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ABSTRACT:

To provide the frequencies estimation , Adaptive Notch
Filters [1-4] can be used by implementation in & cascad blocks of
second order cells. Some strategiesto track time varying parameters
canbe used [6]. Then, in a second step the estimated frequencies are
used to provide the estimation of amplitudes and phases in a
recursive manner, The proposed recursive algorithm consistsin two
steps. The first step involves a Maximum Likelihood algorithm to
adapt the cascaded filters parameters [1][4], which will provide the
frequencies estimates. The second step uses the last estimates, and
then the estimations of amplitudes and phases are given by a
Recursive Least Squares algorithm([6]. The proposed algorithm is
asymptotically consistent and robust faced with the neglected
dynamics. In case of time varying signals, its tracking capabilities
insure the goodness of the estimations. The accuracy of estimation
is better with the RML than with the ELS method for which an
upper limit of the debiasing parameter is crucial in order to have a
convergencewithoutlocalinstabilities.

I-INTRODUCTION:

Our main interest in this contribution, is the retrieval of
sinusoidal signals in noise. AR and ARMA modelling techniques
have powerfull potentialities and wellsvited for signal spectrum
analysis. However, when the noise level is high and / or when the
signal model has poles near or on the unit circle, serious problems
arise[1). In the narrowband case, successfull applications have been
realized with AR modelling [2-3]. The high order autoregressve
FIR filter is shown to be asymptotically equivalent to an Adaptive
Notch Filter (ANF). The noise effect is reduced by increasing the
order of of the AR filter at the expense of computational cost. Thus
the a priori knowlege of a narrowband leads to the Notch Filter
Structure (NFS) with constrained poles and zeros. This has

" recently been proposed in extensive simulations [4-7]. A theoretical
analysis have been presented in [5][7) and the applicable estimation
methods are reviewed in [8].
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These last structures introduce in ParameterAdaptationAlgorithms
(PAA) some nolinearity which may give some problems in the
transient period of the estimation. The cascade implementation of
second order have been claimed possible. Fast Least Squares
(FLS) estimation algorithm case have been considered and studied
in simulations[9]. The main interest of the ANF Cascade form is to
simpiify computation of the estimated frequencies and in case of
independly time varyingfrequencies, a second order filter appears
faster to track variation than a higher order one.

In section II of this paper we develop an implementation of
cascaded ANF. The Prediction Error Method (PEM) is applied
leading to a Recursive Maximum Likelihood (RML) algorithm.
This PAA allows the computation of the estimated frequencies. In a
second step, using these estimates, a Recursive Least Squares
(RLS) algorithm is employed for the estimation of amplitudes and
phases. The analysis and performance evaluation of these algorithms
is presented in section I11.

II-Recursive  estimation

filter structure.
2.1 Frequency estimation whit cascaded ANF

The recursive estimation procedure consists of two stages.
The first one involves an ANF in cascade form for the estimation of
the frequencies. The other one uses an adaptive algorithm to provide
the amplitudes and phases estimations. The involved signals may be

algorithm  and

modeled as follows where Vi isthe noise disturbance:

Yk =§:c‘ sin(oy. k+ By + v 1)

Adaptive Notch Filters are very well suited for estimation of
the sinusoidal component frequencies. Let us consider the notch
filtertransfertfunctionincascade form:

Hz )= ﬁ‘m(z-i) =11'}'[ szl 22y (e l+2 22)) @)

With no loss of generality we assume identical bandwidth



for the notches. If the frequencies are all independant we can write
forallj:l...p:_v" ? )
W=TL H(a) Y,

i#i ®
and the prediction erroris: €, = Hj(q'l) ;k; @
The last equation presents a second order notch filter. Thus
independence between frequencies yields independence between
parameters a; of each second order cell. Then each cellcan be
adaptedindependently of the othersafterprefiltering the signal by the
others. If we suppose that the filters Hi(z'1) with i} and i=1...p
have converged then the filter Hj(z'l) will remove the remaining
component. Thus there exits a unique global minimum for the

quadratic criterion. Following the Prediction Error technique for the
escimationalgorithm weobtainthegradient:

(- qi
fi= I'? (+ rayqrig )“}“(5)

The RML algorithm may be summarized by the following

F:-( %f €
R e m)

An approximation must be dome to reduce computational
complexity. It yields an Approximate RML algorithm. The
computational complexity is essentally du to the computation of the
gradient. We canthenuse theformula:

yi Silk) ~ .k
k

equations:

Aj@ =2kt +
©)

47 {era; 1"+ riq® @
Withf; (k 1)computed asfollows:
Hk = e('r‘) % ®
e}(/c) =yl -y

22 Amplmule and pnse estimation with WRLS:

In this second step we assume the frequencies known and
use & Weighted Recursive Least Squares algorithm to estimate the
amplitudes and phases as in [10]. The frequency estimates are
provided by the first step.

Model (1) of the signal may be written :

$ .
JF {;1 ( %ec"‘“"'k + Vqs»uu)e-k)w; o

wherethe amplitudes Cyand phases Bp(f=1...p) are givenby:
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(10)

Ce= (gt e Vo 7%@(-
Wecandefi et.heparamewrvecmrandtheobservauonvectoras

=[9 298, huy 17 1

T

and (h_ [@suak.., otk sinurk, . sinadpk
The parameter vector 1semma:.edw1ththeWRLSalgonthm
El: = 3. 4’
= XN
F.Z—%L[FL Ty
&- 4.+ Fider (12)

In equation (12) the filtered version of the signal produced by the
first stage, can be used.

I11- Analysis and Performance Evaluation

3.1 Convergence of the ANF
a) Second order ANF (RML)
Let us first consider the case of a single cell H’(z) (see (4))

driven by the signal defined in (3) and assume the filters Hy(z)
i=1.4-1§+1,..0 have converged to their optimal vatue. Thus')‘v'kj is

composed by a single frequency @ plus additive independant noise.
The bandwidth are large enough to remove(or attenuate) the other
frequencies.

Taking for the signal an AR model with poles on the unit
circle and applying the RML algorithm, the a posteriori error canbe

written:

:f:)) qﬂ R"‘ 13)
with 33=-“a‘é*—"3m*‘y“
wd A(n,-')-u raﬁ»r q? "

Aeyy= 1 riygar £

Itis well known that theRML algorithm needs a stability monitoring
ingeneral case. For the ANF this procedure canbe removedin virtu
of thefollowing Lemma.
Lemma 1: Letr by exponentially time varying, from 0 to one,
according to:  ry=ry. ry._4+(1-r). £5 ,
Thenthere xit an rg, o and y such that Ary.q”!)isinfinitely often
stable.
proof : We can take ry < inverse of the maximum modulus of the
unstable poles of A(g™?).

Now applying the theoretical bakground in [11] and in
particular Theorem 4 of [11] leads tothe following:



Theorem 1: Under the assumptions
Afl: 1smﬁmtelyoftenstable
A2 forsomedaﬁxed ‘f/ ,ék W= -ir_. are stationary
ﬂ

A3: wy isindependent of "K \
and if the following transfert function is SPR: é,("_‘::) %
Then one hasthe following properties: )

witk b(_ = {a /(&.-ﬂ“a)%j:o}

comerawu Domain, .

PL: lim(g,-6)=0 wpl
n: lim(é,") & D, wpl

(19)

where D istheconvergence domain
A

Lemma2: vAaJ)a" there exists an r such that Aé - % is SPR.
The last condition on r is less restrictive than the one for the
stability. Lemmas 1 and 2 allow ustoassert the global stability of the
ANF if r is appropriately chosen such that A(r. q'l) is always stable
duringestimation.
b) ELS parameter adaptationalgorithm:

If the ELS estimation method is applied (13) becomes [5}:

b= 21— Acs ,) (”—J 3)?’.*‘ e (16)
The SPR condition is more restrictive than the stability one onr and
Theorem 1 cannotbe appliedin all cases. Thereexits an upper limit f
for the debiasing parameter in order to have the SPR condition.
This limit f depend of the signal frequency and limitsthe accuracy of
thebstimates.
Thus the local stability cannot be etablished although the global
stability canbe ensured.
c) Uniqueness of the RML estimates:

Intheorem 1 we have asymptotically wpl (P1):

b= A a7)
Equauon(4)and(14)yteld (’7 )
£ Ad 7' da) w09
A TR ol
It follows from (17) and (18):
Als) _ AG) (19
Alrg™) Alrg?)

and Lhenel=a1 with probability one (wp1) // r£d.
Theorem 2: If the order is correct the RML estimates for ANF are
unique. W

The main result;conserning ANF are :
i) the global convergence can be ensured with an appropriate choice
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of thedebiasing parameter without anystability monitoring.
ii) TheRML estimates are unique.

For p cells in cascade adapted along (3_6),each cell will
converge near to a local minimum [S]. The filtering (3) will make
these minima distinciremoving, foreach cell the otherfrequencies.

3.2 Amplitude and phase estimates:
Exponential convergence of the amplitude and phase

estimates is garanteed by the following theorem which uses the
conceptof persistentexcitation[12].

Theorem 3: The RLS estimation scheme (12) with exponential
forgetting factorisexponentiallystable.

The proof of this theorem can be conducted in the same
lines as in [12]. The regressors are composed by p sinusoids having
different frequencies. Then the persistent excitation condition is
satisfyed:

1<alg Z ¢4 <plew @
Equation (20) yields by lemmn 1of[12]:
o< MA_‘Q I« F < +°(hk)(21)

A-““)

3&1" y
The adaptation’ is bounded and will never be zero (tracking
capabilities). Finally reasoning asin [12] we obtain.

I ‘5” S 13! Dmex (B ) 22

IV- Conclusion

(ﬂ 1

The main results demonstrate the good performances
observed in simulation for the ANF. The exponential convergence
of the WRLS estimates of amplitudes and phases is proved by use
of thetheoretical backgroung on persistentexcitation{12}.

These results are very important for the time varying systems or in
case of neglected dynamics due to the resulting robustness of the

algorithms. The implementation form studied here is
computationally attractive and robust also when frequency,
amplitude or phaseistime varying .
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