 | Etanercept affects granuloma-associated macrophage populations and MGCs. Isolated granuloma cells cultured in the presence or not of etanercept for

9 days were characterized using flow cytometry. (A) Graphical plots of the percentage of CD3+/CD4+, CD3+/CD8+, and CD20+ lymphocytes and CD68+ and

CD68+CD163+ macrophages population (n = 4) *P < 0.05. (B) Isolated granuloma cells cultured in the presence or not of etanercept for 9 days were characterized

by May-Grünwald-Giemsa staining. Representative image of multinuclear (upper panel) and mononuclear (lower panel) cells are shown, quantified and represented as

the mean percentage ± SEM (n = 10) ***P < 0.001.

by ELISA. To our surprise, IL-10 levels were not increased
in adalimumab-treated co-cultures and were similar to those
measured in untreated conditions (Figure 6B), suggesting that
adalimumab- and etanercept-mediated inhibition of MGC
formation involves different pathways. Finally, we asked
whether the decrease of multinuclear GC in anti-TNF-α-
treated co-cultures was related to increased cell death of
macrophages. As shown in Figure 6C, etanercept did not induce
macrophage apoptosis while adalimumab treatment resulted
in a significant induction of macrophage apoptosis at day 6
and 9. Altogether together, these results suggest that etanercept
and adalimumab affect the formation of MGCs in tuberculous
granulomas by different mechanisms, etanercept through IL-
10-mediated inhibition and adalimumab through induction of
macrophage apoptosis.

DISCUSSION

Granuloma formation is the key response of immune cells against
Mtb infection. In this study, we aimed at characterizing the
effects of the anti-TNF-α drug etanercept on the granulomatous
response by analyzing granuloma formation and composition
in vitro. Indeed, several clinical studies have shown that the

use of TNF-α antagonist was associated with an increased
risk of reactivation of latent tuberculosis (13). In addition,

it has been suggested that reactivation is more common
in patients treated with monoclonal antibodies such as

infliximab, adalimumab, or golimumab than in patients

treated with soluble TNF receptors such as etanercept (13).

These differences have been attributed to their relative

abilities to block soluble or membrane-associated TNF-α,
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FIGURE 3 | Etanercept affects macrophage polarization. Isolated PBMCs from healthy donors were incubated with Mtb extract-coated beads for different periods of

time in the presence or not of etanercept (A) The expression of macrophage polarization genes was investigated by quantitative RT-PCR normalized to the actin

endogenous control and displayed as heat-map. (B) IFN-γ , IL-6, IL-10, and IL-17 cytokines were quantified by ELISA at day 3, 6, and 9 in supernatants from in vitro

tuberculous granulomas treated or not with etanercept (n = 3) *P < 0.05, **P < 0.01.
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FIGURE 4 | Etanercept inhibits cell fusion. Adherent CD14+ cells from healthy donors (n = 5) were stimulated with IFN-γ and ConA in the presence or not of

etanercept and cell-cell fusion was measured by the appearance multinucleated giant cells (≥2 nucleus). (A) Representative pictures of multinucleated cells stained

with phalloidin (green) and DAPI (blue). (B) Mononuclear and multinuclear (≥ 2 nucleus) giant cells were quantified after 9 days and the mean percentage ± SEM is

shown (n = 5) ***P < 0.001. (C) Formation of multinucleated cells induced by IFN-γ and ConA was also quantified in the presence of 50 ng/ml TNF-α (n = 5) *P < 0.05.

lymphotoxin (LT)-α, or differential induction of cell death
(55). However, their role and more precisely the role of
etanercept in granuloma formation and composition has not
been investigated.

Our results revealed that etanercept delayed the kinetic of
granuloma formation at day 3 but did not alter granuloma
numbers after 6 and 9 days. Same observations were made
by Flynn et al. in mice after TNF-α neutralization (6, 56).
Although granuloma formation was delayed at 7 days of
Mtb infection, similar numbers were observed after 14
days between mice treated by anti-TNF-α and IgG control.
However, in anti-TNF-α-treated mice, granulomas appeared
less well organized and contained less epithelioid cells (56).
Similarly, in a rabbit model of active pulmonary tuberculosis,
etanercept exacerbated lung pathology despite the presence
of intact granulomatous structures (43). Hence, TNF-α
may not be involved in the formation and maintenance of

granuloma per se, but rather implicated in tissue remodeling
and control of Mtb growth in the lung since etanercept
treatment of rabbits was associated with upregulation of genes
of the inflammatory response (43). We previously showed
that C. burnetii- and BCG-induced granuloma formation
was associated with a pro-inflammatory transcriptional
response (31). In line with these data, we found that etanercept
treatment exacerbated macrophage polarization toward a
M1 profile.

Other studies investigating the role of anti-TNF-α in
granuloma formation/maintenance showed that TNF-α blockers
also impact the response to infection by interfering with
phagosome maturation and/or by modulating apoptosis
and cell death of immune cells (57). Upon etanercept,
granuloma cell composition was not obviously affected,
except for macrophages and MGCs, which were significantly
decreased. MGCs are suspected to be involved in the limitation
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FIGURE 5 | IL-10, not IL-17, inhibits cell fusion. (A) Adherent CD14+ cells from healthy donors (n = 5) were stimulated by IFN-γ and ConA in the presence or not of

etanercept and IL-17 and IL-10 concentration were evaluated by ELISA in the supernatants after 9 days *P < 0.05, **P < 0.01. (B,C) Adherent CD14+ cells from

healthy donors were stimulated by IFN-γ and ConA in the presence or not of IL-17 (10 ng/ml) or IL-10 (50 ng/ml) for 9 days. (B) Representative pictures of MGCs

stained with phalloidin (green) and DAPI (blue) are shown. (C) Formation of MGCs was also quantified and the mean percentage ± SEM is shown (n = 4) *P < 0.05.
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FIGURE 6 | Adalimumab inhibits MGC formation and induces macrophage apoptosis in granuloma. Isolated PBMCs from healthy donors were incubated with

Sepharose beads coated with Mtb extracts in the presence or not of adalimumab. (A) After 9 days, isolated granuloma cells were characterized by

May-Grünwald-Giemsa staining and mononuclear and multinuclear giant cells were quantified (n = 3). **P < 0.05. (B) IL-10 levels were quantified by ELISA at day 3,

6, and 9 in supernatants from in vitro tuberculous granulomas treated or not with adalimumab. (C) Isolated PBMCs from healthy donors were incubated with

Sepharose beads coated with Mtb extracts in the presence or not of adalimumab or etanercept. Macrophage apoptosis was assessed by flow cytometry after

annexin V/7-AAD staining on CD64-gated cells. Results are expressed as mean percentage ± SEM (n = 3) *P < 0.05, **P < 0.01.

of tuberculosis infection although it has been showed that
they have lost their ability to engulf bacteria (29). To date
and to the best of our knowledge, there are no clinical

evidences associating MGCs reduction and tuberculosis
reactivation upon treatment with TNF-α blockers. We also
observed a decrease of MGCs upon adalimumab treatment.

Frontiers in Immunology | www.frontiersin.org 10 August 2019 | Volume 10 | Article 1947

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mezouar et al. Multinucleated Giant Cells in Tuberculosis Infection

Reduction of macrophage populations at the synovial level
has previously been observed in rheumatoid arthritis patients
treated with TNF-α blockers and has been associated with
increased macrophage-specific apoptosis as compared with
untreated patients (58). However, we did not observe increased
macrophage apoptosis in the presence of etanercept, while
macrophage apoptosis was significantly increased in the
presence of adalimumab. This difference probably results
from the different structures of etanercept and adalimumab.
As stated above, etanercept is a fusion protein consisting of
two extracellular TNFR2 domains covalently linked to an Fc
domain of human IgG1 while adalimumab is a monoclonal
IgG1 anti-TNF antibody (59). Specifically, adalimumab,
but not etanercept has been shown to directly promote
apoptosis through reverse signaling induced by transmembrane
TNF binding (60). Hence, it is probable that the reduction
of MGCs in adalimumab-treated co-cultures results from
macrophage apoptosis.

In this study, we found that etanercept affected the cytokine
balance inMtb-induced granuloma. Indeed, while IFN-γ and IL-
6 levels were similar in the supernatants of day 9 granuloma
cultures treated or not with etanercept, IL-10 and IL-17 were
significantly increased in the presence of etanercept. This effect
was specific to etanercept since adalimumab did not affect IL-10
levels as compared with untreated granuloma cultures. During
mycobacterial infection, TNF-α and IL-10 play opposite roles:
TNF-α improves granuloma formation and maturation whereas
IL-10 neutralizes these effects (61, 62). IL-10 is known as anti-
inflammatory cytokine involved in the inhibition of macrophages
activation, the down-regulation of Th1 responses and antigen
presentation. In granuloma formation, IL-10 acts as a negative
regulator of the immune response (5) and high levels of IL-10 are
strongly associated with a disorganization of granuloma structure
(63). Additionally, IL-10 can suppress the immune response
againstMtb to promote the persistence and survival of pathogen
(64). Interestingly, we found that etanercept inhibited monocyte
fusion in a ConA/IFN-γ-mediated cell fusion assay and increased
IL-10 release in the supernatants. In addition, we showed that
exogenous IL-10 inhibited cell fusion of ConA/IFN-γ-stimulated
monocytes, suggesting that blockade of cell fusion by etanercept
is mediated by IL-10. This hypothesis is confirmed by the fact
that IL-10 has previously been shown to modulate in vitro MGC
formation and that the effect of IL-10 was reversed by addition
of anti-IL-10 (26). It was previously shown that anti-TNF-α
antibodies inhibited monocyte fusion induced by ConA/IFN-γ
while antibodies targeting IL-1β, IL-6, or IL-1α had no effect
(54). These results were further confirmed by Maltesen et al.
who showed that ConA/IFN-γ-mediated monocyte fusion was
inhibited by adalimumab and that exogenous TNF-α reversed
methylprednisolone-mediated inhibition ofmonocyte fusion (53,
54). However, none of these studies have assess the expression
of IL-10 after anti-TNF-α antibody treatment and whether the
involvement of IL-10 inMGC formation is specific for etanercept
remains to be elucidated.

Finally, we found that etanercept increased IL-17 expression
and secretion in Mtb-induced granuloma cultures. Anti-TNF-
α agents have been shown to induce IL-17 expression in

CD4T cell from patients with juvenile idiopathic arthritis or
rheumatoid arthritis (65, 66). At the molecular level, anti-
TNF-α treatment results in inhibition of the anti-inflammatory
molecule TNFAIP3/A20 which activate the p38 MAPK and
PKC to drive IL-17 expression (67). In line with this result, we
found that etanercept also increased IL-17 levels in supernatants
from ConA/IFN-γ-stimulated monocytes. However, exogenous
addition of IL-17 during cell-cell fusion assay did not affect
the fusion rate induced by ConA/IFN-γ, suggesting that
the decrease of MGCs in etanercept-treated Mtb-induced
granuloma is not related to increased IL-17. However, IL-
17 has been involved in granuloma formation in infectious
and non-infectious granulomatous diseases (68–70). During
mycobacterial infections, the role of IL-17 is not fully understood.
Infection of IL-17-deficient mice with BCG resulted in immature
granulomas characterized by impaired cellular accumulation and
organization (70). However, the implication of IL-17 seems to
depend on the virulence since for less virulent Mtb clinical
isolates, the IL-17 pathway appeared dispensable for protective
immunity while infection with an hypervirulent strain required
IL-17 for early protective immunity (71). IL-17 expression in
granuloma was considered as a T cell cytokine produced by Th17
lymphocytes but also by myeloid cells including dendritic cells,
macrophages, MGCs and neutrophils (24, 72). γδ T cells also
produce IL-17 in murine Mycobacterium-induced granuloma
(70). Identification of the source(s) of IL-17 in Mtb-induced
granulomas in the presence or not of etanercept would require
further investigations.

Altogether, we showed here that etanercept slightly delays
granuloma formation, exacerbates the M1 polarization program
and reduces the formation of MGCs. We provide evidences that
the anti-TNF-α mediated-decrease of MGC in granuloma may
involve an IL-10-dependent defect of cell fusion in the case of
etanercept and may result from macrophage apoptosis induction
in the case of adalimumab. Further studies are needed to identify
the exact mechanisms involving anti-TNF-α drugs in MGCs
formation and their role in tuberculous granuloma.
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