
HAL Id: hal-02471132
https://amu.hal.science/hal-02471132

Submitted on 7 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimizing the number of actions in parallel planning
Stéphane Grandcolas, Cyril Pain-Barre

To cite this version:
Stéphane Grandcolas, Cyril Pain-Barre. Minimizing the number of actions in parallel planning. IC-
TAI, Oct 2010, Arras, France. �hal-02471132�

https://amu.hal.science/hal-02471132
https://hal.archives-ouvertes.fr

Minimizing the number of actions in parallel
planning

Stéphane Grandcolas and Cyril Pain-Barre
LSIS – UMR CNRS 6168

Domaine Universitaire de Saint-Jérôme
Avenue Escadrille Normandie-Niemen
F-13397 Marseille Cedex 20 - France

Email: {stephane.grandcolas,cyril.pain-barre}@lsis.org

Abstract

In the domain of classical planning one distinguishes plans which are
optimal in their number of actions, they are referred as sequential plans,
from plans which are optimal in their number of levels, they are referred as
parallel plans. Searching optimal sequential plans is generally considered
harder than searching optimal parallel plans. Büttner and Rintanen have
proposed a search procedure which computes plans whose numbers of levels
are fixed and whose numbers of actions are minimal. This procedure is notably
used to calculate optimal sequential plans, starting from an optimal parallel
plan. In this paper we describe a similar approach, which we have developed
from the planner FDP. The idea consists in maintaining two structures, the first
one representing the parallel plan and the other representing the sequential
plan, performing the choices simultaneously in both structures. The techniques
which were developed in FDP to compute sequential plans or parallel plans
enable failures detection in the two structures. Experimental results show that
this approach is in some cases more efficient than FDP when searching optimal
sequential plans.

1. Introduction

The planner FDP [1] was presented for the first time at
IPC5 planning competition in 2006. This planner has the
particular ability to generate optimal sequential plans. It is
generally admitted that searching such plans is more costly
than searching optimal parallel plans. Indeed, parallel plans
are shorter and then they are more constrained, which makes
the search space smaller. As for many other optimal planners,
the proof of the optimality comes from the proof that there
is no plan with less actions or less steps. Then the method
consists in searching a plan with one step, then a plan with
two steps, and so on, until a solution is found or a given
maximal length is reached. FDP uses its own search procedure,
a depth first search progressing from the initial states towards
the goals. This makes it simple and easy to adapt and to control
the search. FDP employs an Iterative Deepening Depth First
Search [2], that is successive depth-limited depth first searches,
increasing the limit iteratively.

FDP achieves decent results at IPC5 in the category of
optimal planners (deterministic track). Most planners in this
category generate parallel plans. The efficiency of FDP is
due to the various techniques which are used in its search
procedure: in particular the order constraint helps to avoid the
generation of redundant actions sequences (this technique is

similar to commutativity pruning [3]), the unreachability of the
goals is evaluated each time a new state is discovered, and the
unsuccessfull searches are memorized in a hash table, so that
these situations are not processed when they are encountered
again.

There are few works on searching optimal sequential plans.
In 2005, Büttner and Rintanen [4] have proposed a novel ap-
proach. The method consists, starting with an optimal parallel
plan, in decrementing the number of actions while increasing
the number of parallel steps, until the number of parallel steps
is greater than the number of actions. Each time, the problem
of determining if there exists a plan with at most n actions
and m parallel steps is encoded as a SAT formula, and an
external solver is used to search for a plan. The constraints
on the number of actions and on the number of parallel steps
make the search space smaller, and in many cases the SAT
formula is satisfiable and easy to solve. In this paper, we
propose a new procedure that searches for plans constrained
on their numbers of actions and parallel steps, based on the
works of S. Grandcolas and C. Pain-Barre [1] on the one hand,
and G. Gabriel and S. Grandcolas [5] on the other hand. The
idea consists in maintaining simultaneously two structures,
one representing the sequential plan and the other the parallel
plan. The techniques developped in FDP are applied in the
two structures. During the search both structures may detect
failures and cause backtrack. We have applied this procedure
to the computation of optimal sequential plans, starting with
an optimal parallel plan, and we have compared it with FDP.

In the second part of this paper we present briefly FDP and
its adaptation to the computation of parallel plans. The third
part contains the description of the procedure which searches
plans constrained on their number of actions and on their
number of parallel steps. The fourth part is devoted to the
search of optimal sequential plans starting with an optimal
parallel plan as it was proposed by Büttner and Rintanen.
Finally in the fifth part of the paper we give some experimental
results.

2. FDP-structures

A planning problem is a triple P = (I, G, A), where I is
the initial state, G is the set of the goals to achieve, and A
is the set of the available actions. From P is derived the set
F of the problem’s fluents. An action a of A is given by its
preconditions pre(a) and its effects eff (a). An action adds a
fluent f if f ∈ eff (a), and removes it if ¬f ∈ eff (a).

Basically, the core of FDP is a decision function that
answers the following question: does there exist a solution
of length n for the problem P? In sequential planning, n is
the number of actions of the plan. In parallel planning, it is
the number of its steps, where each step is a nonempty set
of compatible actions. To answer this question, FDP makes
use of a CSP-like structure of size n, called fdp-structure,
that contains a set of potentially valid plans of length n. The
search mainly consists in removing or fixing actions in this
structure, until it solely contains a valid plan achieving G, or
until a failure is proven.

The fdp-structure is composed of a set of variables that are
subject to constraints. The variables are partitioned into sets
of state variables and sets of action variables. A fdp-structure
of size n contains n + 1 sets of state variables and n sets of
action variables. It can be seen as a leveled graph, similar to
the one of Graphplan [6], where a step (or level) i contains a
set of action variables Ai and a set of state variables Fi:

FAFAF
0 i i n n

sets of state variables

sets of action variablesstep/level i

The set Fi represents the state after i steps: for each fluent
f ∈ F , a state variable fi indicates if it is true, false
or undefined1. If it is undefined, the state is also partially
(un)defined. If no variables of Fi are undefined, then Fi is
actually a state. The initial state is represented by F0 and is
completely defined, according to the closed world assumption.

The set Ai encodes the actions of the step i. It differs
depending on the planning is sequential or parallel. In
sequential planning, only one single action is allowed per
step: thus, Ai is only composed of a single action variable ai

whose domain is a subset of A. In parallel planning, several
actions can be executed within one step. Thus, Ai contains as
many action variables than actions of the problem. Each of
them indicates whether the corresponding action is retained to
occur (is fixed), is rejected (removed), or may possibly occur

1. We actually make use of two variables for a single fluent and a step:
fi for f and ¬fi for ¬f . For clarity, in the rest of the paper, we will not
mention theses variables, unless necessary.

at that step. We then define two fdp-structures: Sseq(n) =
({F seq

0 , . . . , F seq
n }, {Aseq

1 , . . . , Aseq
n }) for sequential planning

and Spar(n) = ({F par
0 , . . . , F par

n }, {Apar
1 , . . . , Apar

n }) for
parallel planning.

Before searching for a solution of length n, every state
variables have {true, false} as domains, i.e. the corresponding
fluent is undefined. In sequential planning, the domain of
every action variables is the set of all the actions. In parallel
planning, their domains are {true, false}. Hence, in both
cases each action is initially possible at any step. Then, the
domains of the variables of F0 are reduced in order to match
F0 to the initial state I . Similarly, the domains of the state
variables representing the goals in Fn are reduced, ensuring
that G is actually true in Fn.

The domain reduction of a state variable is similar to the
removal of a literal: Removing true for fi means that f is
removed from the step i, as it cannot be true at that step. For
convenience, fi will be said to be true (false) if true (false)
is the only remaining value in its domain.

These removals make some values inconsistent for other
variables, by propagation. Indeed, the variables of a fdp-
structure are subject to some implicit constraints that are
inherent to planning. As an exemple, if a literal is removed
from a step, then the actions that have this literal as a
precondition can be removed from the next step. Also, the
actions that add this literal can be removed from the previous
step.

This propagation is similar to maintaining arc consistency
[7]. It is performed in FDP by the function MakeConsistent,
that is called whenever the domain of a variable is reduced:
at a first time when the structure is initialized, and afterwards
during the search whenever a choice is made (that leads to
a variable domain reduction). The function updates the fdp-
structure so as to make it consistent, by removing literals
and actions which become inconsistent, together with literals
and actions becoming inconsistent because of these removals.
A removal may lead to an inconsistent fdp-structure. For
instance, when a literal and its opposite are inconsistent
(they are both true, or both false), or in sequential planning
when there are no more possible actions in a step. In such
cases, MakeConsistent fails and the search procedure has to
backtrack over the choice that caused the failure.

MakeConsistent makes use of the following rules in de-
ducing the inconsistency of a literal or an action. One rule
is only applicable in the case of parallel planning, and is
annotated with ’(par)’. Another one is only applicable in the
case of sequential planning, and is annotated with ’(seq)’. For
convenience and simplicity, we will denote with Ai the set of
possible actions but not yet chosen at the step i, and Xi will
denote the set of chosen (fixed) actions at step i. In sequential
planning, either Xi is empty or Ai is and Xi is a singleton.

Let f ∈ F be a fluent and fi its associated state variable
at step i. The value true (resp. false) for fi is inconsistent if
one of the following conditions holds:

• ¬fi is true (resp. false)
• i > 0 and ∃a ∈ Xi s.t. ¬f ∈ eff (a) (resp. f ∈ eff (a))
• i < n and ∃a ∈ Xi+1 s.t. ¬f ∈ pre(a) (resp. f ∈ pre(a))
• i > 0, Xi = ∅ and ∀a ∈ Ai, ¬f ∈ eff (a) (resp. f ∈

eff (a))
• i < n,Xi+1 = ∅ and ∀a ∈ Ai+1, ¬f ∈ pre(a) (resp.

f ∈ pre(a))
• i > 0, fi−1 is false (resp. true) and ∀a ∈ Xi ∪ Ai, f 6∈

eff (a) (resp. ¬f 6∈ eff (a))
• i < n, fi+1 is false (resp. true) and ∀a ∈ Xi+1 ∪

Ai+1, ¬f 6∈ eff (a) (resp. f 6∈ eff (a))
• i > 0,∃f ′i s.t. f ′i is true and mutex(fi, f ′i , i) (resp.

mutex(¬fi, f ′i , i)) or f ′i is false and mutex(f , ¬f ′i , i)
(resp. mutex(¬fi, ¬f ′i , i)

An action a is inconsistent in a step i > 0 if one of the
following conditions holds:
• ∃f ∈ pre(a), s.t. fi−1 is false
• ∃f ∈ eff (a), s.t. fi is false
• (par) ∃a′ ∈ Xi s.t. mutex(a, a′, i)
• (seq) ∃f ∈ F s.t. fi−1 is false (resp. true), fi is true

(resp. false), and f 6∈ eff (a) (resp. ¬f 6∈ eff (a))
• ∃f ∈ pre(a) s.t. ¬f 6∈ eff (a) and fi is false
Some rules are new in FDP: The last one, and those rules

concerning the mutex relations. It should be noted that the
mutex criterions for parallel planning are different from those
of sequential planning. For parallel planning, we have adopted
the Graphplan definition [6] although we extend it to negative
literals: a positive literal could also be marked as mutex at a
step with a negative literal, so could be two negative literals.

Since many years, sequential planning has received few
attention. In particular, to the best of our knowledge, we
do not know any work on mutex for sequential planning.
Indeed, mutex have been mainly designed for parallel plan-
ning. Even the londex constraints [8] that extend mutex to
capture exclusion between facts and actions across different
time steps, are defined in the scope of parallel planning. In
sequential planning, since only one action is allowed per step,
all actions are pairwise mutex. This increases the number
of mutex between literals. We then propose the following
definition for the mutex relation between literals in the case
of sequential planning.

In a sequential plan, two literals l1 and l2 are mutex at step
i if one of the following conditions holds:
• l1 and l2 are two opposite literals
• l1 and l2 first appear at step i and no actions at this step

add them together
• l1 appears for the first time at step i whereas l2 was

previoulsy generated:
– no actions of step i add them together, and
– every action that adds l1 at i :
∗ either removes l2,
∗ or has l as a precondition but mutex(l, l2, i − 1)

holds
• l1 and l2 have been previously generated: mutex(l1, l2,

i − 1) holds and no actions at i add them together, and

every action at i that adds one of them removes also the
other, or has a precondition that is mutex at step i − 1
with the other

3. Searching a plan with m steps and n actions

The function Search determines if a plan with n actions and
m steps exists, enumerating all possible plans simultaneously
in the sequential structure Sseq and in the parallel structure
Spar. This last one represents the sequential plan which is
constructed, grouping together in each level the successive
actions which are independent. In what follows, we shall use
the term step in the context of sequential planning, and level
in the context of parallel planning.

Each time a value is removed in one of these structures,
this removal is also performed in the other structure. The
search progresses from the initial state towards the final state.
Then at any moment the states before the current step s in the
sequential structure are all completely defined, and so are the
states preceding the current level l in the parallel structure.

The function is initially called with the value 0 for s and
l. In each call, the function tries to fix each possible action
successively, that is actions which occurs in the sequential
structure at the step s and in the parallel structure at the level
l, and the function is called recursively to determine if the
current choice leads to a valid plan. If no solution is discovered
with these actions, then the actions which occur at the step s
and not at the level l of the structure Spar but at the level
l+1 are considered. In this case, since a new level is entered,
the remaining possible actions at level l must be removed.
Each time some actions are fixed or removed in a structure,
the consequences of these changes are propagated through the
structure, calling the function MakeConsistent. The choice of
the action a fails if this choice is inconsistent in the sequential
structure or in the parallel structure.

Failures memorizing. FDP memorizes the failures which are
encountered during the search, in order to avoid similar useless
searches. Each time the planner proves that it is impossible to
reach the goals from the current state F with the remaining
steps, the pair 〈F, d〉 where d is the number of remaining steps
is memorized. This indicates that if the current state is equal
to F and if there are no more than d remaining steps then the
search may be abandoned.

We propose here to memorize failures in a similar way.
Each time the procedure enters a new level in the parallel
structure, the triple 〈F, na, ns〉 where F is the current state
(it is the same state in the sequential structure), na is the
number of remaining steps in the sequential structure and ns
is the number of remaining steps in the parallel structure,
is registered. This memorization is not very efficient: many
choices are performed within the same level in the parallel
structure. Then few states are memorized, and failures may
be detected very lately. A solution consists in memorizing
states each time a possible action is fixed. Unfortunately
this memorization would make the procedure incomplete:

Function Search(Sseq , s, n, Spar, l, m)

Data: Sseq = (Aq, F q, n) a FDP-structure of length n, the first s steps are instanciated,
Data: Spar = (Ap, F p,m) a FDP-structure of length m, the first l steps are instanciated,
Result: TRUE if there exists a plan in these structures, FALSE in the other case.
begin

if s > n or l > m then
return TRUE;

C := Aseq
s ∩Apar

l ;
for a ∈ C do

remove all actions from Aseq
s but a;

if not MakeConsistent(Sseq) then
goto REVERT SEQ;

if s+ 1 ≤ n and 〈F seq
s+1, A

seq
s+1 ∩A

par
l , n− (s+ 1),m− l〉 ∈ H then

goto REVERT SEQ;
fix the action a at step l in Spar;
if MakeConsistent(Spar) then

if Search(Sseq , s+ 1, n, Spar , l, m) then
return TRUE;

if s+ 1 ≤ n then
H := ∪{〈F seq

s+1, A
seq
s+1 ∩A

par
l , n− (s+ 1),m− l〉};

Revert(Spar);
REVERT SEQ:

Revert(Sseq);
if l < m then

remove unfixed actions from Apar
l ;

remove C actions from Aseq
s ;

if MakeConsistent(Spar) and MakeConsistent(Sseq) then
if Search(Sseq , s, n, Spar , l + 1, m) then

return TRUE;

Revert(Sseq), Revert(Spar);
return FALSE;

end

suppose for example that fixing the action a in the parallel
structure implies the removal of the action b at the same level,
because b removes a precondition of a (figure 1). Suppose
now that the state F resulting of the execution of a in the
sequential structure does not lead to the goals and then must
be memorized. Since the action b has been removed from
the parallel structure, it can not be chosen in the sequential
structure at step s + 1 although b preconditions are in F .
If the goals are reachable from F using the action b this
memorization may prevent the discovering of a solution.

in the parallel structure

sequential

parallel

s s+ 1

F

l

structure

structure

the action b is not possible

c

a

b
b

c

a

c
b

Fig. 1. memorizing F

To remedy this problem, we propose to memorize the state
F together with the set U of the actions which are possible
at the same time in the sequential structure and in the parallel
structure (figure 2). The failure is then represented by the
quadruplet 〈F,U, na, ns〉. In figure 2 the actions b and d at
the level l have been removed in the parallel structure, since
they were not compatible with the current choices within that
level (the actions a and f). Then they are not memorized.

sequential

l

structure

structure

parallel

F

level l

memorize <F, {c,e}, ns, na>

b

d
c

e

a

f

fixed actions (a and f)

Fig. 2. memorizing F and the possible actions

The quadruplets which represent the failures are memorized
in the table H . Each time an action is chosen in the sequential

structure, before trying to extend the current partial plan, the
current state is searched in the table H . If the state occurs
in the table with at least the actions which are possible at
the same time in the sequential structure and in the parallel
structure, and with greater numbers of remaining steps in the
two structures, then the current search is abandoned since it
can not lead to a valid plan.

4. Searching optimal sequential plans

The function SearchOptimalSequentialPlan follows the
scheme proposed by Büttner and Rintanen [4]. Starting with an
optimal parallel plan, the number of actions is decreased while
a valid plan exists with these characteristics. If the number of
steps is less than the number of actions the processus continues
with one additional level for the parallel structure. In the other
case the algorithm stops. The valid plan which was found in
last is optimal in its number of actions.

Note that if the objective is only to search for an optimal
sequential plan it is not necessary to explore all the optimal
plans increasing one by one the number of levels in the
parallel structure. One can simply perform a sort of dichotomic
search on the number of levels, just to exhibit a valid plan
containing the current number of actions. Indeed in many
cases the algorithm performs many successive unsuccessfull
searches, each time increasing the number of levels. The func-
tion DichotomicSearchOptimalSequentialPlan implements this
strategy: the variable mmin represents the minimal number of
levels for a plan of n actions. Then a plan is searched with
(mmin + n)/2 levels. If it exists then the number of actions
is decremented, and the minimal number of levels remains
the same. In the other case this unsuccesfull search proves
that (mmin + n)/2 levels are not enough for a plan with
n actions, and then mmin is updated. With this method the
function does not explore all the pairs (m, n). In particular, the
optimal sequential plan which is produced by the algorithm is
not always optimal in its number of levels: the last time the
search is successfull, the number of levels (mmin + n)/2 is
not necessarily minimal.

5. Experimental results

We have implemented the search for an optimal sequential
plan (function SearchOptimalSequentialPlan) and we have
compared it with FDP.

We did not compare our results with those of Büttner and
Rintanen [4], because a comparison would be difficult. First,
currently there is no available running version of their planner,
and the only elements of comparison that we dispose of
are those of their paper. However, they are very partial as
they mainly concern some steps of some problems resolution.
The total times of the problems resolution are only available
for only four problems (Logistics8 0, Depot5, Mprime3 and
Driverlog8), that are hardly handled by FDP. But a significant
comparaison should require runs on many more series and
problems.

Also, we have to note that their planner implements the ∃-
step semantic for parallel plans, whereas PFDP implements the
∀-step semantic. The ∃-step semantic has been first proposed
by Dimopoulos et al. [9] and has been defined and studied by
Rintanen and al. in the case of propositional planning [10],
and more recently in [11]. In a ∃-step plan, the actions of a
time step are allowed to interfere, provided that they can be
arranged such that their execution is possible. In contrast, the
∀-step semantic [10] is (a generalization of) the Graphplan
semantic [6] : every ordering of the actions of a time step of a
∀-step plan must be possible and must lead to the same state.
This reduces the set of solutions. As a consequence, when their
planner find a plan for a problem given a number of steps and
a number of actions, our planner might not. In particular, for
most problems their starting optimal parallel plan is already
shorter than ours. Although the optimal sequential plan is the
same (if it is unique), we do not explore the same search space.
This makes even harder the comparison with the available
times in their paper.

Nevertheless, the ∃-step semantic is surely more suitable
for the present approach, since it is very costly to prove
insolvability of problems during the search. Our first aim
was to implement the approach by making FDP and PFDP to
cooperate. A first improvement would be to implement the
∃-step semantic.

The results are presented in figure 3. Times are in seconds
on Linux computers with Pentium 3 GHz processor, a timeout
of 3000 seconds, and 1 GB RAM. The problems come from
the international planning competitions IPC-2, IPC-3, IPC-
4 and IPC-5. For each problem the number of actions, the
number of facts, the length of an optimal sequential plan and
the number of levels of an optimal parallel plan are indicated.

The first version of the search procedure, denoted SPS for
search parallel sequential plans, enumerates plans which are
minimal in terms of the number of levels. Each time, the
number of actions is fixed, starting with an initial value which
is computed searching an optimal parallel plan, and which
is decreased until there is more actions than levels (function
SearchOptimalSequentialPlan). The second version that is pro-
posed, denoted SPS-DICHO, implements a dichotomic search
to determine for each length if a plan exists function Di-
chotomicSearchOptimalSequentialPlan. Finally we have tested
a simpler search procedure, denoted SPS-CTR, which consists
in searching optimal sequential plans decreasing the number
of actions of an initial optimal parallel plan, with no constraint
on the number of levels. In this way we expect to make easier
the first calls to the function Search, in which the number
of levels is constraining, the number of actions is important
and there are solutions. For information we have also reported
the cpu times for the initial calculs of an optimal parallel plan,
column PFDP, and the cpu times for the calculus of an optimal
sequential plan with FDP.

Computation times include parsing of the problems, com-
puting mutual exclusions and ordered sequences of actions,
searching for an optimal parallel plan and searching for an
optimal sequential plan.

Function SearchOptimalSequentialPlan(P)
Data: P a planning problem, Sseq and Sseq two FDP-structures,
Result: nopt the length of an optimal sequential plan for the problem P .
begin

suppose π is an optimal parallel plan with m steps and n actions for the problem P ;
nopt := n;
n := n− 1;
while m < n do

initialize Sseq to search for a sequential plan of length n;
initialize Spar to search for a parallel plan of length m;
if Search(Sseq , 0, n, Spar , 0, m) then

nopt := n;
n := n− 1;

else
m := m+ 1;

return nopt;
end

Function DichotomicSearchOptimalSequentialPlan(P)
Data: P a planning problem, Sseq and Sseq two FDP-structures,
Result: nopt the length of an optimal sequential plan for the problem P .
begin

suppose π is an optimal parallel plan with m steps and n actions for the problem P ;
nopt := n;
n := n− 1;
mmin := m;
while mmin ≤ n do

m = (mmin + n)/2;
initialize Sseq to search for a sequential plan of length n;
initialize Spar to search for a parallel plan of length m;
if Search(Sseq , 0, n, Spar , 0, m) then

nopt := n;
n := n− 1;

else
mmin := m+ 1;

return nopt;
end

problem act. facts act. niv. FDP SPS SPS-DICHO SPS-CTR PFDP

mprime-x-7 1728 426 5 5 11,4 19,43 19,37 19,36 19,16
mprime-x-9 1904 270 8 5 74,27 30,84 29,52 20,38 8,98
mprime-x-26 4594 287 6 5 61,52 61,34 61,33 61,4 58,27
mystery-x-2 3036 357 7 5 30,39 74,29 80,74 33,57 29,23
mystery-x-30 3357 408 9 6 87,48 113,49 109,87 79,18 71,06
Depot-7512 162 78 15 8 0,83 6,45 3,94 1,61 0,36
driverlog-2-2-3 108 57 19 9 8,23 25,87 15,04 6,06 0,08
driverlog-3-2-4 144 63 16 7 9,3 117 52,21 30,06 0,11
FreeCell3-4 1143 139 14 8 56,13 232,13 259,63 95,89 3,36
FreeCell4-4 1614 183 18 7 462,58 1813,01 2059,08 1260,91 5,79
FreeCell5-4 52 20 - 13 – – – – 17,33
satellite-x-1 259 71 17 10 23,86 – 1043,52 343,86 249,33
Optical-P01-OPT2 418 282 36 13 49,57 156,89 60,23 13,05 5,79
Philosophers-P03-PHIL4 112 120 44 11 81,14 233,84 111,35 11,82 0,68
PSR-33 162 41 25 15 6,67 52,97 46,6 40,31 38,25
PSR-37 112 56 33 25 55,45 183,74 158,35 159,23 124,54
PSR-49 660 63 19 16 23,54 145,51 144,89 158,78 144,48
pipesworld-n1-14-6 632 139 13 8 77,36 496,96 438,75 175,43 20,48
pipesworld-n2-10-2 720 201 20 12 140,3 294 157,71 71,67 11,19
pipesworld-n3-12-2 1140 280 14 14 13,58 1475,4 1477,46 1478,81 1483,32
pipesworld-p04 656 154 11 6 41,73 67,14 49,47 20,76 3,61
pipesworld-p06 764 164 10 6 6,43 16,74 15,02 8,61 4,8
pipesworld-p07 2672 204 8 6 33,73 297,7 294,78 295,1 180,03
Storage-11 460 146 17 11 41,47 173,11 93,67 51,22 16,13
Storage-12 690 164 16 9 214,41 1705,17 877,45 329,35 45,87
Truck-7 1044 269 23 18 714,18 1600,07 1266 671,44 394,37

Fig. 3. CPU times for a selection of problems (times are in seconds)

First remark that in most cases, with FDP like approaches,
the computation of an optimal parallel plan is faster than
the computation of an optimal sequential plan (see also [5]).
This is due to the fact that parallel plans are shorter, and
then the search space is smaller: states and actions levels are
closer to the goals and then the instanciation of the goals is
more effective. Cases in which FDP is more efficient often
correspond to problems in which optimal parallel plans are
quite sequential (there are very few actions at each level).
Remind also that FDP makes use of a very efficient heuristic
to evaluate if the goals are not reachable with the remaining
actions, and consistency rules are stronger in FDP.

Searching an optimal sequential plan, starting with a parallel
one, is rarely attractive. If the aim is to go fast, then the SPS-
DICHO and SPS-CTR methods are the best. It is natural to think
that the cost of successive searches which stop with a success,
which is the case of the SPS-CTR method, is less than the cost
of successive unsuccessfull searches, which is the case with
FDP, since the first solution which is encountered is an optimal
plan.

In some cases there is a combinatorial explosion for the
computation or the proof of optimality of a sequential plan,
as it is the case for Free-Cell or Storage problems. For other
problems, like PSR and some PipesWorld problems, it is
the opposite. One could imagine that it would be usefull to
call simultaneously many search procedures following various
strategies, so as to minimize the risks.

Finally we focused on a particular domain, the airport
domain, which consists in controling the ground traffic on
airports. This domain has been developed by Jörg Hoffmann
and Sebastian Trüg for the IPC-4 competition. The figure
4 shows the results for the twenty easiest problems of the
serie. It is clear that SPS-DICHO performs better than FDP.
Moreover harder are the instances more important is the gain.
A particularity of the problems in which the gain is important
is that the optimal sequential plans are much longer than the
optimal parallel plans. On the other hand the optimal parallel
plans are often also optimal sequential plans. In these cases
the procedure has just to verify that there is no plan with one
action missing, whatever is the number of steps. The procedure
SPS-CTR and in a lesser measure the procedure SPS-DICHO
have not to perform many unsuccessfull searches as has the
procedure SPS.

Finally remark that two problems of the serie were solved
by SPS-CTR within the timeout of 3000 seconds while FDP
did not find a solution.

6. Conclusion

We have presented a procedure based on FDP search proce-
dure, which searches for plans in which the number of actions
and the number of steps are constrained. Two structures are
used simultaneously, the first one represents the sequential
plan and while the other represents the parallel plan. We
have experimented the application of this procedure to search
optimal sequential plans, starting with an optimal parallel

plan, following the idea of Büttner and Rintanen [4]. This
way, the search explores the pairs (m, n) where n is the
minimal number of actions for a parallel plan of length m.
In particular the search yields an optimal sequential plan. We
have implemented our approach and we have compared it with
the optimal sequential planner FDP for the computation of an
optimal sequential plan. Our results are in general worse than
the results obtained with FDP, but they remain competitive.

Finally we have implemented a version of the search in
which the length of the parallel plan is not constrained, the
initial optimal parallel plan providing the initial number of
actions, which is very efficient. In further works, we will
explore this strategy, in which case most searches are suc-
cessfull, in opposition with FDP which starts searching short
plans. Furthermore the implementation of ∃-step semantic for
parallel plans should be of great help in that direction. We
will also study how to adapt our search procedure to optimize
a function depending on the number of actions and on the
makespan.

References

[1] S. Grandcolas and C. Pain-Barre, “Filtering, decomposition and search
space reduction for optimal sequential planning,” in Proceedings of
the Twenty-Second Conference on Artificial Intelligence (AAAI-07), july
2007, pp. 993–998.

[2] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,” Artificial Intelligence, vol. 27, pp. 97–109, 1985.

[3] P. Haslum and H. Geffner, “Admissible heuristics for optimal planning.”
in AIPS, 2000, pp. 140–149.

[4] M. Büttner and J. Rintanen, “Improving parallel planning with con-
straints on the number of operators,” in Proceedings of the 15th
International Conference on Automated Planning and Scheduling, 2005,
pp. 292–299.

[5] G. Gabriel and S. Grandcolas, “Searching optimal parallel plans: A
filtering and decomposition approach,” in proceedings of the 21st
International Conference on Tools with Artificial Intelligence, 2009, pp.
576–580.

[6] A. Blum and M. Furst, “Fast planning through planning graph analysis,”
in Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI 95), 1995, pp. 1636–1642.

[7] A. Mackworth, “Consistency in networks of relations,” in Artificial
Intelligence, 1977, pp. 8:99–118.

[8] Y. Chen, Z. Xing, and W. Zhang, “Long-distance mutual exclusion
for propositional planning,” in IJCAI’07: Proceedings of the 20th
international joint conference on Artifical intelligence. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007, pp. 1840–1845.

[9] Y. Dimopoulos, B. Nebel, and J. Koehler, “Encoding planning problems
in nonmonotonic logic programs,” in ECP ’97: Proceedings of the 4th
European Conference on Planning. London, UK: Springer-Verlag,
1997, pp. 169–181.

[10] J. Rintanen, K. Heljanko, and I. Niemelä, “Planning as satisfiability:
parallel plans and algorithms for plan search,” Artif. Intell., vol. 170,
no. 12-13, pp. 1031–1080, 2006.

[11] M. Wehrle and J. Rintanen, “Planning as satisfiability with relaxed
∃-step plans,” in AI’07: Proceedings of the 20th Australian joint
conference on Advances in artificial intelligence. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 244–253.

problem act. facts act. niv. FDP SPS SPS-DICHO SPS-CTR PFDP

Airport-1 15 80 8 8 0,08 0,09 0,09 0,09 0
Airport-2 23 81 9 9 0,08 0,11 0,1 0,1 0
Airport-3 38 131 17 9 0,33 0,41 0,38 0,37 0,3
Airport-4 23 156 - 500 0,31 0,23 0,23 0,22 0,2
Airport-5 54 197 21 21 2,85 2,87 2,88 2,86 2,8
Airport-6 77 291 41 21 6,68 7,9 6,99 6,68 6,4
Airport-7 77 291 41 21 6,68 7,87 6,97 6,67 6,4
Airport-8 131 412 62 26 74,78 117,94 45,68 22,2 13,3
Airport-9 143 483 71 27 578,53 1367,91 281,56 93,36 18,3
Airport-10 29 178 18 18 0,47 0,49 0,5 0,48 0,4
Airport-11 60 219 21 21 3,55 3,58 3,57 3,54 3,5
Airport-12 89 327 39 21 9,62 10,62 9,76 9,46 9,3
Airport-13 87 322 37 19 7,98 8,87 8,22 7,94 7,7
Airport-14 149 462 60 26 81,77 134,63 46,7 30,04 18,6
Airport-15 147 459 58 22 73,53 130,31 44,87 28,73 17,3
Airport-16 207 594 79 27 2990,31 1090,05 408,66 35,2
Airport-17 225 687 88 28 2795,95 77,1
Airport-18 283 811 107 31 888,7
Airport-19 229 755 90 30 1906,49 103,1
Airport-20 302 898 115 32 3219,4

Fig. 4. CPU times for a selection of Airport problems (times are in seconds)

