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Abstract
This paper presents an asymptotically optimal time interval selection criterion for the 
long-run correlation block estimator (Bartlett kernel estimator) based on the Newey–
West and Andrews–Monahan approaches. An alignment criterion that enhances 
finite-sample performance is also proposed. The procedure offers an opti-mal 
alternative to the customary practice in finance and economics of heuristically or 
arbitrarily choosing time intervals or lags in correlation studies. A Monte Carlo 
experiment using parameters derived from Dow Jones returns data confirms that the 
procedure can be MSE-superior to alternatives such as aggregation over arbitrary 
time intervals, parametric VAR, and Newey–West covariance matrix estimation with 
automatic lag selection.
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Newey–West · Andrews–Monahan
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Introduction

Correlation measures are frequently used in economics and finance to characterize 
the relations between pairs of time series, many times as a prelude to more detailed 
empirical analyses. Estimation procedures however are usually nonoptimal. For 
exam-ple, in studies of the relation between stock returns, a typical approach is to 
apply a simple correlation estimator to weekly or monthly aggregate returns, even 
though data is usually available at higher frequencies.1 Another common procedure 
is the use of a

1 Examples can be found in Campbell and Ammer (1993) and Ammer and Mei (1996).
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VAR to estimate correlation measures, where the number of lags is chosen arbitrarily
or using an information criterion.2

Furthermore, time series correlation studies are many times concerned with perma-
nent relations. For example, studies of stock market returns may want to characterize
only the long-run relationship, filtering out the effects of reversible components.
Long-run estimates tend to be heuristically approximated through the choice of return
horizons or lags that are considered long enough to capture permanent effects. There
are however two problems with this customary practice. When the procedure involves
time aggregation of high-frequency data, there may be unnecessary loss of informa-
tion. Additionally, there is usually no concern for the optimality of time interval or lag
choices.

For instance, a researcher may have access to daily stock return data, and yet choose
to use aggregate monthly return data to estimate return correlations. The procedure
though is inefficient, since the aggregation of daily data into monthly data can be
improved on by using an estimator based on overlapping monthly returns defined
daily, in other words, a block estimator. Additionally, the choice of a monthly time
interval is arbitrary and not necessarily optimal, particularly when the explicit goal of
the analyst is the characterization of the relation between permanent components. For
example, a monthly time interval may imply a return horizon that is or too short, and
thus less able to filter out transitory components, or too long, and consequently less
efficient.

One can propose therefore a better procedure that has the additional advantage of not
significantly departing from common practice in time series correlation studies. The
procedure employs a block estimator and an optimal time interval selection criterion,
or, formally, it uses a nonparametric consistent long-run correlation estimator based
on the k-lag difference correlation estimator (Bartlett kernel estimator) combined with
automatic lag selection and alignment criteria. Notice that, in the case of the block
estimator, the choice of a kernel size is equivalent to the choice of a time interval.
This property is exactly what makes the procedure simple, convenient and familiar to
practitioners not trained in spectral methods.

The methodological approach follows Andrews and Monahan (1992) and Newey
andWest (1994). The automatic lag selection criterion is based on the minimization of
the asymptotic MSE, leading to a time interval choice that is long enough to minimize
the estimator bias and short enough to minimize the estimator variance.

It may appear to some that an optimal criterion for long-run correlation estimation is
unnecessary, since the Newey–West procedure can be used to optimally estimate long-
run covariance matrices and, therefore, to calculate long-run correlations. However,
the Newey–West procedure does not guarantee the optimal estimation of correlation,
so a new criterion is designed to minimize instead the MSE of long-run correlation.

AMonte Carlo experiment using a VMA (5) and GARCH (1,1) parameters derived
fromDowJones returns data is used to evaluate the effectiveness of the lag selection and
alignment criteria. The proposed estimator proves to be adequate and MSE-superior
to commonly employed alternatives.

2 See for example King and Watson (1994) and Forbes and Rigobon (2002).



Long-Run Correlation

Long-run correlation can be defined using the concept of complex coherency from
spectral analysis.3 Following Priestley (1981), given two random variables xt and yt ,
the coherency at frequencyω can be interpreted as the correlation between the random
coefficients of the spectral components of xt and yt at frequency ω:

C(ω) � sxy(ω)
√
sxx (ω)syy(ω)

, |C(ω)| ≤ 1, |sxx (ω)| > 0,
∣∣syy(ω)

∣∣ > 0,

where sxx (ω) and syy(ω) are the spectra and sxy(ω) is the cross-spectrum, or, in other
words, the Fourier transforms of autocovariances and cross-covariances, given by

(1)

sxx (ω) � 1

2π

∞∑

n�−∞
γxx (n) e

−iωn, syy (ω)

� 1

2π

∞∑

n�−∞
γyy (n) e

−iωn, sxy (ω) � 1

2π

∞∑

n�−∞
γxy (n) e

−iωn,

γxx (n) � E
[
(xt − μx )(xt−n − μx )

]
, γyy(n) � E

[(
yt − μy

)(
yt−n − μy

)]
,

γxy(n) � E
[
(xt − μx )

(
yt−n − μy

)]
, μx � E[xt ], μy � E[yt ],

where γ represents the autocovariances or the cross-covariances of xt and yt .4

The time-domain concept of long-run correlation, which applies to pairs of I(0)
variables, is equivalent to the frequency-domain concept of complex coherency at
frequency zero (ω � 0),

λ ≡ sxy√
sxx syy

, −1 ≤ λ ≤ 1, sxx > 0, (2)

where

sxy � 1

2π

∞∑

n�−∞
γxy(n), sxx � 1

2π

∞∑

n�−∞
γxx (n), syy � 1

2π

∞∑

n�−∞
γyy(n). (3)

Notice that if xt and yt are overdifferenced (the first differences of I(0) variables)
then the long-run correlation parameter λ is not defined, since sxx and syy are equal to
zero. In other words, overdifferencing has the effect of a high-pass filter, eliminating
all long-run information from a variable.

Granger and Weiss (1983) and Engle and Granger (1987) observed that, under
certain cointegration literature assumptions, two I (1) variables cointegrate if and only
if their first differences have squared long-run correlation equal to one. On the other

3 See for example Granger and Rees (1968), Granger and Engle (1983) and McCallum (1984).
4 See Anderson (1971), Koopmans (1974), Fuller (1976), Priestley (1981), Granger and Watson (1984)
and Brockwell and Davis (1991).



hand, zero long-run correlation between first differences will only imply the absence
of structural long-run relation between two I(1) variables under certain identification
restrictions, see for example Fisher and Seater (1993). Notice also that the fact that
two variables do not cointegrate does not imply the absence of structural long-run
relationship; see for example McCallum (1993) for a discussion. Moreover, under
certain identification assumptions, a nonzero long-run correlation value will indicate
the existence of structural long-run relationship, even in the absence of cointegration.
Fisher and Seater (1993) offer an example using VARMA models.

Nonparametric Long-Run Granger Causality

Time series empirical studies have frequently relied on the concept ofGranger causality
as part of their analytical toolbox, see for example Nachane et al. (1988) for a dis-
cussion with applications. Granger causality is commonly studied using parametric
tests and linear autoregressive models under the null hypothesis of non-causality, but
nonparametric approaches are also available, such as in Diks and Panchenko (2006).

The concept of coherency is known to be useful in the evaluation of Granger
causality. According to Granger (1969), and using that article’s terminology, the cross-
spectrum function sxy(ω) as defined in (1) can be decomposed into three parts

sxy(ω) � s−→xy (ω) + s−→yx (ω) + sx̃y(ω),

which can be used to define the following causality–coherency expressions:

C−→xy (ω) � s−→xy (ω)
√
sxx (ω)syy(ω)

, C−→yx (ω) � s−→yx (ω)
√
sxx (ω)syy(ω)

, and Cỹx (ω) � sx̃y(ω)
√
sxx (ω)syy(ω)

,

where C−→xy (ω)measures strength of causality from x to y at frequencyω,C−→yx (ω) does
the same for y to x, and Cx̃y(ω) measures instantaneous causality between x and y.

Equivalent long-run causality–coherency expressions can be defined by making ω

equal to zero:

λ−→xy � s−→xy√
sxx syy

, λ−→yx � s−→yx√
sxx syy

, and λỹx � sx̃y√
sxx syy

.

The concept of long-run Granger causality is of interest in economics, see for 
example Granger and Lin (1995) for an in-depth discussion of the subject. Additional 
exploration of this topic, such as the construction of appropriate tests for the null 
hypothesis that causality–coherency expressions are not statistically different from 
zero, are potential extensions of this article.

Nonparametric Estimation of Long-Run Correlation

This section presents a nonparametric estimator of long-run correlation based on the 
block estimator (k-lag difference) approach of Bartlett (1950), Cochrane (1988) and



Cochrane and Sbordone (1988). Cochrane for example presented a nonparametric
statistic for unit root processes called the variance ratio, based on the k-lag difference
variance of a series. This paper goes a few steps further in this line of research by
developing automatic time interval selection and alignment criteria for the long-run
correlation block estimator.

Estimator

Consider two random variables xt and yt with summable covariances and autocovari-
ances. Given a sample of size T , 1 ≤ t ≤ T , an analogue estimator λ̂b of the long-run
correlation defined in (2) is a kernel estimator

λ̂b � ŝxy(b)√
ŝxx (b)ŝyy(b)

, (4)

where the cross-spectrum and spectrum estimators are

ŝxy(b) � 1

2π

T−1∑

n�−T+1

κ(n, b)γ̂xy(n), ŝxx (b) � 1

2π

T−1∑

n�−T+1

κ(n, b)γ̂xx (n),

ŝyy(b) � 1

2π

T−1∑

n�−T+1

κ(n, b)γ̂yy(n),

the cross-covariance and autocovariance estimators are

γ̂xy(n) �

⎧
⎪⎪⎨

⎪⎪⎩

1
T

T+n∑

t�1
(xt − μ̄x )

(
yt−n − μ̄y

)
, n < 0,

1
T

T−n∑

t�1
(xt+n − μ̄x )

(
yt − μ̄y

)
, n ≥ 0,

γ̂xx (n) � 1

T

T−|n|∑

t�1

(
xt+|n| − μ̄x

)
(xt − μ̄x ), μ̄x � 1

T

T∑

t�1

xt ,

γ̂yy(n) � 1

T

T−|n|∑

t�1

(
yt+|n| − μ̄y

)(
yt − μ̄y

)
, μ̄y � 1

T

T∑

t�1

yt ,

and κ(n, b) is a kernel with bandwidth b, 1 ≤ b ≤ T − 1.5

Different kernels can be used, each one having advantages and disadvantages, as
discussed in Newey and West (1987, 1994) and Andrews (1991). The Newey–West

5 See Priestley (1981, pg. 432). In spectral matrix estimation, the kernel parameter b can be a real number,
but here the analysis will limit itself to integer values of b to enforce compatibility of the Bartlett kernel
spectral estimator with the discrete-time version of the block estimator presented later in this subsection.



(Bartlett) kernel approach is chosen in this paper, due to its block estimator equivalence,
as discussed in what follows.6

Consider the expression for the covariance block estimator (k-lag difference esti-
mator) σ̂XY (k) divided by k, where, as in Cochrane (1988), the substitution of k times
the average of the first differences for the average of the k-lag differences is used as a
finite-sample enhancement:

σ̂XY (k)

k
� 1

k

T∑

t�k

[(
1 − Lk

)
Xt − kμ̄x

][(
1 − Lk

)
Yt − kμ̄y

]

T − k
,

(
1 − Lk

)
Xt � Xt − Xt−k,

(
1 − Lk

)
Yt � Yt − Yt−k,

where Xt and Yt are the integrated versions of xt and yt , given by

Xt � X0 +
t∑

i�1

xi , Yt � Y0 +
t∑

j�1

y j , for 1 ≤ t ≤ T .

As shown in “Appendix 1”, the block estimator with a time-interval parameter k
converges in probability to 2π times the Bartlett kernel estimator with bandwidth b �
k7:

σ̂XY (k)

k
� T

T − k
2π ŝxy(k) + Op

(
k

T

)
,

and the correlation block estimator Λ̂k can be used therefore to estimate long-run
correlation instead of Eq. (4), holding the same asymptotic properties:

Λ̂k � σ̂XY (k)
√

σ̂XX (k)σ̂YY (k)
. (5)

To confirm the adequacy of this result in the case of finite samples, a comparison
of the spectral (4) and the block (5) estimator using a Monte Carlo simulation will be
provided in “Monte Carlo Simulations”.

Notice that, from this point on, and for notational convenience, the use of the
parameter k instead of the parameter b in spectral estimators indicates the use of a
Bartlett kernel with bandwidth b � k.

6 Andrews (1991) proved that the QS kernel is optimal with respect to an asymptotic truncated MSE criterion 
among kernels that generate positive semi-definite covariance estimates, such as the Bartlett kernel. This 
result however should not be definitive evidence against the use of the Bartlett kernel, since the latter may 
perform better than the QS kernel with finite samples, as discussed in Andrews (1991) and  as  shown in  
Newey and West (1994). Newey and West argue for example that the Bartlett kernel performs better when 
processes are characterized by autocorrelations that “die out slowly”—a case frequently found in economic 
data, see for example Cochrane (1988). Moreover, as discussed in Hannan (1970, pg. 287), the QS kernel, 
differently from the Bartlett kernel, assumes negative values, leading to long-run correlation estimates that 
are not bounded (in absolute value) by unity, a property that, besides being undesirable by itself, complicates 
the derivation of the statistical properties of the estimator.
7 See also Cochrane (1988).



The block estimator has convenient features: it is a simple correlation estimator
applied to changes measured over time intervals of size k. Despite its straightforward
time-domain representation, its asymptotic properties can be derived using frequency-
domain methods. Its estimates are identical to those of heuristic procedures widely
adopted in different fields of economics and finance if the same time interval is chosen.
Because of this property, the block estimator provides the practitioner with a familiar
and intuitive interpretation of its optimal parameters. Therefore, preference will be
given to the block estimator in the sections that follow, always keeping in mind that
the Bartlett kernel estimator can be used instead if preferred.

Practitioners have used similar yet less efficient procedures when heuristically or
arbitrarily selecting time intervals or lags and when aggregating high-frequency data
into longer intervals, perhaps unaware of the statistical implication of their choices. The
block estimator proposed here, as will be shown in the next subsections, is therefore
an optimal yet unobtrusive alternative to commonly employed methods.

Consistency

As shown in Andrews (1991), “automatic bandwidth kernel estimators are consis-
tent with nonstationary as well as fourth order stationary random variables”. Apply
now a Taylor expansion around sxx, syy, and sxy to the proposed long-run correlation
estimator:

λ̂k � λ + Dλ

⎡

⎣
ŝxx (k) − sxx
ŝyy(k) − syy
ŝxy(k) − sxy

⎤

⎦ + Op

⎛

⎝
(
k2

T

) 1
2

⎞

⎠,

where

Dλ �
[

∂λ
∂sxx

∂λ
∂syy

∂λ
∂sxy

]
�
[ −λ
2sxx

−λ
2syy

1√
sxx syy

]
.

The Taylor expansion shows that the long-run correlation estimator converges in
probability to a linear combination of consistent spectral matrix estimators at fre-
quency zero, meaning that the Bartlett kernel estimator of long-run correlation is also
consistent under the same conditions of Andrews (1991).

Lag Selection

The followingMSE-minimization procedurewill be valid under the set of assumptions
given by Andrews (1991). Using the same approach of Newey and West (1994), an
optimal lag selection criterion minimizes the asymptotic MSE (AMSE) of the long-
run correlation estimator by exploiting the trade-off between the asymptotic variance
(Avar), obtained in “Appendix 2”,

Avar
(
λ̂k

)
� 2

3

k

T

(
1 − λ2

)2
,



and the square of the asymptotic bias (Abias), obtained in “Appendix 3”,

Abias
(
λ̂k

)2 � ψ2

k2
,

where

ψ � s(1)xy√
sxx syy

− λ

2

(
s(1)xx

sxx
+
s(1)yy

syy

)

,

s(1)xx � 1

2π

∞∑

n�−∞
|n|γxx (n), s(1)yy � 1

2π

∞∑

n�−∞
|n|γyy(n), (6)

and

s(1)xy � 1

2π

∞∑

n�−∞
|n|γxy(n). (7)

The following proposition is proved in “Appendix 4”:

Proposition 1 when λ2<1, the lag selection criterion that minimizes the asymptotic
mean squared error of the Bartlett kernel long-run correlation estimator is

k∗ �
⎡

⎢⎢⎢
1.4422

[(
ψ

1 − λ2

)2

T

] 1
3
⎤

⎥⎥⎥
, (8)

where 
·� is the integer ceiling function.

Notice that Proposition 1 is not a particular case of theNewey andWest (1994) auto-
matic lag selection criterion. TheNewey–West procedure is based on theminimization
of the MSE of a weighted function of the estimated spectral matrix Ŝ(k):

minE
[
w′(Ŝ(k) − S

)
w
]2

,

where

S �
[
sxx sxy
syx syy

]
and Ŝ(k) �

[
ŝxx (k) ŝxy(k)
ŝyx (k) ŝyy(k)

]
.

λ

λ

And where w is a weight vector. Proposition 1, on the other hand, is based on the 
minimization of the MSE of the long-run correlation function:

minE
[ˆ k − λ

]2
.

These two MSE cannot be rendered equivalent, since there is no choice of w that 
can simultaneously solve w Ŝ(k)w � ˆ k and wSw � λ. The Newey–West lag selection



procedure therefore cannot be used to optimally estimate long-run correlation, even
though it can be used to optimally estimate long-run covariance matrices. This result
will be confirmed in “Monte Carlo Simulations” through a Monte Carlo simulation
using, among other procedures, a standardNewey–West estimatorwith aweight vector
of ones.

Alignment

In some cases, a time shift of the kernel of one variable in relation to another—a
procedure called alignment—may improve the finite-sample properties of a cross-
spectrum estimator.8 The use of an alignment procedure is particularly useful when
the analyst believes that one of the variables “leads or lags” the other variable in the
time dimension.

For example, suppose that a practitioner wants to study the relationship between
money and inflation using monthly data under the prior that money “leads” inflation
by 18months. The practitioner may be expressing a belief that the correlation between
money and inflation is strongest when changes in money that happen today are cor-
related with changes of inflation that happen 18 months from now. In the context of
alignment procedures, this prior can serve as the centre point of a search range for the
alignment parameter.

In the case of the block estimator, time-shifting the kernel is equivalent to lagging
one variable in relation to another. In the example above, the practitioner may lag
money by 18 months and “align” it with inflation before estimating correlation.

Define therefore the alignment parameter a* as follows.

Definition 1 The alignment parameter a* is equal to the value of a that minimizes the
following weighted sum of absolute covariances:

a∗ � argmin
amin≤a≤amax

amax∑

n�amin

|n − a| · ∣∣γxy(n)
∣∣, |amin | < ∞, |amax | < ∞, amin ≤ amax . (9)

The parameters a*, amin and amax are integer numbers, where a* represents the
kernel shift alignment parameter and amin and amax represent the chosen boundaries
of the search range. Notice that the lack of an alignment criterion is equivalent to the
restrictive assumption that the alignment parameter search runs from zero to zero.

The alignment parameter is used to relocate the cross-spectrum kernel such that
the highest kernel weights are applied to the cross-covariances with the highest abso-
lute values, typically improving the finite-sample performance of the estimator. This
statement can be intuitively verified in the case of the long-run correlation Bartlett
kernel estimator by noticing that the alignment procedure “synchronizes” the two
series, what leads to better finite-sample estimates of sxy that, in their turn, improve
the finite-sample estimate of λ.

8 See Priestley (1981, pg. 710).



Notice that the alignment technique is a heuristic procedure not based on asymptotic
theory, and also that this technique does not change the asymptotic properties of the
estimator. On the other hand, as Monte Carlo simulations will show in “Monte Carlo
Simulations”, it can improve finite-sample performance of the long-run correlation
estimator when “misalignments” are present, sometimes by substantial margins.

Lag Selection and Alignment in Practice: The Newey–West Approach

The alignment and the lag selection criteria depend on prior knowledge of spectral
parameters. In practice, however, the parameters are not known. As inNewey andWest
(1994), one solution is to estimate the parameters using a truncated kernel estimator
and a thumb rule for bandwidth selection. The parameter estimates are then plugged
into Eqs. (8) and (9).

The truncated kernel cannot be used however in what follows, because it can gen-
erate negative spectral estimates. Consider therefore the following analogue Bartlett
kernel estimators of (3), (6) and (7):

ŝ(1)xy (m, a) � 1

2π

m∑

n�−m

κ(n,m)|n|γ̂xy(a + n), ŝ(1)xx (m) � 1

2π

m∑

n�−m

κ(n,m)|n|γ̂xx (n),

ŝ(1)yy (m) � 1

2π

m∑

n�−m

κ(n,m)|n|γ̂yy(n), ŝxx (m) � 1

2π

m∑

n�−m

κ(n,m)γ̂xx (n),

ŝyy(m) � 1

2π

m∑

n�−m

κ(n,m)γ̂yy(n), with m �
⌈
ζ (T /100)1/5

⌉
,

where, following Hirukawa (2010), and as shown in “Appendix 5”, the thumb rule
for the plug-in bandwidth m has an optimal growth rate of O

(
T 1/5

)
, and where ζ is

a positive constant. Monte Carlo experiments presented in previous articles, such as
Newey and West (1994), typically suggest values of ζ ranging from 3 to 12.

The alignment parameter a* is estimated using an analogue representation of (9),

â � argmin
amin≤a≤amax

amax∑

n�amin

|n − a| · ∣∣γ̂xy(n)
∣∣, (10)

and the following parameters are estimated conditionally on m and â:

Λ̂m,a � σ̂XY
(
m, â

)

√
σ̂XX (m)σ̂YY (m)

,

σ̂XY
(
m, â

) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T∑

t�m+â

[(1−Lm )Xt−mμ̄x ][(1−Lm )Yt−â−mμ̄y]
T−m−â , â ≥ 0,

T∑

t�m−â

[(1−Lm )Xt+â−mμ̄x ][(1−Lm )Yt−mμ̄y]
T−m+â â < 0,



and

ψ̂m,a � ŝ(1)xy
(
m, â

)

√
ŝxx (m)ŝyy(m)

− Λ̂m,a

2

(
ŝ(1)xx (m)

ŝxx (m)
+
ŝ(1)yy (m)

ŝyy(m)

)

,

which, when plugged into the analogue version of Eq. (8), lead to

k̂ �
⎡

⎢⎢⎢⎢
1.4422

⎡

⎣
(

ψ̂m,a

1 − Λ̂2
m,a

)2

T

⎤

⎦

1
3
⎤

⎥⎥⎥⎥
,

and hence to

Λ̂k,a �
σ̂XY

(
k̂, â

)

√
σ̂XX

(
k̂
)
σ̂YY

(
k̂
) . (11)

Lag Selection and Alignment in Practice: The Andrews–Monahan
Approach

Data can be prewhitened before the procedure of this article is employed, and the
results canbe recolored afterwards. Theuse of prewhiteningmay improve the estimator
performance in some cases; see for exampleAndrews andMonahan (1992) andNewey
and West (1994) for details and implementation.

Notice that prewhitening precludes the direct application of the correlation block
estimator to the data, in which case the procedure may lose attractiveness to practi-
tioners that feel more comfortable when periodicity information is provided by the
optimal choice of the time interval k* based on data that has not been prewhitened.

Andrews (1991) shows how parametric estimates can be used to obtain the first-step
spectral parameters, while Andrews and Monahan (1992) explain how the procedure
can be improved by using prewhitening. Consider for example a generalization of
Andrews and Monahan (1992) Monte Carlo procedure, where here a VAR (p) is used
instead of a VAR (1) for prewhitening, and a VAR (1) is used instead of an AR (1) for
the first-step spectral parameter estimation. Prewhitening employs aVAR (p) estimated
using LS:

[
xt
yt

]
� B̃0 +

p∑

n�1

B̃n

[
xt−n

yt−n

]
+

[
x̃w
t
ỹw
t

]
,

where x̃w
t and ỹw

t are the prewhitened series. A VAR (1),

[
x̃w
t
ỹw
t

]
� C̃0 + C̃1

[
x̃w
t−1
ỹw
t−1

]
+

[
ε̃t
ν̃t

]
,



with an estimated innovation covariance matrix Σ̃ , can now be used to estimate the
first-step parameters, leading to the following spectral matrix estimates:

S̃ �
[
s̃xx s̃xy
s̃xy s̃yy

]
� 1

2π

(
I − C̃1

)−1
Σ̃
(
I − C̃

′
1

)−1
,

and smoothness matrix estimates:

S̃
(1) �

[
s̃(1)xx s̃(1)xy

s̃(1)xy s̃(1)yy

]

� 1

2π

(
H̃ + H̃

′)
, H̃ �

(
I − C̃1

)−2
C̃1

∞∑

n�0

C̃
n
1Σ̃

(
C̃

′
1

)n
,

where, in practice, the summation is truncated when n reaches a value that is deemed
large enough. The optimal time interval based on the Andrews–Monahan approach is
therefore given by

k̃ �
⎡

⎢⎢⎢⎢
1.4422

⎡

⎣
(

ψ̃

1 − λ̃2

)2

T

⎤

⎦

1
3
⎤

⎥⎥⎥⎥
,

where

λ̃ � s̃xy√
s̃xx s̃yy

and ψ̃ � s̃(1)xy√
s̃xx s̃yy

− λ̃

2

(
s̃(1)xx

s̃xx
+
s̃(1)yy

s̃yy

)

.

The long-run covariance matrix estimate can now be recolored:

⎡

⎣
σ̃XX

(
k̃
)

σ̃XY

(
k̃
)

σ̃XY

(
k̃
)

σ̃YY

(
k̃
)

⎤

⎦ � Q̃ ·
⎡

⎣
σ̃XwXw

(
k̃
)

σ̃XwYw

(
k̃
)

σ̃XwYw

(
k̃
)

σ̃YwYw

(
k̃
)

⎤

⎦ · Q ′̃,

where

σ̃XwYw

(
k̃
)

�
T∑

t�k

(
1 − Lk̃

)
X̃w
t

(
1 − Lk̃

)
Ỹw
t

T − k̃
, Q̃ �

(

I −
p∑

n�1

B̃n

)−1

,

and where X̃w
t and Ỹw

t are the integrated versions of x̃w
t and ỹw

t , leading to:

Λ̃k �
σ̃XY

(
k̃
)

√
σ̃XX

(
k̃
)
σ̃YY

(
k̃
) . (12)



Monte Carlo Simulations

“Appendix 6” shows the results of Monte Carlo simulations with 10,000 iterations
each, based on parameters estimated from Dow Jones Industrial Average returns data.
Table 1 presents combinations of long-run correlation values λ equal to 0.0, 0.4 and
0.8 (column 2) and of sample sizes T equal to 100, 400 and 1600 (column 3).

Experiment

Series xt and yt are generated using VMA(5) and GARCH(1,1) processes with inde-
pendent and identically t-distributed innovations νt and ξt :

[
xt
yt

]
�

⎡

⎢⎢⎢⎢
⎣

1 α

(

1 − θ
5∑

n�1

Ln

5

)

α

(

1 − θ
5∑

n�1

Ln

5

)

L3 L3

⎤

⎥⎥⎥⎥
⎦

[
υt
φt

]
,

υt � δ0 + χt
√
gt , gt � β0 + β1(υt−1 − δ0)

2 + β2gt−1, var(χt ) � 1,

φt � δ0 + ξt
√
ht , ht � β0 + β1(φt−1 − δ0)

2 + β2ht−1, var(ξt ) � 1,

where parameters δ0, β0, β1, and β2 and the number of degrees of freedom (DOF)
of the t-distributed innovations were estimated from Dow Jones returns data ranging
from January 9, 1990, to August 1, 2001, corresponding to 3018 daily observations.
The estimated parameters are:

δ0 � 0.000648
(0.000133)

, β0 � 6.42E − 07
(2.26E−07)

, β1 � 0.050154
(0.007509)

,

β2 � 0.944037
(0.008042)

, and DOF � 5.605809
(0.564310)

,

where the values between parentheses represent standard errors.
The values of α and θ determine the value of λ according to the equation

λ � 2α(1 − θ)

1 + α2(1 − θ)2
.

The experiment creates pairs of series that emulate theDowJones statistical process,
allowing however for different levels of long-run correlation. A lag of three periods
is applied to series yt to test the effectiveness of the alignment criterion. Parameter θ

assumes values of 0.0, 0.5 and 0.8, as shown in column 1, and is used to evaluate the
sensitivity of the estimation procedures to the presence of small moving average terms
at longer lags. This type of process is commonly found in economic and financial data
and tends to pose problems to some estimators, as discussed for example in Cochrane
(1988), Schwert (1989) and Newey and West (1994).



Benchmarks

Four common estimation procedures are taken as benchmarks that represent current
and common practices and are presented in columns 4–9 of Table 1:

(a) aggregationof daily data over time intervals of 5 and20days, roughly representing
correlation estimates based on weekly and monthly aggregates (columns 4 and
5, “5 Days” and “20 Days”, respectively);

(b) VAR estimation with order selection based on the Akaike information criterion
(AIC) and on the Schwarz Bayesian criterion (SBC), with long-run correlation
estimates calculated using the spectral matrix procedure described on page 836
of Andrews (1991) (columns 6 and 7, “AIC” and “SBC”, respectively);

(c) block estimator using the Schwert (1989) lag selection thumb rule kT R �⌈
4(T /100)1/4

⌉
(column 8, “kTR”); and

(d) block estimator of the covariance matrix using the Newey–West automatic lag
selection, with standard weight vector of ones and without prewhitening (column
9, “kNW”).

These benchmarks are compared to the following new estimators proposed in this
article:

(e) the block estimator with automatic lag selection criterion and without alignment
(a* � 0) based on the Newey–West approach, as given by Eq. (11) (columns 10,
11 and 12, “k2”, “k4” and “k12”, respectively);

(f) the block estimator with automatic lag selection and alignment criteria based on
the Newey–West approach, as given by Eqs. (10) and (11) (columns 13, 14 and
15, “k2,a”, “k4,a” and “k12,a”, respectively); and

(g) the block estimator with prewhitening and automatic lag selection criterion using
the Andrews–Monahan approach, given by Eq. (12) (columns 16, 17 and 18,
“kA,1”, “kA,AIC” and “kA,SBC”, respectively).

The estimators based on the Newey–West approach use the following first-step
thumb rule:

m �
⌈
ζ (T /100)1/5

⌉
,

with values of ζ equal to 2, 4 and 12. The prewhitening step of the estimators based
on the Andrews–Monahan approach uses VAR orders equal to one or selected per the
Akaike information criterion (AIC) and the Schwarz Bayesian criterion (SBC).

Monte Carlo Results: Benchmarks

Table 1 depicts the MSE values for each estimator and different combinations of θ, λ
and T , where

MSE �
( ¯̂
Λ − λ

)2
+ σ̂ 2

Λ,
¯̂
Λ − λ � 1

10000

10000∑

n�1

Λ̂n − λ and σ̂ 2
Λ � 1

10000

10000∑

n�1

(
Λ̂n − ¯̂

Λ
)2

.



The results in columns 4 and 5 in Table 1 (“5 Days” and “20 Days”) indicate that
the common practice of aggregating high-frequency data into longer time intervals
may lead to poor MSE statistics. As expected, estimators based on aggregate weekly
data (column 4) perform poorly for high values of λ. Estimators based on aggregate
monthly data (column 5), on the other hand, perform poorly for small samples, due
to the wasteful use of the available information. The simulations indicate that this
practice should be avoided.

Column 6 (“AIC”) shows that the parametric VAR estimator that uses the Akaike
information criterion for order selection performs poorly for small sample sizes. Col-
umn 7 (“SBC”), in contrast, reveals that the VAR estimator that use the Schwartz
Bayesian criterion for order selection tends to perform better than other benchmarks,
but not as well as this article’s proposed estimator. For example, for θ � 0.8, λ� 0.8,
and T� 400, the VAR–SBC estimator has a MSE of 0.175, which is 3.6 times higher
than the MSE of 0.048 of the proposed estimator in column 14, and 5.3 times higher
than the MSE of 0.033 of the proposed estimator in column 15.

Column 8 (“kTR”) gives the performance of the block estimator using the Schwert
(1989) lag selection rule. This thumb rule performs poorly for high values of λ, as
expected. Column 9 (“kNW”) presents the results for the covariance matrix estimator
using the Newey and West (1994) automatic lag selection criterion. As in the case
of the Schwert lag selection rule, this estimator performs poorly for high values of
λ. The Newey–West criterion should not be used therefore for long-run correlation
estimation through the estimation of the covariance matrix, in agreement with the
results of “Nonparametric Estimation of Long-Run Correlation”.

Columns 10, 11 and 12 (“k2”, “k4” and “k12”) show the results for the proposed
block estimator using the lag selection criterion based on the Newey–West approach
and without alignment (a*� 0), as shown in “Nonparametric Estimation of Long-Run
Correlation”. Notice the clear improvement over the two previous benchmark block
estimators (columns 8 and 9, “kTR” and “kNW”), particularly when parameter ζ is
equal to 12. The VAR–SBC estimator (column 7) however outperforms the proposed
estimator without alignment in most cases, even when ζ is equal to 12.

The proposed block estimator with automatic lag selection and alignment criteria
based on the Newey–West approach, as described in “Nonparametric Estimation of
Long-Run Correlation”, outperforms all other estimators, as shown in column 13, 14
and 15 (“k2,a”, “k4,a” and “k12,a”). The MSE values for this estimator are typically
among the lowest for all combinations of parameters, and particularly when ζ is equal
to 4 and 12. A choice of ζ equal to 2 or 4 tends to produce the best results when the
values of θ are small, while a choice of ζ equal to 12 tends to be beneficial when the
values of θ are large.

Finally, the results for the proposed block estimator based on the Andrews–Mona-
han approach described in “Nonparametric Estimation of Long-Run Correlation” are
shown in columns 16, 17 and 18 (“kA,1”, “kA,AIC”, and “kA,SBC”). This estimator per-
forms at par with the VAR–AIC and VAR–SBC, except for the VAR (1) case (“ka,1”),
which performs poorly. The latter is the result of omitted variable bias due to the mis-
specification of the model used in the prewhitening step. Notice also that this variant
of the estimator performs well when λ� 0 not for its own merits but simply because,
in this case, there is no misspecification and the model is parsimonious.



λ̂ Λ

The Monte Carlo simulations reveal therefore that the joint use of the lag selection 
and alignment criteria based on the Newey–West approach is effective when processes 
contain small moving average terms at longer lags and possible time misalignments, 
without producing significant drawbacks. The proposed procedure leads to significant 
improvements over methods currently employed, suggesting that the estimator pre-
sented in this article should be considered a useful addition to the practitioner’s toolbox.

Monte Carlo Results: Spectral and Block Estimators

As discussed in “Long-Run Correlation”, a Monte Carlo experiment is also performed 
under the same Monte Carlo framework of the previous subsection to compare the finite 
sample performances of the Bartlett kernel spectral estimator of long-run correlation
k defined in (4) and of the block estimator of long-run correlation ˆk defined in (5), 

both estimators using the same optimal lag and alignment procedures described in 
item (f) above.

Mean MSE values for the Bartlett kernel spectral estimator were found to be equal 
to 0.048 (“k2,a”), 0.035 (“k4,a”), and 0.033 (“k12,a”), compared to the to the mean MSE 
values for the block estimator of 0.049 (“k2,a”), 0.036 (“k4,a”), and 0.034 (“k12,a”) 
shown in column 13, 14 and 15 of Table 1. The Monte Carlo simulations confirm that 
both estimators have almost identical performances for all sample sizes and parameter 
choices. The Bartlett kernel spectral estimator produces slightly better MSE values for 
smaller sample sizes, while the block estimator produces slightly better MSE values 
for larger sample sizes.

As discussed in “Introduction”, the interpretation of the block estimator is more 
intuitive and straightforward to practitioners who are not trained in spectral methods, 
therefore the preference in this article is given to this latter estimator.

Conclusions

Long-run correlation estimators have many applications in finance and economics, for 
example, in the study of stock returns and in the measurement of the relations and lags 
between monetary and real variables.

This paper used the approaches of Andrews and Monahan (1992) and Newey and 
West (1994) to develop automatic lag selection criteria for a nonparametric consistent 
long-run correlation estimator based on the block estimator (k-lag difference corre-
lation estimator). In addition, an alignment criterion that potentially enhances finite 
sample performance was presented.

A Monte Carlo experiment showed that the lag selection and the alignment cri-
teria presented here are effective can be superior to commonly employed methods, 
such as aggregation over arbitrary time intervals, parametric VAR estimation, and 
Newey–West automatic lag selection of the covariance matrix.

The optimal yet unobtrusive long-run correlation estimator presented in this article 
intends to reduce the gap between econometric theory and practice by offering not only 
an asymptotically optimal alternative to current practices, but also a formal statistical 
framework for researchers dealing with time-series correlation studies.
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Appendix 1

The k-lag difference covariance estimator of xt and yt is:

σ̂XY (k) � 1

T − k

T∑

t�k

[(
1 − Lk

)
Xt − kμ̄x

][(
1 − Lk

)
Yt − kμ̄y

]
,

where
(
1 − Lk

)
Xt � Xt − Xt−k and

(
1 − Lk

)
Yt � Yt − Yt−k , such that

σ̂XY (k) � 1

T − k

T∑

t�k

⎡

⎣
(

k∑

i�1

x ′
t−k+i

)⎛

⎝
k∑

j�1

y′
t−k+ j

⎞

⎠

⎤

⎦,

where x ′
t � xt − μ̄x and y′

t � yt − μ̄y , or

σ̂XY (k) � 1

T − k

T∑

t�k

⎡

⎣
k−1∑

l�1

⎛

⎝
l∑

i�1

x ′
t−k+i y

′
t−l+i +

l∑

j�1

x ′
t−l+ j y

′
t−k+ j

⎞

⎠ +
k∑

m�1

x ′
t−k+m y

′
t−k+m

⎤

⎦

� 1

T − k

(
T∑

t�k

x ′
t−k+1y

′
t + 2

T∑

t�k−1

x ′
t−k+2y

′
t + · · · + (k − 1)

T∑

t�2

x ′
t−1y

′
t + k

T∑

t�1

x ′
t y

′
t

+ (k − 1)
T∑

t�2

x ′
t y

′
t−1 + · · · + 2

T∑

t�k−1

x ′
t y

′
t−k+2 +

T∑

t�k

x ′
t y

′
t−k+1

)

+ R(T , k),

where

R(T , k) � − 1

T − k

⎡

⎣
k−1∑

i�2

i−1∑

j�1

(i − j)
(
x ′
j y

′
k−i+ j + x ′

T−k+i− j+1y
′
T− j+1

+x ′
k−i+ j y

′
j + x ′

T− j+1y
′
T−k+i− j+1

)
+

k−1∑

j�1

(k − j)
(
x ′
j y

′
j + x ′

T− j+1y
′
T− j+1

)
⎤

⎦,

or

σ̂XY (k)

k
� T

T − k
2π ŝxy(k) +

R(T , k)

k
,

where ŝxy(k) is the Bartlett kernel estimate of the cross-spectrum at frequency zero
with bandwidth b � k, and where the Bartlett kernel is defined as:



κB(n, b) �
{
1 − |n|/b, |n| < b,
0, |n| ≥ b.

Given the assumption of summable autocovariances and covariances, it follows that
R(T , k)/k � Op(k/T ), therefore, the block covariance estimator is asymptotically
equivalent to 2π times the Bartlett kernel estimator of the cross-spectrum at frequency
zero with b � k:

σ̂XY (k)

k
� T

T − k
2π ŝxy(k) + Op

(
k

T

)
.

Appendix 2

Hannan (1970, pg. 280), Priestley (1981, pg. 699) and Brockwell and Davis (1991,
pg. 446) show that, under the consistency assumptions mentioned in “Nonparametric
Estimation of Long-Run Correlation”, in particular,

lim
T→∞ k(T ) � ∞ and lim

T→∞ k(T )/T � 0,

the asymptotic covariance (Acov) between two spectra or cross-spectra Bartlett kernel
estimators at frequency zero is

Acov
(
ŝab(k), ŝcd(k)

) � 2

3

k

T
(sacsbd + sadsbc). (13)

The long-run correlation and its estimator are defined as

λ � sxy√
sxx syy

, (14)

λ̂k � ŝxy(k)√
ŝxx (k)ŝyy(k)

. (15)

Per (13), the components of (15) have an asymptotic covariance matrix given by

Acov
(
ŝ(k)

) � cov

⎡

⎢⎢
⎣

ŝxx (k)

ŝyy(k)

ŝxy(k)

⎤

⎥⎥
⎦ � 2

3

k

T

⎡

⎢⎢
⎣

2s2xx 2s2xy 2sxx sxy

2s2xy 2s2yy 2syysxy

2sxx sxy 2syysxy sxx syy + s2xy

⎤

⎥⎥
⎦.

As in Hannan (1970, pg. 287), a Taylor expansion of (14) around E
[
ŝxx (k)

]
, E[

ŝyy(k)
]
, and E

[
ŝxy(k)

]
leads to

λ̂k � E
[
ŝxy(k)

]

√
E
[
ŝxx (k)

]
E
[
ŝyy(k)

] + Dλ

⎡

⎢⎢
⎣

ŝxx (k) − E
[
ŝxx (k)

]

ŝyy(k) − E
[
ŝyy(k)

]

ŝxy(k) − E
[
ŝxy(k)

]

⎤

⎥⎥
⎦ + Op

((
k

T

) 1
2
)

, (16)



where

Dλ �
[

∂λ
∂sxx

∂λ
∂syy

∂λ
∂sxy

]
�
[ −λ
2sxx

−λ
2syy

1√
sxx syy

]
.

From (16), and since

E
[
λ̂k

]
− E

[
ŝxy(k)

]
/

√
E
[
ŝxx (k)

]
E
[
ŝyy(k)

] � O(k/T ),

one can conclude that the asymptotic variance of the long-run correlation estimator is
given by

Avar
(
λ̂k

)
� Dλ · Acov(ŝ(k)) · D′

λ,

such that

Avar
(
λ̂k

)
� 2

3

k

T

(
1 − λ2

)2
. (17)

Appendix 3

The long-run correlation asymptotic bias (Abias) is given by

Abias
(
λ̂k

)
� E

[
λ̂k − λ

]
� E

[
ŝxy(k)√

ŝxx (k)ŝyy(k)
− sxy√

sxx syy

]

.

Following Hannan (1970, pg. 283), and under the same consistency assumptions
of “Appendix 2”, the asymptotic bias vector is:

Abias
(
ŝ
) � bias

[
ŝxx (k) ŝyy(k) ŝxy(k)

]′ � −1

k

[
s(1)xx s(1)yy s(1)xy

]′
,

where

s(1)xx � 1

2π

∞∑

n�−∞
|n|γxx (n), s(1)yy � 1

2π

∞∑

n�−∞
|n|γyy(n), and s(1)xy � 1

2π

∞∑

n�−∞
|n|γxy(n).

A Taylor expansion of (14) around sxx, syy, and sxy, with T → ∞, leads to

E
[
λ̂k − λ

]
� Dλ

⎡

⎢⎢
⎣

E
[
ŝxx (k) − sxx

]

E
[
ŝyy(k) − syy

]

E
[
ŝxy(k) − sxy

]

⎤

⎥⎥
⎦ + O

(
1

k2

)
.

Therefore, the asymptotic bias of the long-run correlation estimator is

Abias
(
λ̂k

)
� Dλ · Abias[ŝ(k)],



where vector Dλ is defined as in “Appendix 2”, implying that

Abias
(
λ̂k

)
� −ψ

k
, ψ � s(1)xy√

sxx syy
− λ

2

(
s(1)xx

sxx
+
s(1)yy

syy

)

. (18)

Appendix 4

Problem: to find the optimal lag selection k* that minimizes the asymptotic mean
square error (AMSE) of the long-run correlation estimator,

AMSE
(
λ̂k

)
�
[
Abias

(
λ̂k

)]2
+ Avar

(
λ̂k

)
. (19)

From (17)–(19), and under the same consistency assumptions of “Appendix 2”, it
is straightforward to see that the AMSE is given by

AMSE
(
λ̂k

)
� 1

k2
ψ2 +

k

T

2

3

(
1 − λ2

)2
, (20)

and consequently the optimal k that minimizes the AMSE is

k∗ �
⎡

⎢⎢⎢
1.4422

[(
ψ

1 − λ2

)2

T

] 1
3
⎤

⎥⎥⎥
,

where 
·� represents the integer ceiling function.

Appendix 5

The problem is to find m that minimizes:

AMSE
(
η̂m
) � [

Abias
(
η̂m
)]2 + Avar

(
η̂m
)
, (21)

where

η̂m � ψ̂m

1 − λ̂2m

, and η � ψ

1 − λ2
. (22)

Following Hirukawa (2010) and Priestley (1981, pg. 325), the asymptotic covari-
ance matrix of the spectral components of η̂m is given by



Acov
(
ŝ(m)

) � 4m3

3T

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

s2xx
m2

s2xy
m2

sxx sxy
m2

s2xx
4m

s2xy
4m

sxx sxy
4m

s2xy
m2

s2yy
m2

syysxy
m2

s2xy
4m

s2yy
4m

syysxy
4m

sxx sxy
m2

syysxy
m2

sxx syy+s2xy
2m2

sxx sxy
4m

syysxy
4m

sxx syy+s2xy
8m

s2xx
4m

s2xy
4m

sxx sxy
4m

s2xx
10

s2xy
10

sxx sxy
10

s2xy
4m

s2yy
4m

syysxy
4m

s2xy
10

s2yy
10

syysxy
10

sxx sxy
4m

syysxy
4m

sxx syy+s2xy
8m

sxx sxy
10

syysxy
10

sxx syy+s2xy
20

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

where

ŝ(m) �
[
ŝxx (m) ŝyy(m) ŝxy(m) ŝ(1)

xx (m) ŝ(1)yy (m) ŝ(1)xy (m)

]′
,

and the asymptotic bias vector by

Abias
(
ŝ(m)

) � −1

m

[
s(1)xx s(1)yy s(1)xy s(1)xx

2
s(1)yy

2
s(1)xy

2
]′

.

As in “Appendix 2”, a Taylor expansion of (22) around E
[
ŝxx (m)

]
, E

[
ŝyy(m)

]
, E

[
ŝxy(m)

]
, E

[
ŝ(1)xx (m)

]
, E

[
ŝ(1)yy (m)

]
, and E

[
ŝ(1)xy (m)

]
leads to

η̂m � η̂E
m + Dη

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ŝxx (m) − E
[
ŝxx (m)

]

ŝyy(m) − E
[
ŝyy(m)

]

ŝxy(m) − E
[
ŝxy(m)

]

ŝ(1)xx (m) − E
[
ŝ(1)xx (m)

]

ŝ(1)yy (m) − E
[
ŝ(1)yy (m)

]

ŝ(1)xy (m) − E
[
ŝ(1)xy (m)

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+ Op

⎛

⎝
(
m3

T

) 1
2

⎞

⎠, (23)

where

Dη �
[

∂η
∂sxx

∂η
∂syy

∂η
∂sxy

∂η

∂s(1)xx

∂η

∂s(1)xy

∂η

∂s(1)xy

]
,

η̂E
m � 1

1 − λ̂E
m

⎡

⎣
E
[
s(1)xy (m)

]

√
E[sxx (m)]E

[
syy(m)

] − λ̂E
m

2

⎛

⎝
E
[
s(1)xx (m)

]

E[sxx (m)]
+
E
[
s(1)yy (m)

]

E
[
syy(m)

]

⎞

⎠

⎤

⎦,

and

λ̂E
m � E

[
ŝxy(m)

]

√
E
[
ŝxx (m)

]
E
[
ŝyy(m)

] .

From (23), and since



E
[
η̂m
]− η̂E

m � O
(
m3/T

)
,

one can conclude that the asymptotic variance of η̂m is given by

Avar
(
η̂m
) � Dη · Acov(ŝ(m)

) · D′
η,

and in this case, asm → ∞ andm/T → 0, the problem of calculating the asymptotic
variance of η̂m reduces to

Avar
(
η̂m
) � 4

30

m3

T
· dη ·

⎡

⎢
⎣

s2xx s2xy sxx sxy
s2xy s2yy syysxy

sxx sxy syysxy
(
sxx syy + s2xy

)
/2

⎤

⎥
⎦ · d ′

η,

where

dη �
[

∂η

∂s(1)xx

∂η

∂s(1)xy

∂η

∂s(1)xy

]
� 1

1 − λ2

[
λ

2sxx
λ

2syy
1√

sxx syy

]
,

such that

Avar
(
η̂m
) � 1

15

m3

T
. (24)

Now, for the asymptotic bias, a Taylor expansion of (22) around sxx, syy, sxy, s
(1)
xx ,

s(1)yy , and s(1)xy leads to

E
[
η̂m − η

] � Dη

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

E
[
ŝxx (m) − sxx

]

E
[
ŝyy(m) − syy

]

E
[
ŝxy(m) − sxy

]

E
[
ŝ(1)xx (m) − s(1)xx

]

E
[
ŝ(1)yy (m) − s(1)yy

]

E
[
ŝ(1)xy (m) − s(1)xy

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+ O

(
1

m2

)
,

and therefore the asymptotic bias of η̂m is

Abias
(
η̂m
) � Dη · Abias(ŝ(m)

)
,

(25)

and the equation for the asymptotic bias can be summarized as:

Abias
(
η̂m
) � ρ/m,

where ρ represents a trivial yet lengthy combination of parameters. 



Given equations (24) and (25), the solution to problem (21) is

m �
⌈
10ρ2T

⌉1/5
.

Appendix 6

See Table 1.
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