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ABSTRACT
In this paper, a nonlinear predictive control of a pla-
toon of several vehicles is proposed by using non-linear
robotic form model of the vehicles. The model used rep-
resents the longitudinal, lateral and yaw movement for
each vehicle in the fleet. This control approach allows
controlling the fleet, uses the available information, en-
sures a safe distance between vehicles to avoid collisions
and follows the path of the leader. The robustness of the
control will be studied in order to assess the different er-
rors occurring in the estimated parameters values.

1. INTRODUCTION
The explosion in the number of vehicles put into circula-
tion each year in the world poses problems for road in-
frastructures today. There is also air pollution and the
safety of people. Today, peri-urban networks are affected
by recurrent congestion phenomena, due to the increas-
ing number of urban-urban journeys. How to increase
the capacity of the infrastructures, while improving the
safety and the comfort of the motorists? Solutions can
then be considered: better use of available space by au-
tomating vehicles at low speeds or streamline all travel.
The first strategy led to the behavioral study of inter-
vehicular distances Ali et al. [2015], Nouveliere et al.
[2002]. In the field of road transport, the constraints re-
lated to the safety and the capacity of the traffic lanes
make the knowledge of inter-vehicle distances and possi-
bly their control necessary.
The vehicle fleet is a very efficient means of transporta-
tion for passengers, merchandise and increased traffic ca-
pacity. For example, a convoy of trucks carries goods,
with a single driver Ali [2015]. Other benefits such as
reducing fuel consumption and minimizing manpower.
The convoy is composed of a vehicle in the head and
other cars are followers. The leader vehicle can be au-
tonomous or driven by a driver, the other vehicles follow
the leader with a safety distance to avoid collisions be-
tween vehicles. Two spacing approaches for the safety
distance between vehicles have been proposed in the lit-
erature; an established distance and a distance propor-
tionally with the speed Swaroop [1994] . Nouveliere
et al. [2002]. For a longitudinal displacement, the dis-

tances are constant. For overall control of longitudinal
and lateral movements, the distance between vehicles can
be proportional to speed and depends on the reference
path for lateral deviation.
Several control approaches have been proposed in the lit-
erature for vehicle fleets, in Ali et al. [2015] a linear dual
integrator dynamic model is used after an exact lineariza-
tion for a vehicle convoy. The longitudinal movement is
controlled with a linear control to ensure a safe distance
between the vehicles. The lateral movement is <qcon-
trolled by acting on the vehicle orientation angle with re-
spect to the desired trajectory. Longitudinal and lateral
control are independent. Another control approach has
been proposed in Xiang and Bräunl [2010] which repre-
sents a distribution algorithm based on the relative error
of the previous vehicle, position, the vehicle model used
for this approach is the kinematic one.
In order to obtain precise data, sensors are placed on
board of each vehicle of the fleet, for this mission. The
local strategy is based on data or information that are
shared between close neighbors. In the literature, most
Leader-Follower control approaches belong to this cate-
gory Avanzini et al. [2010], Avanzini [2010]. The Leader
vehicle can move autonomously to follow a desired path.
It serves as a target or reference for the vehicle follow-
ing it. Each vehicle in the convoy group plays the role
of Leader for the vehicle following it (the follower). The
driven vehicle is dependent of the data of its predeces-
sor, the control architecture here is unidirectional. The
global architecture uses the information of all the vehi-
cles of the convoy as the state of the leader and neighbor-
ing vehicles, for example, the control referenced on the
previous vehicle and the leader. This control approach
is divided into two categories, using either a centralized
or decentralized architectures. For the centralized archi-
tecture, the control law applied to each vehicle in the
fleet is based on the data of all vehicles in the convoy
Yazbeck [2014]. On the other hand, the decentralized ar-
chitecture is based on the data of a part of the convoy,
to minimize the numbers of the sensors used. A review
on modelling and control strategies has been presented in
M’Sirdi [2018].
Several convoy project are realized in the literature that
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are based on these approaches of control, we can men-
tion the AutoNet2030 project for a self-driving vehicle
cooperation system and a manual drive based on the de-
centralized approach to make their decision. The con-
trol laws are based on the information of the neighbors.
And the SARTE project funded by the European Union
in 2012 with the aim of driving a convoy of vehicles with
high speed on a motorway without modifying the infras-
tructure. The control law applied on each vehicle of the
convoy is based on the decentralized global approach,
such that the leader information and the neighbors used
to build this control Avanzini [2010]. Another important
project is the one called Chauffeur, which deals with the
conveying of trucks. The leading vehicle was controlled
manually by a driver and the other vehicles (trucks) auto-
matically follow the truck ahead.
In this work, we propose a coupled longitudinal and lat-
eral control of a fleet of autonomous vehicles using non-
linear predictive control. The model used for this control
approach represents the non-linear robotic form model of
a vehicle . The model represents the longitudinal and lat-
eral movement of the fleet and the movement of the yaw.
The longitudinal movement of the fleet is controlled by
the driving/braking wheels torque and the lateral move-
ment is controlled by the steering angle. In this control
approach, the model of the fleet is not linearized. The
kinematic model will be considered for moving the fleet
in the reference frame. The lateral control of the fleet
is coupled with the longitudinal movement according to
the speed, as the lateral movement is controlled by im-
posing a lateral acceleration and this desired acceleration
is calculated according to the longitudinal speed and the
reference trajectory for each vehicle of the convoy. The
overall control of the convoy makes it possible to follow
a desired trajectory for the convoy and to ensure a safe
distance between the vehicles of the fleet to avoid colli-
sions.

2. MODELING
The dynamic model is considered in this part to control
the fleet by the efforts that are applied for each movement
of the convoy.

2.1. Dynamic model
Several methods of modeling can be found in the litera-
ture to determine the model of a vehicle. These differ-
ent methods lead to sets of equations that represent the
dynamic motion of the vehicle DeSantis [1995] Jaballah
[2011] Rabhi [2005]. The dynamic model used of a vehi-
cle was determined using the robotic formalism Chebly
[2017]. The vehicle is represented in the figure 1 with
the following variables in (G, x, y ) the vehicle reference
frame. G is the gravity center.
L f is distance from the front wheel to G .
Lr: is the distance from the rear wheel center to G.
m, Iz: the mass and Inertia Moment of the vehicles.
mw, Iw :the mass and the rotational inertia of the wheel.
ẋ,vx : longitudinal vehicle velocity along x axis.

Figure 1: The Vehicle Description

ẏ,vy : lateral velocity (axis y).
θ : yaw angle and θ̇ : yaw rate.
ax = ẍ− ẏθ̇ : longitudinal acceleration.
ay = ÿ+ ẋθ̇ : lateral acceleration.
Cα f ,Cαr : are respectively the cornering stiffness of the
front and the rear wheels.
τ: driving/braking wheels torque.
δ : steering wheel angle.
Faero = 1

2 ρcsẋ2: aerodynamic force, where ρ,s and c :
are the air density, the vehicle frontal surface and the
aerodynamic constant.
Rt :Radius of the tire and E: Vehicle’s track.
We define me, L3 and I3 as follows :
me = m+4 Iw

R2
t
, L3 = 2mw(Lr−L f ) and I3 = Iz +mwE2.

The generalized coordinates q ∈ R3 are defined as : qi =
[xi,yi,θi]

T . The dynamic model of a vehicle is presented
as follows:

Mi(qi).q̈i +Hi(q̇i,qi) =Ui (1)

Where the inertia Matrix Mi(qi) is:

Mi =

 mei 0 0
0 mi −L3i
0 −L3i I3i


And the vector Hi(q̇i,qi) is equal to
Hi(q̇i,qi) =
−miq̇2iq̇3i +L3iq̇2

3i +δi(2Cα f iδi−2Cα f i
q̇1i(q̇2i+L f iq̇3i)

q̇2
1i−(q̇3iEi/2)2 )+Faeroi

miq̇1iq̇3i +2Cα f i
q̇1i(q̇2i+L f iq̇3i)

q̇2
1i−(q̇3iEi/2)2 +2Cαri

q̇1i(q̇2i−Lriq̇3i)

q̇2
1i−(q̇3iEi/2)2

2L f iCα f i
q̇1i(q̇2i+L f iq̇3i)

q̇2
1i−(q̇3iEi/2)2 )−2LriCαri

q̇1i(q̇2i−Lriq̇3i)

q̇2
1i−(q̇3iEi/2)2 −L3iq̇1iq̇3i


And the input vector Ui = (u1i,u2i,u3i)

T :

Ui =


τi
Rti

(2Cα f i−2 Iwi
R2

ti
q̈1i)δi

L f iu2i− (Ei
2 Cα f i

Eiq̇3i(q̇2i+L f iq̇3i)

q̇2
1i−(q̇3iEi/2)2 )δi


The inputs of the system are the control of the torque and
the steering wheel angle.

2.2. Kinematic Equations
The transformation matrix of the velocity, from the abso-
lute vehicle frame (G,x,y) to the velocity in the reference
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frame R(0,X,Y) is defined by: Ẋi
Ẏi
θ̇i

=

 cosθi −sinθi 0
sinθi cosθi 0

0 0 1

 ẋi
ẏi
θ̇i

 (2)

Such as we get the kinematics of the ith vehicle:{
Ẋi = ẋi cosθi− ẏi sinθi
Ẏi = ẋi sinθi + ẏi cosθi

(3)

2.3. Convoy Motion
The movement of the fleet in a path of reference is pre-
sented in the Fig. 2, the convoy moves in this trajectory
with a distance that separates every two vehicles. The
curvilinear inter-distance error is calculated as a function
of the travel distance for each two neighboring vehicles
in the curvature of the reference path. Let M the center
of gravity of the vehicle (i), the curvilinear error between
the vehicle (i) and the vehicle (i-1) is defined as follows:

esi = Si−1−Si− ldi (4)

Si : represents the curvilinear abscissa of the vehicle (i)
at the center of gravity, is calculated as follows:

Ṡi =
√

ẋ2
i + ẏ2

i (5)

By replacing equation ( 5) in equation (4), the curvilinear
error will be defined as follows:

esi =
∫ t

0
(ẋ2

i−1 + ẏ2
i−1)

1
2 dt−

∫ t

0
(ẋ2

i + ẏ2
i )

1
2 dt− ldi (6)

Figure 2: Geometric description of the convoy motion

3. CONTROL
3.1. Vehicle State Space Model
We have as a state vector, the position and speed of each
vehicle:

zi =

(
z1i
z2i

)
(7)

ż2i = M−1(z1i)(−H(z1i,z2i)+Ui) (8)

with positions: z1i = [xi,yi,θi]
T

and velocities: z2i = [ẋi, ẏi, θ̇i]
T

The dynamic model of a vehicle i of the convoy is repre-
sented in canonical forms :

{
ż1i = z2i
ż2i = f (z1i,z2i)+g(z1i)Ui

(9)

For our model we have

f (z1i,z2i) =−M−1(z1i)H(z1i,z2i)

and g(z1i) = M−1(z1i)

3.2. The objectives
The aims of the control are to :
-Control the vehicles to follow the trajectories of the
leader by ensuring a safe distance between the vehicles
to avoid collisions,
-Use the available information to calculate the law of the
control and ensures local stability for each vehicle and
global one for the fleet,
-Ensure robustness of control over errors in model param-
eter estimates with the presence of a non-linear model

3.3. Longitudinal and lateral control
Tracking accuracy can be improved by using non-linear
predictive control based on knowledge of the reference
trajectory Hedjar et al. [2005] Merabet and Gu [2008].
This control approach is based on the optimization of the
cost function with the objective of controlling the fleet to
follow the trajectory of the leader with a safety distance
between the vehicles to avoid the collision Song et al.
[2017].

Ji =
1
2

∫ h

0
ei(t +T )T Qiei(t +T )dT +

1
2

UT
i RiUi (10)

With: h represents the horizon of the prediction, T is the
time of the prediction . e(t +T ) : the tracking errors at
the next step. For the model defined in the equation (9),
we have that ei = (e1i,e2i) with ei represents the position

errors, e2 speed errors and Q =

(
Q1 0
0 T 2Q2

)
With

Q1,Q2,R are weighting matrices.
The aim of the longitudinal control of the fleet is to im-
pose a longitudinal speed on the fleet and to ensure a
safety distance between each two neighboring vehicles
Fig. 3.
To simplify the writing we define the error of the fleet as
defined in the dynamic model as ei = (e1i,e2i,e3i) with
e1 the longitudinal error of the position, e2 the error of
the lateral position and e3 the error of the position of the
yaw.
We define the curvilinear spacing error between the vehi-
cles of the convoy:
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Figure 3: The longitudinal movement of the convoy

e1i(t +T ) = Si(t +T )−Si−1(t +T )+ ld(t +T )

With ld : the safety distance. Si(t +T ) : represents the
curvilinear abscissa of the vehicle (i) at the next step.
The error of the longitudinal velocity is defined as fol-
lows:

ė1i(t +T ) = ẋi(t +T )− ẋi−1(t +T )

The lateral movement of the fleet is controlled by the
steering angle of vehicles. The error of the lateral ac-
celeration is defined as follows:

ë2i(t +T ) = ayi(t +T )−aydi(t +T ) (11)

The reference lateral acceleration is calculated as fol-
lows: aydi = ẋ2

i /ri. Such as ri represents the radius of
the leader’s trajectory. We have that ayi = ÿi + ẋiθ̇i. re-
placing the two previous expressions in the equation (11),
We can write the lateral error in the following form :

ë2i(t +T ) = ÿi(t +T )− ÿdi(t +T )

With : ÿdi = ẋ2
i /ri− ẋiθ̇i.

The prediction of the tracking error (longitudinal and lat-
eral) can be made using the Taylor approximation and
based on the model defined in (9), such as ei represents
the position error:

ei(t +T ) = ei(t)+T ėi +
T 2

2!
( f (zi)− z̈id)+

T 2

2!
g(zi)Ui

ėi(t +T ) = ėi +T ( f (zi)− z̈id)+T g(zi)Ui

The minimization of the cost function is obtained such
that: ∂Ji/∂Ui = 0

Ui =−g(zi)
−1(

h5

20
(Q1i +4Q2i)

+g(z1i)
−T Rg(z1i)

−1)−1(
h3

6
Q1iei + ...

+
h4

8
(Q1i+2Q2i)ėi+

h5

20
(Q1i+4Q2i)( f (z1i,z2i)− z̈i−1)

(12)

Ui controls the longitudinal movement of the fleet by the
torque (u1i) of each vehicle and the lateral movement by
the steering angle (u2i). In our case, the longitudinal
and lateral control are coupled by the longitudinal ve-
locity. The steering angle is used to calculate the third
control (u3i) (yaw movement) to calculate the yaw rate
and present the movement of the fleet in the reference
frame (0,X,Y) by the transformation matrix.

3.3.1. Convergence Analysis
The stability study for each vehicle in the convoy is based
on the vehicle error and the lateral error with respect to
the leader’s trajectory. We define the parameters: K1i =
h3

6 Q1i,K2i =
h4

8 (Q1i+2Q2i) and K3i =
h5

20 (Q1i+4Q2i) For
the stability study according to the errors (longitudinal
and lateral), we neglect the weighting on the control. Let
the candidate Lyapunov function :

Vi =
1
2

ėT
i ėi +

1
2

eT
i

K1

K3
ei (13)

Deriving this function we find:

V̇i = ėT
i ëi + ėT

i
K1

K3
ei (14)

Replacing ë (the acceleration error) with its expression (
ëi = z̈i− z̈i−1 ) :

V̇i = ėT
i ( f (z1i,z2i)+g(z1i)Ui− z̈i−1)+ ėT

i
K1

K3
ei (15)

= ėT
i ( f (z1i,z2i)− z̈i−1−

K1

k3
e+ ...

− K2

K3
ėi− f (z1i,z2i)+ z̈i−1)+ ėT

i
K1

K3
ei (16)

It is clear that the stability condition is verified when the
gains of the weighting matrices are positive such that :
V̇i =−ėT

i
K2
K3

ėi < 0. The choice of K1,K2 and K3 depends
on the weighting matrices and the horizon of the predic-
tion that is around ms. By increasing the gains of the
matrices Q1 and Q2, the stability is still checked and en-
sured.

4. SIMULATIONS
To validate this result we used the parameters of a vehicle
of the Scanner Studio. 10 vehicles are simulated in Mat-
lab Simulink using both dynamic and kinematic models.
The simulation achieved to validate the control law in
both directions of longitudinal and lateral motions and
to check the stability and accuracy of trajectory tracking.
The leader has been controlled using a chosen reference
speed and a desired trajectory. The other vehicles using
the predecessor’s information to calculate their control
and follow the path of the leader and ensure distances
between each neighboring pair.
The longitudinal velocity is limited to vx < 50km/h, and
the imposed lateral acceleration has been bounded by two
values ; aymin < ay < aymax and as a function of the longi-
tudinal velocity and the radius of the reference trajectory
of the leader and the convoy. The inter-vehicle distance
is limited between ldmin < ld < ldmax. The displacement
of the fleet in the fixed reference is presented using the
following kinematic model:

Xi =
∫ t

0
(ẋi cosθi− ẏi sinθi)dt (17)
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Parameter Value Parameter Value
m 1500 kg mw 23.2kg
Iz 1652.7kg.m2 Iw 2kg.m2

Cα f 67689N/rad Cαr 69253N/rad
Lr 1.441m L f 1.099m
s 2m2 E 1.5m
c 0.3 ρ 1.3

Table 1: Vehicle parameters values SCANeR-Studio

Yi =
∫ t

0
(ẋi sinθi + ẏi cosθi)dt (18)

The two previous equations are used to calculate the po-
sitions of the fleet in the reference frame R(O,X,Y).
The Fig. 4 shows the movement of the fleet in the leader’s
trajectory. The convoy follows the path of the leader, the
lateral error is almost negligible; that is to say, no an-
gular deviation between the fleet and the desired trajec-
tory. We can see that even with this control approach that
uses the information from its predecessor, the fleet is still
on the same path and the accumulation of tracking er-
ror is almost negligible too. The path tracking accuracy
of the convoy Fig. 4 shows the robustness of the non-
linear predictive control for tracking the trajectory of a
fleet of 10 vehicles that takes into account the non-linear
dynamics of each vehicle in the convoy. This control ap-
proach makes it possible to control the movements of the
fleet, based on the available data, longitudinal and lateral
movements.

Figure 4: Trajectory of the convoy

The safety distance between the fleet is shown in the Fig
5. We can see a deviation of this distance between 2 and
4.5 m then it stabilizes for a value of 3.5 m. This safety
distance was chosen for speed around 43 km/h. Gener-
ally, the convoy moves at low speed. The safety distance
is almost the same for convoy vehicles. For a convoy that
moves with a high speed, the distance must be higher be-
cause the risk of collision increases with a high speed and
a small distance

Figure 5: Inter vehicle distance

The Fig. 6 shows the different steering angles for the fleet
vehicles. These angles are calculated using the second
term of the global control (u2i) such as:

δi = u2i/(2Cα f i−2
Iwi

R2
ti

ẍi) (19)

This control approach makes it possible to control the
longitudinal and lateral movements of the fleet. The lat-
eral movement of the fleet is based on the trajectory of
the leader as shown in the Fig. 4 and the longitudinal
velocity. That is, both controls are coupled by lateral ac-
celeration. We can clearly see a lateral movement or a
lateral deviation by carrying the x-axis of the longitudi-
nal movement from the t = 5 s. The steering angle is
almost constant between the interval t ∈ [10, 55 s] with a
value of 0.03 rad. This value is always dependent on the
speed of the fleet and the desired trajectory.

Figure 6: Steering angle

The Longitudinal speed of the fleet is presented in the
Fig. 7. This speed has been imposed for the leader. By
the law of the control and with the predictive control it
is clear that the vehicle speeds of the convoy converge
quickly to the speed of the leader. The speed of the con-
voy compared to the speed of the leader which is prop-
agated in the convoy is almost negligible, which shows
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the best precision and performance given by the predic-
tive control for a convoy of 10 vehicles.

Figure 7: velocity vx of the convoy

Figure 8: Yaw rate of the convoy

The lateral acceleration of the fleet is presented in Fig. 9.
In our case, we took into account the speed of the yaw
as ayi = ÿi + θ̇iẋi. This acceleration is proportional to the
longitudinal velocity and the radius of the leader’s trajec-
tory. We see clearly at t = 5s a presence of the lateral
movement to wait for a value 0.15 m/s2. This accelera-
tion is positive for t ∈ [5, 55 s] and allows vehicles to be
oriented for a positive lateral deviation along the y-axis.
For t ∈ [55, 75 s] the lateral acceleration is zero, that
proves , that the fleet remains in the same direction (lon-
gitudinal direction), then between [75, 170 s], we can see
a decceleration. Fig. 10 and Fig. 8 represents the lateral
velocities of the fleet and the yaw rate which are propor-
tional to the lateral acceleration.
To test the robustness of the control on the parameters of
the model; we assumed that the parameters are not well
estimated, that is, 20% errors of f ⇒∆ f = f − f̂ = 20% f
and 20 of g⇒ ∆g = g− ĝ = 20%g. The results Fig. 11
and 12 show that the fleet is still following the leader’s
trajectory and the safety distance remains the same. The
lateral deviation from the reference trajectory is still neg-
ligible, which proves the robustness of the control com-
pared to the estimation errors on the model parameters.

Figure 9: Lateral acceleration ay of the convoy

Figure 10: velocity vy of the convoy

Figure 11: Trajectory of the convoy +20% of estimation
errors

5. CONCLUSIONS
In this paper, we proposed a coupled longitudinal and lat-
eral control for a convoy of autonomous vehicles. This
approach uses nonlinear predictive control for tracking
trajectory. The proposed approach allows to control
the fleet by the available information and to follow the
reference trajectory of the leader. Dynamic and kine-
matic modeling was presented to control and represent
the movement of the fleet in the reference frame. This
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Figure 12: Inter vehicle distance +20% of estimation er-
rors

nonlinear control approach has shown a precision perfor-
mance with respect to the trajectory tracking for the lat-
eral movement of the fleet and robustness when the pa-
rameters are not well estimated. The control law makes
it possible to ensure a safe distance between the vehicles
to avoid collisions by the longitudinal control, such that
the fleet moves with the same speed of the leader. Accu-
mulation of fleet tracking error is negligible when using
this control approach.
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