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Abstract 

Purpose: To develop a noninvasive technique to map human spinal cord (SC) perfusion 

in-vivo. More specifically, to implement an Intra-Voxel Incoherent Motion (IVIM) 

protocol at ultrahigh field for the human SC and assess parameters estimation errors. 

Methods: Monte-Carlo simulations were conducted to assess estimation errors of two 

standard IVIM fitting approaches (two-step versus one-step fit) over the range of IVIM 

values reported for the human brain and for typical SC diffusivities. Required Signal-to-

Noise Ratio (SNR) was inferred for estimation of the parameters product fIVIMD* 

(microvascular fraction times pseudo-diffusion coefficient) within 10% error margins. In-

vivo IVIM imaging of the SC was performed at 7T in 6 volunteers. An image processing 

pipeline is proposed to generate IVIM maps and register them for an atlas-based region-

wise analysis. 

Results: Required b=0 SNRs for 10% error estimation on fIVIMD* with the one-step fit 

were 159 and 185 for diffusion-encoding perpendicular and parallel to the SC axis, 

respectively. Average in-vivo b=0 SNR within cord was 141±79, corresponding to 

estimation errors of 12.7% and 14.7% according to numerical simulations. Slice- and 

group-averaging reduced noise in IVIM maps, highlighting the difference in perfusion 

between gray and white matter. Mean±standard deviation fIVIM and D* values across 

subjects within gray (respectively white) matter were 16.0±1.7 (15.0±1.6) % and 

11.4±2.9 (11.5±2.4) ´10-3mm2/s. 

Conclusion: Single-subject data SNR at 7T was insufficient for reliable perfusion 

estimation. However, atlas-averaged IVIM maps highlighted the higher microvascular 

fraction of gray matter compared to white matter, providing first results of healthy human 

SC perfusion mapping with MRI. 

 

 

Keywords:  spinal cord, 7T MRI, perfusion, ultrahigh field MRI, IVIM, intravoxel 

incoherent motion 
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1. Introduction 

There is a crucial need for noninvasive assessment of spinal cord (SC) perfusion 

in diagnosing and stratifying the severity of chronic pathology. In most SC compressive 

injuries (e.g., trauma, degenerative cervical myelopathy), perfusion impairment is the 

precursor of tissue degeneration leading to axonal loss or demyelination followed by 

clinical symptoms (e.g., pain, paralysis)1. As SC decompression implies major and 

invasive surgery, the surgical benefit has to be accurately evaluated. So far, clinicians’ 

decision relies on clinical presentation and MRI findings such as CSF effacement, cord 

deformation and T1/T2 hypo/hyperintensity2; however, these markers are indirect, not 

specific and often limited to establishing irreversible tissue damage3. In line with on-

going studies evaluating the diagnosis and prognosis performances of quantitative MRI 

metrics4,5, monitoring in-vivo SC perfusion would provide an earlier biomarker of tissue 

viability and consequently help clinicians in therapeutic orientation and prognosis. 

Perfusion imaging techniques successfully applied to the brain face multiple 

challenges when translated to SC. First of all, SC is a very small structure (~8x13mm2 

ellipse in transverse section6) that requires high spatial resolution. Moreover, multiple 

physiological sources of signal dropout may hamper the acquisition: CSF pulsation with 

heartbeat as well as respiration lead to complex movements of the cord, both in inferior-

superior direction and in transverse plane7. The longitudinal and tubular shape together 

with vertebrae protecting the cord, and the proximity of the lungs are additional 

challenges for both static (B0) and RF (B1+) fields homogeneity. Last but not least, 

perfusion within SC, driven by capillaries (diameter <10µm), is expected to be similar to 

brain perfusion (according to results in mice8), i.e. very low compared to other organs 

such as kidneys9 or liver10. High sensitivity of the technique is thus needed. 

Global SC perfusion has been probed using contrast agent-based techniques. 

Dynamic Susceptibility Contrast (DSC) imaging was performed in patients with cervical 

stenosis to relate average SC perfusion measurements within a global region to 

neurological scores and compression degree11–13 but neither mapping of SC perfusion nor 

distinction between SC regions were performed. Technical feasibility of DCE imaging for 

perfusion of intradural spinal lesions at cervical level was also assessed at 1.5T and 3T14 

but again quantification was performed globally for the whole lesion region, which 

involved high perfusion levels with respect to healthy tissue. 
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Given the increasing concerns regarding gadolinium deposition in bone and brain 

even in patients with normal renal function and intact blood-brain barriers15,16, motivation 

for endogenous contrast mechanisms has risen. Moreover, with endogenous methods, 

acquisition duration can be traded for SNR, which cannot be done with exogenous 

techniques where acquisition time and SNR are inherently limited by contrast agent first 

pass duration and relaxivity. Leveraging SNR is crucial in SC imaging to achieve 

sufficient resolution. 

 Arterial Spin Labeling (ASL) is a common endogenous method which has been 

extensively applied in human brain investigations17. The technique also demonstrated 

potential in the mouse SC where preclinical scanners enable global tagging strategies 8,18. 

Yet, this technique is hardly applicable to human as such tagging strategies are limited by 

hardware capabilities given the human body size. Furthermore, unlike in the brain, the 

multiple sources of perfusion of the SC tissue and the complexity and interindividual 

variability of the vascular network render local tagging strategies nontrivial. Indeed, two 

groups attempted to map SC perfusion at 1.519 and 3T20 with such techniques but 

experienced poor reliability and reproducibility in their results and no further study was 

published since then. 

7T MRI appears as a promising clinical avenue to increase SNR and improve 

sensitivity. However, ASL remains problematic at this field strength since labelling 

pulses require high energy and thus may encounter Specific Absorption Rate (SAR) 

limits and suffer from B1 inhomogeneity issues. Indeed, the limited efficacy and transmit 

field homogeneity of the currently available Tx/Rx coils for cervical spine imaging at 7T 

jeopardizes the efficient initiation of a labelling plane for continuous and pseudo-

continuous ASL. Parallel transmission and dielectric pads can alleviate this constraint21 

but remain emerging technologies. 

Given the major progress in SC diffusion MRI at 7T22,23, Intra-Voxel Incoherent 

Motion (IVIM) imaging emerges as a promising technique for SC perfusion imaging. 

This technique aims at quantifying the signal decrease at low b-values induced by blood 

water circulation through capillaries mimicking a Brownian motion random-walk at 

larger scale24. Sensitivity to perfusion is therefore achieved through diffusion gradients, 

which does not bring additional challenges at ultrahigh field, unlike ASL relying on the 

efficacy of the inversion pulse. It also does not rely on in-flow blood labelling or Arterial 

Input Function to the tissue, which is an asset given the multiple sources of perfusion of 

the SC. Furthermore, IVIM has already been extensively applied in humans to several 
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organs (e.g., brain25–30, kidneys31, liver10,32,33, heart34 or pancreas35–37), but remains 

unexplored in SC. 

In this study, we present a comprehensive protocol for IVIM mapping of the 

human SC, exploiting increased SNR from ultrahigh field strength. An optimization of 

data acquisition, processing and parameter fitting is proposed, carefully considering 

estimation errors on derived IVIM parameters. This work finally showcases, to the best of 

our knowledge, the first perfusion-related in-vivo maps of the human SC and quantifies 

the IVIM parameters within SC regions. 
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2. Methods 

2.1. Simulations 

Two standard fitting approaches to estimate IVIM parameters were considered: the 

“two-step segmented”33,38 approach and the “one-step”38 approach. Their 

implementations are sketched in Figure 1. Both fitting pipelines were implemented in 

Python (2.7), building upon the LMFIT module (lmfit.github.io/lmfit-py), which 

facilitates distribution and validation of implementation as it is all open-source. 

Software and implementations can have a significant impact on accuracy and 

precision of parameter estimations25,28,39 regardless of computational speed. Therefore, 

inspired by the work of Pekar et al.38, we performed Monte-Carlo simulations to assess 

their performance under different physiological and SNR conditions. Ranges of possible 

values for IVIM parameters were defined according to ranges of values found in brain 

literature25–28,39–42 and typical SC radial and axial diffusivities23,43: 

• Visible microvascular volume fraction fIVIM (%): 1 to 30 

• Pseudo-diffusion coefficient D* (mm2/s): 3.0´10-3 to 35.0´10-3 

• Pure diffusion coefficient D (mm2/s): 0.3´10-3 (D^, diffusivity in the SC 

transverse plane) and 1.5´10-3 (D||, diffusivity along the SC axis) 

The IVIM representation of the signal24 is given by (Eq. 1): 

! = !#$%&'#∙)*+,-,.&'#∙)
∗
+ 1 − +,-,.3 

To assess performance of fitting algorithm, synthetic data were generated using (Eq. 1) 

and ranging a large number of b-values inspired by IVIM protocols in brain25,26,40,44 and 

Diffusion Tensor Imaging practice in SC45,46: 5, 10, 15, 20, 30, 50, 75, 100, 125, 150, 

200, 250, 600, 700, 800 s/mm2. Given that the in-vivo fitted data result from the 

averaging of multiple repetitions of magnitude images, according to the Central Limit 

Theorem, the noise distribution in such data can be assumed Gaussian. Therefore, random 

Gaussian noise was added to synthetic data with SD matching realistic SNR as described 

below. Finally, mean absolute estimation error across N=1000 random noise draws was 

calculated for each fitted parameter according to: 

&4454(%) =
100
:

×<
|&>?@AB?&C	EBFG&H − ?4G&	EBFG&|

?4G&	EBFG&

I
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  Three types of simulations were performed: 
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Figure 1. Implementation of the two “standard” fitting approaches encountered in 
literature: “two-step segmented” (left side) and “one-step” (right side) fitting. Each frame 
represents a fitting process and includes fit details (e.g. parameters initialization) while 
outbound arrows point to parameter estimates resulting from this fitting process. Step A 
employed the Conjugate Gradient optimization method due to its computational speed 
while steps B and C employed the Differential Evolution method to escape local optima. 
For both approaches, a first estimation of D is performed based on high b-values signal 
(step A). This first estimate is definitive for the “two-step segmented” approach but is 
only used as initial value for the “one-step” approach along with intercept (S0(1 – 

fIVIM)init). After step B, all parameters are fitted; step C consists in a fine-tuning of the fit, 
constraining parameter estimation to [95%; 105%] of the value obtained at previous step. 
Parameter constraints at step B were defined based on extreme values found in published 
IVIM studies within the brain white and gray matter25–28,39–42 and typical SC radial and 
axial diffusivities23,43. 
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1) Estimation errors were assessed with infinite SNR (!KLMHNO = 0) for both fitting 

approaches and for all parameter values within the defined ranges. These 

simulations served to verify whether algorithms could retrieve true parameter 

values on perfect data given the b-value distribution used. 

2) Estimations errors were assessed for realistic SNR values of 60, 120 and 180. 

These values corresponded to the minimum, mean and maximum across subjects 

of the average voxel-wise SNR within SC measured in-vivo at b»0.  

3) The minimum required SNR for b=0 data to get an error £10% on the parameter 

fIVIMD* (product of fIVIM and D*, related to blood flow47) was computed for all 

parameter values within the defined ranges and for the one-step approach. 

To get the corresponding required SNR for higher b-values (e.g. b=800s/mm2 with 

D=1.5´10-3 mm2/s in the SC for diffusion weighting along inferior-superior direction), 

one just needs to multiply it by &'#)  (i.e. here 0.3), assuming that the microvascular 

compartment contribution to the signal at such high b-values can be neglected (D*>>D). 

SNR of diffusion-weighted images depends on the orientation of the diffusion gradient 

(as accounted for in the diffusion coefficient D). 

 

Fitting algorithms (Figure 1) were optimized through simulations 1) and 2), especially 

regarding the fit optimization method (e.g., Trust-Region Reflective least squares, 

Levenberg-Marquardt, Brute Force).  The Differential Evolution method48, as 

implemented in LMFIT module was preferred to avoid local optima solutions and to 

provide speed and precision in parameters estimation. 

 

2.2. Data acquisition 

2.2.1. Population and MR setup 

The study was approved by the local ethics committee and written consents were 

obtained from 8 healthy volunteers prior to MR examinations. Two subjects (1 male, 1 

female) were dedicated to optimization of acquisition parameters and six (5 males, 1 

female, mean age ± SD = 25.0 ± 2.6 years old) were scanned with the optimized protocol. 

Acquisitions were performed on a 7T whole-body research system (Siemens Healthcare, 

Erlangen, Germany) with a commercial 8-channel cervical-spine transceiver surface coil 

(Rapid Biomedical GmbH, Rimpar, Germany) employed with the 8 Tx-channels 



9/43 

hardware-combined into a single transmit system. The complete protocol (see more 

details in Supporting Information Table S1) included: 

- Patient-specific tuning: localizer for slice positioning, coil voltage calibration, 

local B0 shimming within a ~4×3×5cm (Right-Left×Anterior-Posterior×Inferior-

Superior) volume around the cord, B1+ and B0 maps to inspect fields 

inhomogeneities and shimming performance 

- Sagittal 2D turbo-spin echo imaging with 0.6×0.6mm2 in-plane resolution and 

2.2mm slice thickness for vertebral levels localization 

- Pulse-triggered IVIM protocol (further described below) 

- Axial 2D high-resolution (0.4×0.4mm2 in-plane, 5mm slice thickness) multi-echo 

gradient-echo (MGE) image for gray matter (GM) segmentation 

Depending on the subject’s heartbeat, total protocol time was 1h10–15min. 

2.2.2. IVIM acquisition protocol 

IVIM acquisitions were based on a prototype 2D single-shot diffusion-prepared spin-

echo EPI sequence. Six slices (5-mm thick with 1-mm gap) were centered at C3-C4 

intervertebral disk (area minimizing partial volume effects induced by cord curvature in 

this cohort). C3-C4 coverage was guaranteed for all subjects. Phase was encoded along 

the R-L axis for robust parallel imaging given the coil configuration (see coil diagram in 

Massire et al.22). 

As a low spinal cord perfusion level is expected according to brain studies25,49,50, 

sequence parameters were experimentally optimized to maximize SNR (Supporting 

Information Figure S1-A). Following acquisition parameters were investigated: diffusion 

scheme, minimal bandwidth, GRAPPA factor, partial Fourier, outer volume suppression 

with reduced FOV strategy, number of lines for GRAPPA calibration scans and partial 

Fourier reconstruction algorithm. Regarding diffusion scheme, as SNR decreases with 

longer TE, only short TE schemes were considered: the standard Stejskal-Tanner scheme 

(monopolar) and a modified version of it (“monopolar+”), applying diffusion gradients 

during the entire time between excitation and refocusing pulses, leaving no deadtime51. 

With the optimized parameter set, a minimum TE of 51.6ms (effective d/D=12.2/13.3ms) 

and an SNR gain of 27% compared to the “base” protocol were obtained (see Supporting 

Information Figure S1-A and Table S1). 

To mitigate effects of SC motion and CSF pulsation, acquisitions were synchronized 

on cardiac beat monitored with a pulse oximeter (no trigger delay). The number of cycles 



10/43 

to acquire all slices NRR (determining the effective TR for each slice) was adapted to each 

subject’s heartbeat duration TRR so as to get the highest SNR efficiency (SNR/time unit), 

which was calculated using the spin-echo signal expression derived from Bloch equations 

for a single refocusing pulse52 and SC T1 values from the literature22 (Supporting 

Information Figure S1-B). The resulting effective TR per slice was 2.6s in average. 

Considering that the maximum variation of TRR in healthy subjects would be about 0.2s, 

with a T1 in the SC around 1.25s22, the variations in longitudinal relaxation would be, in 

the worst case scenario (effective TR variation of 0.6s with NRR = 3), about 6% at max 

P1 − &
'QRSTT

QU
V
W. Moreover, these potential variations would be eventually mitigated by 

the averaging over multiple repetitions in final data. Consequently, signal relaxation 

variations due to effective TR variations along acquisition were considered negligible in 

this study. 

Finally, b-value distribution was empirically defined, inspired by IVIM protocols in 

brain25,26,40,44 and Diffusion Tensor Imaging practice in SC45,53, so as to focus sampling 

on low b-values (≤250 s/mm2) to better probe the fast decaying signal related to 

perfusion. The number of b-values Nb was also empirically defined in direct relation with 

the number of repetitions Nrep per b-value, limiting the scan time to a maximum of 1h for 

the IVIM protocol, which included 3 orthogonal diffusion-encoding directions (right-left, 

R-L, anterior-posterior, A-P, inferior-superior, I-S), i.e.: 

:# ⋅ :YOZ ⋅ :RR ⋅ [RR ⋅ 3 < 1	ℎ5G4 

B-values were corrected to include imaging gradient contributions. Eventually, actual b-

value distribution was 5, 10, 15, 20, 30, 50, 75, 100, 125, 150, 200, 250, 600, 700, 800 

s/mm2 with 30 repetitions per b-value, allowing slight variations between subjects and 

directions as explained above. Furthermore, to correct for EPI readout-related distortions, 

acquisitions were split into two distinct imaging sets of equal lengths (Nrep/2), in forward 

(right>left) and reverse (left>right) phase-encoding direction for each diffusion-encoding 

direction. 

2.3. Data post-processing 

First, diffusion-weighted data were denoised using the local PCA algorithm 

developed by Manjón et al.54 across repetitions, for each b-value and independently for 

each phase-encoding direction. Second, the sub-pixel shifting method from Kellner et 

al.55 was applied to remove any potential Gibbs-ringing artifact. Third, a dedicated 
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program (sct_dmri_moco) available within the Spinal Cord Toolbox56 (v3.1.1) was used 

for correction of cord motion throughout the acquisition. Fourth, EPI readout-related 

distortions were corrected using the topup program from FSL57 based on forward and 

reverse phase-encoded b=0 images and applying the least-square restoration method. 

Fifth and final step, all repetitions of equal b-value were averaged, ending up with one 

volume (6 slices) per b-value and diffusion-encoding direction. 

2.4. In-vivo SNR and data fitting 

As defined by Reeder et al.58, in-vivo SNR was calculated voxel-wise as the ratio of 

the mean signal across repetitions to the SD across repetitions. Calculation was performed 

on the lowest b-value images obtained, after the post-processing pipeline was applied. A 

factor of _:YOZ was applied to reflect the SNR value of the average across all repetitions, 

which is used as input data to the fitting algorithm. Voxel-wise SNR was averaged per 

subject across the entire SC and the minimum, maximum and mean values across subjects 

served as references for the simulations (section 2.1). 

Based on simulation results (section 3.1), in-vivo data were fitted voxel-wise using the 

one-step approach described in Figure 1. Five IVIM parameter 3D maps (fIVIM, D*, D, S0 

and fIVIMD*) were produced for each subject and each diffusion-encoding direction. 

2.5. Quantification 

For group analysis and quantification within regions of interest (ROIs), IVIM maps 

were registered to the PAM50 template59 and its white matter (WM) atlas60 using 

dedicated tools from the Spinal Cord Toolbox56,61,62 (v3.1.1) as described in Figure 2. 
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Figure 2. Template registration pipeline performed for every subject. (1) Data acquired 

with A-P and I-S diffusion encoding are registered (rigid transformation) to the data with 

R-L diffusion encoding, based on the mean image across b-values�500s/mm2. (2) The 

R-L diffusion-encoded mean image is registered (rigid transformation) to the RMS of all 

echoes of the high-resolution MGE image, yielding the Warping Field (WF) WFDWI<>MGE. 

(3) The template is registered to MGE space based on SC segmentations (SC seg) – 

obtained with sct_propseg61 and manual corrections when needed – yielding 

WFPAM50<>MGE(SC). (4) This registration is refined based on the template WM mask 

registered to MGE space and the WM segmentation (WM seg) performed on MGE image 
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(using sct_deepseg_gm62), which yields WFPAM50<>MGE(GM). (5) Previously estimated WFs 

are concatenated to get final transformations between Diffusion-Weighted Images (DWI) 

and template spaces; those transformations are applied to every IVIM parameter maps for 

each diffusion-encoding direction. (6) After group-averaging, IVIM parameters are 

quantified within ROIs independently per diffusion-encoding direction as well as on the 

mean maps across the three directions (except for the diffusion coefficients DR-L, DA-P, DI-

S). Note that the masks of ROIs were eroded at the interface with CSF in order to exclude 

voxels corrupted by elevated apparent CSF pseudo-diffusion and partial volume effects in 

IVIM maps (see Figure 7). Algo: registration algorithm. 
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3. Results 

3.1. The one-step fitting approach performs better for the range of IVIM values 

expected in the human spinal cord 

For IVIM parameter values expected in the human SC, the one-step fitting approach 

showed better estimation performance than the two-step segmented approach, both on 

perfect (SNR=¥) and noisy data (SNR levels measured in-vivo). This comparison can be 

found in Supporting Information Figure S2. The higher performance of the one-step 

approach is observed on all parameters, especially on D, which is due to the low sampling 

of high b-values (only 3 b-values ≥ 600 s/mm2); the inaccuracy in D then propagates 

more importantly on the other parameters with the two-step segmented approach. 

Consequently, given the b-value distribution used, the one-step fitting approach is more 

appropriate for IVIM parameters fitting in the human SC.     

More in details for the one-step fitting approach (Figure 3), the algorithm perfectly 

retrieves the true values of parameters with infinite SNR and estimation errors increase 

when SNR decreases. The parameter estimated with highest precision is D, then fIVIM and 

then fIVIMD*, and the parameter estimated with the largest error is D*, as commonly 

reported in the IVIM literature. Interestingly, for high D values (D||), the error on D is 

lower than for low D values (D^) whereas it is higher for fIVIM, D* and fIVIMD*. Indeed, 

signal decay induced by high D is sharper at high b-values but then, the effect of the other 

IVIM parameters on the signal is more challenging to extract. Furthermore, errors 

increase when perfusion levels (fIVIM, D*, fIVIMD*) decrease, as signal decay gets  slower 

and smaller. For instance, with high SNR (180) and low D (0.3´10-3 mm2/s), estimation 

errors on fIVIM, D* and fIVIMD* exceed 100% (squares above orange levels) when (fIVIM, 

D*) is lower than (4.2%, 6.6´10-3 mm2/s), (13.9%, 13.7´10-3 mm2/s) and (1%, 6.6´10-3 

mm2/s), respectively. Finally, when fIVIM is around 16% and D* around 11.5´10-3 mm2/s 

(as measured in-vivo, see below) and potentially lower (~10%), the expected error on 

fIVIM, D* and fIVIMD* is around 15, 30 and 10% with SNR=180, respectively. 

3.2. High SNR is required for accurate estimation of fIVIMD* 

In the range of considered IVIM values, high b=0 SNR (≥70) is required to estimate 

fIVIMD* within 10% error margins (Figure 4). SNR higher than 400 is needed if fIVIM ≤ 

7.4% and/or D* ≤ 3.0´10-3 mm2/s. 



15/43 

 
Figure 3. Estimation errors on each IVIM parameter according to (fIVIM, D*, D) true values for the one-step fitting approach with different SNR 
levels: ∞ (no noise), 180 (maximum in-vivo SNR), 120 (mean), 60 (minimum). On the y-axis of each graph, fIVIM varies from 1 to 30% while on 
the x-axis D* varies from 3 to 35 ´10-3 mm2/s (bounds defined according to IVIM literature in brain white and gray matter as described in section 
2.1); on the left side, D=0.3´10-3 mm2/s, similar to diffusivity in SC transverse plane (D^), while on the right side D=1.5´10-3 mm2/s, similar to 
diffusivity along SC axis (D||). Median [min-max] errors are indicated on top of each graph. 
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Due to crosstalk between fIVIM and D* (shared sensitivity to the same physiological 

process), their individual error can exceed 10% while their product fIVIMD* offers an 

accuracy below 10% (e.g. for fIVIM, D* = 13.9%, 10.1´10-3 mm2/s).  

Of note, increased D requires higher SNR for the same accuracy, which stands as a 

challenge for IVIM along the SC axis. Figure 4 also shows that fIVIM is preponderant over 

D* in determining the required SNR. 

 

 

Figure 4. Top: minimum required SNR to estimate parameter fIVIMD* with less than 10% 
error with the one-step fitting approach, according to (fIVIM, D*) true values with 
D=0.3´10-3 mm2/s (D^) and D=1.5´10-3 mm2/s (D||). Bottom: corresponding errors on 
parameters for the minimum required SNR determined above. 
 



17/43 

3.3. In-vivo SNR 

Figure 5 shows an example of single-subject and single-slice b=0 images along with 

the corresponding SNR, signal and noise maps at the different steps of the post-

processing pipeline. Mean SNR in SC for this particular subject and slice was 10±3 at 

acquisition, 30±13 after denoising and removal of Gibbs artefacts and 147±68 after 

distortion correction and averaging across repetitions. At the group level, the minimum, 

mean and maximum SNR across subjects and IVIM acquisitions (diffusion-encoding 

directions) on the lowest b-value images at output of the post-processing pipeline were 

approximately 60, 120, 180 (see the SNR distribution of the entire cohort in Supporting 

Information Figure S3). Estimation errors on IVIM parameters for such SNR values are 

given by Figure 3.  

Group-averaged maps (Figure 6-A) show that high SNR values were obtained fairly 

homogeneously inside the cord, generally at 1-2 voxel distance from the edge (in native 

space, 2-3 voxels in template space). Finally, the high image quality obtained for single-

subject and single-slice data can be observed on a representative subset of diffusion-

weighted images (Figure 6-C). 
Note that the SNR values reported here refer to the ratio of the mean signal over the 

unexpected signal variations along repetitions of the same measurement as quantified by 

the SD across repetitions. Therefore, they represent not (only) the SNR at acquisition but 

refer to the SNR at the input of the fitting algorithm. 

3.4. Group averaging was necessary to discriminate between gray and white matter 

perfusion 

In-vivo IVIM maps are presented in Figure 7. Top images are IVIM maps obtained on 

a single representative subject and single slice. These maps demonstrate severe noise 

propagation. Mean±SD values within WM (resp. GM) are 14.7±8.5 (21.6±9.6) % for 

fIVIM, 7.3±5.9 (3.9±3.2) ´10-3mm2/s for D* and 0.35±0.31 (0.38±0.20) ´10-3mm2/s for 

fIVIMD*. These large SD values relate to large estimation errors of the fitting algorithm. 

Indeed, a mean voxel-wise SNR of 130 was measured within this subject’s SC, which 

would lead to errors of 12%, 20%, 12% and 5% for fIVIM, D*, fIVIMD* and D respectively 

(according to Monte-Carlo simulations performed with fIVIM, D*, D = 15%, 11.5´10-3 

mm2/s, 0.7´10-3 mm2/s, which are the average values across subjects, Figure 8). These
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Figure 5. Representative dataset of b=0* images along the different steps of the post-processing pipeline. For each step – original images at the 

scanner output (1st row), after denoising and removal of Gibbs (2nd row), after distortion correction and averaging across repetitions (3rd row) – 
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examples of individual repetitions, along with their SNR maps, average image across repetition and noise maps (SD across repetitions) are 

presented. The noise reduction along the processing steps can clearly be observed. Note that individual repetitions are rarely presented in the 

literature as the scanner usually performs the averaging on raw data. Processing repetitions individually before averaging is beneficial for 

denoising and motion correction, as evidenced by the high final image quality obtained. *Given the inherent diffusion-weighting of imaging and 

crusher gradients, the actual lowest b-value obtained was never 0 but 5 s/mm2. 
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Figure 6. (A) Mean SNR maps across slices and subjects (in template space) for b-values 

≤35 s/mm2, between 100 and 250 s/mm2 and ≥600 s/mm2 for each diffusion-encoding 

direction: right-left (R-L, phase-encoding direction), anterior-posterior (A-P, readout-

encoding direction), inferior-superior (I-S, slice-encoding direction). (B) The graph plots 
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the averaged voxel-wise SNR within cord; points and error bars represent mean and SD 

across subjects respectively. Due to the orientation of WM fibers mainly along the SC 

axis, a larger SNR decrease with b-value can clearly be observed in the I-S direction than 

when encoding diffusion in the transverse plane (where diffusivity is much lower). 

Furthermore, higher SNR voxels seem to be localized in the posterior side of the cord, 

which is closer to the surface coil. (C) A subset of original images (6 b-values out of 11) 

with diffusion-encoding along R-L axis is displayed. Note the high image quality already 

almost depicting the GM shape. 
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Figure 7. Spinal cord IVIM maps of a single subject (top), averaged across the six slices 

(middle) and averaged across slices and subjects (bottom). Slices spanned C3-C4 levels. 
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High-resolution transverse anatomical images are shown alongside for visualization of 

GM location. All maps are the average of the three diffusion-encoding directions, except 

for diffusivity maps which were kept directional. DR-L, DA-P and DI-S stand for diffusivity 

in Right-Left, Anterior-Posterior and Inferior-Superior directions. For comparison 

purposes, a diagram of the human spinal cord vascularization at the lumbar level (used 

with permissions from Nicholas Theodore, M.D.) is shown in the gray box at the top. As 

a result of partial volume effect with pulsatile CSF, a ring of high values about 1-2 voxel-

thick (in native resolution, 2-3 voxels in template resolution) can be observed at the spinal 

cord edge on fIVIMD* maps. This ring is more visible after slice-averaging (second row) as 

one corrupted voxel in one slice would corrupt the voxel in the slice average due to the 

large difference in IVIM values between CSF and tissue. 
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estimation margins do not allow to reliably discriminate a potential perfusion difference 

between GM and WM visually.  

Middle row images are the average of the six slices (after nonlinear registration across 

slices based on MGE image) from the same subject. Mean±SD values within WM (resp. 

GM) now are 12.8±2.0 (16.8±3.8) % for fIVIM, 11.8±2.5 (9.1±3.3) ´10-3mm2/s for D* and 

0.88±0.31 (0.83±0.28) ´10-3mm2/s for fIVIMD*. In-ROI SDs are substantially reduced. 

Mean coefficients of variation across slices (SD over mean across slices) within SC for 

this subject were 37.4%, 56.9% and 58.2% for fIVIM, D* and fIVIMD*. Slice-averaging 

would theoretically (assuming slices are similar regarding IVIM parameters) reduced the 

noise in maps by a factor of !"#$%&'= 2.45. A difference between GM and WM can now 

be visually appreciated, mainly from fIVIM and fIVIMD* maps. 

Bottom row images are the average of the six slices and the six subjects. Coefficients 

of variation across subjects were 21.1%, 33.6% and 39.9% for fIVIM, D* and fIVIMD*. 

Values are substantially lower than before slice-averaging, showing the improved inter-

subject reproducibility and the common IVIM parameter distribution shared across 

subjects. Coefficients of variation are not exactly reduced by a factor of !"#$%&' , 

accounting for the inter-subject variability and potential biases in the model. The group-

averaging further reduces the noise in maps by !"#()*'&+# = 2.45 and eventually, subtle 

perfusion differences (measured at ~1% of microvascular volume, Figure 8) can be 

observed between GM and WM. IVIM parameters exhibit different spatial characteristics: 

fIVIM is higher in most GM regions, D* is increased in the posterior part whereas fIVIMD*, a 

surrogate for microvascular blood flow47, comes out to be higher only in the intermediate 

part of GM. Furthermore, a ring of high IVIM parameters values around SC, about one 

voxel-thick (0.77´0.77mm2 in-plane in native space) can be noticed both on average and 

individual maps. This might be due to high-velocity CSF pulsation corrupting signal in 

voxels at the edge of the cord but could also be attributed to the pial arterial plexus which 

consists of surface vessels encircling the SC63. For comparison purposes, Figure 7 also 

shows a diagram of the SC vascularization64 derived from a microangiogram of a 3mm-

thick transverse section of human SC at lumbar level from Hassler65 (the latter study also 

presented a microangiogram at the 6th thoracic level, which is closer to the cervical levels 

explored here). 
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IVIM parameters were quantified on group- and slice-averaged maps and subsequent 

results are reported in Figure 8. Mean±SD across subjects (within-ROI) in GM and WM 

were 16.0±1.7 (1.6) % and 15.0±1.6 (1.7) % for fIVIM, 11.4±2.9 (1.4) ´10-3mm2/s and 

11.5± 2.4 (1.4) ´10-3mm2/s for D*, and 0.93 ± 0.29 (0.16) ´10-3mm2/s and 0.97 ± 0.27 

(0.23) ´10-3mm2/s for fIVIMD*. fIVIM suggested a slightly higher vascular volume in all GM 

regions compared to WM (16.0-16.5% vs. 15.0%), except in dorsal horns which are less 

vascularized than other GM regions64 and where high partial volume effects with WM 

could occur despite the sub-millimetric resolution. fIVIMD* also suggested a higher 

microvascular flow in GM but mainly within the intermediate GM region. Estimated WM 

and GM pseudo-diffusion coefficients were of the same order of magnitude. Finally, D 

values, benefiting from the lowest estimation errors (<1%), were consistent with the 

underlying microstructure of each region. WM regions showed higher I-S diffusivity than 

GM (1.58 vs. 1.32 ´10-3mm2/s) and lower radial diffusivity (0.30 vs. 0.37 ´10-3mm2/s for 

DR-L, 0.31 vs. 0.32 ´10-3mm2/s for DA-P), in agreement with the longitudinal orientation of 

fibers in WM and the more isotropic microstructure of GM tissue. Furthermore, dorsal 

horns presented a higher DA-P compared to DR-L (0.33 vs. 0.29 ´10-3mm2/s), reflecting 

fibers output along the A-P direction, while DR-L was predominant in anterior (0.41 vs. 

0.31 ´10-3mm2/s) and intermediate GM (0.38 vs. 0.31 ´10-3mm2/s), which is consistent 

with fibers crossing through the anterior gray commissure. 

3.5. Higher microvascular volumes and lower blood velocities along the SC axis are 
suggested while blood flow would be similar in all directions 

The diffusion-encoding direction strongly affects IVIM parameters values (Figure 9) 

as could be expected given the anisotropic structure of SC.  

The measured difference in fIVIM values (≥20%) between I-S axis and transverse plane 

(R-L and A-P axes) was higher than the expected errors (~12%) based on simulations (not 

taking into account the noise reduction with slice- and group-averaging). However for 

D*, the actual difference between I-S axis and orthogonally to the SC (~8%) was lower 

than estimation errors (~20%). The higher fIVIM and lower D* along the I-S axis compared 

to orthogonally to the cord resulted in similar fIVIMD* values along the three axes. 

Finally, relating in-vivo values to simulations in terms of SNR requirements, to 

estimate fIVIMD* within 10% error margins using the implemented protocol, a minimum 

b=0 SNR of 194, 156 and 137 would be needed with diffusion-encoding in R-L 

(fIVIM=12.3%, D*=12.9´10-3mm2/s, D=0.33´10-3mm2/s in whole SC), A-P (fIVIM=15.0%,
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Figure 8. Parameters quantification within WM and GM ROIs. Sub-ROIs are depicted on the high-resolution MGE image: corticospinal tracts, 
dorsal columns (WM sub-ROIs) and anterior GM, intermediate GM, dorsal horns (GM sub-ROIs). DR-L, DA-P, DI-S are the diffusion coefficients 
in Right-Left, Anterior-Posterior, Inferior-Superior directions respectively. 
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Figure 9. Directional IVIM parameter maps (mean across slices and subjects in template space, 0.5´0.5mm2) and quantification of IVIM 
parameters within GM and WM according to diffusion-encoding direction. R-L, A-P, I-S: right-left, anterior-posterior, inferior-superior 
directions.
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D*=11.1´10-3mm2/s, D=0.31´10-3mm2/s) and I-S (fIVIM=18.9%, D*=10.4´10-3mm2/s, 

D=1.47´10-3mm2/s) directions respectively. 

3.6. Simulations versus in-vivo data 

Figure 10 compares simulated data to in-vivo data extracted from 10 voxels in GM 

and 10 voxels in WM from the single-subject and single-slice maps presented in Figure 7. 

Similar fit quality was observed between simulations and in-vivo data (as evidenced by 

the coefficient of determination R2), along with robust performances of the fitting 

algorithm. However, signal decay profiles with b-value clearly differed both between 

simulated and in-vivo data but also between voxels of a same tissue type for in-vivo data. 

In-vivo signal decay as described by the current IVIM model seems to result from more 

than only the IVIM effect of capillary perfusion, suggesting potential confounding 

factors. This also reflects in the Akaike Information Criterion corrected for sample size 

(AICc), which is an index of the amount of information lost by the model for the given 

dataset66. The AICc was about 1.6 times higher for in-vivo data, supporting that in-vivo 

data included more information unexplained by the IVIM model than synthetic data 

which were generated from it. Finally, 3 WM in-vivo voxels stood out with a larger IVIM 

effect; those voxels are at the edge of the SC and were probably affected by the high-

velocity pulsations of CSF. Other WM voxels showed less IVIM effect than GM voxels, 

as evidenced by the curve curvature. 
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Figure 10. Simulations versus in-vivo data. On the left side, 10 voxels with the same noise level and IVIM parameters for gray and white matter 

were simulated and fitted. On the right side, in-vivo data from 10 voxels pseudo-randomly selected in GM (first row) and WM (second row) on 
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the single-subject and single-slice IVIM maps presented in Figure 7 were fitted. All datasets were normalized by their estimated Sb=0 value. The 

corresponding IVIM maps were displayed at the top and the selected voxels are delineated by white borders on the maps. Selected voxels were 

also identified on the anatomic MGE image by color according to their tissue type (GM in red and WM in iris blue). The true IVIM parameter 

values for simulations were defined by the mean value in GM and WM respectively for this specific slice. Regarding in-vivo WM voxels, 3 

voxels were chosen close to the SC edge; those voxels clearly exhibit larger IVIM effect than those in the dorsal column, probably due to the 

proximity with high-velocity pulsations of CSF. SD: standard deviation.  
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4. Discussion 

This work proposes a combined numerical and experimental study for noninvasive 

perfusion imaging of the human cervical SC using IVIM at 7T. Estimation errors and 

required SNRs were first evaluated for expected in-vivo values. IVIM maps were then 

derived at multiple averaging scales: from single-subject and single-slice data to the total 

average. The latter enabled to distinguish regional perfusion differences. 

4.1. Promises of IVIM imaging in the human SC 

While SNR within individual data was limited, averaging maps across slices and 

subjects provided enough SNR to highlight very small (1% of microvascular volume 

fraction) regional perfusion differences between WM and GM, offering preliminary 

results of perfusion-related parameter mapping in the human SC in-vivo. 

In this first investigative study, mean values for fIVIM and D* were 15.0% and 

11.5´10-3 mm2/s in WM, and 16.0% and 11.4´10-3 mm2/s in GM. Microvascular fraction 

values were higher than the values of ~5% reported in brain using PET and 15O inhalation 

method67, but they are in the range of IVIM studies in normal brain GM and WM26,27 

even if the cohort explored here needs to be extended. This potential overestimation can 

be reduced by taking into account the relaxation rate difference between blood and tissue 

in IVIM representation as proposed by Lemke et al. 35;  however this was beyond the 

scope of the current study. Regarding spatial distribution, also in agreement with brain 

studies25,26,50 and anatomical charts64, highest microvascular volumes (on average maps) 

seem to match with GM location (mainly anterior and intermediate GM). Moreover, the 

fIVIMD* map suggests highest flow at the location of central arteries (Figure 7) which 

represent the main blood supply to anterior horns64. Average IVIM maps, and especially 

the microvascular volume fraction (fIVIM), also nicely compare with the microangiogram 

of transverse section of human SC at T6 level from Hassler65, even though SC structure 

varies from thoracic to cervical levels. This microangiogram also illustrates the difficulty 

to capture the SC perfusion levels from such a sparse capillary network. 

While our findings stem from a single-center 7T study, the protocol set up here can 

easily be translated to different 7T human MR sites as well as to lower clinical field with 

minor adaptation for potential clinical applications. Indeed, transferring the protocol to 3T 

could benefit from lower B0 inhomogeneities, improved B1 and reduced susceptibility 

effects, hence mitigating the lower theoretical SNR at this field. 
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Independent from field strength, our numerical evaluation also showed that there is a 

crucial need for standardization, and one potential asset is the growing availability of 

open-source programs to encourage reproducible research68. Fitting algorithms can 

significantly impact parameter estimation errors. In particular, some optimization 

algorithms (e.g., Conjugate-Gradient) showed little robustness to local optima for some 

parameter sets with infinite SNR whereas others, such as Differential Evolution48 

(preferred here), systematically provided the global optimum of the cost function. With 

the objective to facilitate comparisons across studies and fitting procedures, the programs 

employed here were made open-source and available at 

https://github.com/slevyrosetti/ivim-toolbox.  

We provide here the estimation errors associated with our implementation, for 

given SNRs. Results also depend, to some extent, on the b-value distribution but trends 

are consistent with those from Pekar et al.38 who used similar b-values. However, given 

that literature in healthy WM and GM shows variations as large as 13´10-3 mm2/s for 

D*39 and 13% for fIVIM26, the present work evaluated the full range of potential IVIM 

values; and indeed, results revealed a substantial variation in estimation accuracy within 

this range of values. 

4.2. Limitations and perspectives 

One major limitation in the current setting is that single-subject and single-slice IVIM 

maps were not reliable enough to clearly discriminate between GM and WM perfusion. 

Mean values across subjects (Figure 8) finally revealed less than 10% perfusion 

difference in fIVIMD* between those two tissues while the estimation error would be at 

best 9% with the highest voxel-wise in-vivo measured SNRs (180), 13% in average 

(SNR=120) and 27% at lowest SNRs (60). This poor reliability in single-subject and 

single-slice maps makes the protocol currently unsuitable for detecting locally restricted 

abnormalities or for studying variations along the SC axis. So far, the best precision for 

an individual diagnosis would be the one obtained in slice-averaged maps. However, 

slice-averaging would mitigate detection of locally restricted abnormalities (e.g., existing 

on one slice only). Further developments are thus needed to reliably detect local perfusion 

abnormalities or to study variations along the SC axis. 

Furthermore, the theoretical required SNR was reached in-vivo in this study but the 

method employed to determine estimation errors does not include inaccuracy of the IVIM 

biexponential model which is based on several assumptions (e.g., randomly-oriented 
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microvascular network, D* >> D, no exchange between intra- and extra-vascular 

compartments). The comparison of simulated signal decay with b-value to in-vivo profiles 

(Figure 10) suggests sources of bias in the model that need to be addressed to improve 

estimation precision. As demonstrated in Novikov et al.69, the biexponential model is a 

signal representation very sensitive to biases. Potential sources of bias could be 

microscopic non-linear motion within the cord or interstitial fluid adding IVIM effects 

independent from tissue perfusion. The existence of different vessel functional pools, as 

introduced by several authors for IVIM in brain70–73, could also be a source of bias. 

Besides, the large slice thickness used in this study (5 mm) might mix the different effects 

within each voxel in a complex manner, adding to the inaccuracies. More sophisticated 

models have shown better accuracy74,75 but assessment of the IVIM model was beyond 

the scope of this article. 

Still, IVIM in the SC is highly SNR-demanding as expected, and the technique as 

used so far will hardly be able to measure very low perfusion levels (e.g. fIVIM <4% for 

diffusion-encoding in the SC transverse plane, or fIVIM <8% for diffusion-encoding along 

the SC axis) given the required SNRs (>500) for single-subject and single-slice data. It 

should also be noted that the IVIM technique is very sensitive to high fluid velocities 

such as encountered within surrounding pulsatile CSF. This is a non-negligible issue for 

voxels at the edge of the SC where signal is highly biased by partial volume effect with 

CSF, resulting in the high value ring that can be observed on fIVIM, D* and more 

extensively fIVIMD* maps. Similarly, the central canal, which contains CSF, might also be 

a source of bias in IVIM estimation within intermediate GM as it can widen in some 

pathologies such as syringomyelia76. Fluid suppression strategies with inversion recovery 

acquisition might be worth considering. Another avenue would be to adjust the 

acquisition trigger delay to subjects’ cardiac cycle as the latter can vary across 

population, targeting the quiescent phase of both SC and CSF motion. It might also be 

judicious to trigger the acquisition at the peak of perfusion flow as fIVIMD* and D* in 

brain were shown to vary across the cardiac cycle77. 

Moreover, this study reports errors and required SNRs for healthy IVIM values but 

perfusion levels might deviate in pathological cases. In cases like gliomas where 

perfusion increase can go up by +30´10-3 mm2/s in D* and +10% in fIVIM26,41,42 compared 

to healthy values, IVIM fitting errors would be lowered down to 3% on fIVIMD* at 

SNR=180. In such cases, estimation would be precise enough to discriminate between 

healthy and pathological tissue. In contrast, in ischemic strokes, fIVIM would be reduced by 
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about –4%28 corresponding to an error increase from 9% in healthy tissue to about 20% in 

ischemic tissue, making ischemia undetectable. 

So far, the current acquisition protocol is too long to be used in clinical routine and 

might be affected by additional movements (e.g., swallowing) associated with patients’ 

discomfort. Nonetheless, multiple avenues for improvement exist. The b-value 

distribution and repetition numbers were herein defined empirically; they can be 

optimized to reduce scan time and/or improve parameters estimation. Monte-Carlo 

simulations can be pushed further or the Cramer-Rao lower bounds can also be used to 

this purpose78. SNR increase can be achieved through multiple ways. Improved hardware 

like more powerful gradients or design of more efficient high-density coil arrays 

dedicated to ultrahigh field MRI will hopefully enable to reach higher SNR in shorter 

time. Alternative k-space sampling schemes such as spiral readout and inner FOV 

sequences would reduce TE and distortions associated with single-shot EPI. Finally, 

cutting-edge fitting approaches might be worth considering. For instance, Bayesian 

methods – which basically maximize the probability density function of parameters – 

showed more robustness to noise79,80, but caution has to be taken as fine perfusion 

variations could be smoothed when parameter uncertainty is high81. 

Nonetheless, the IVIM technique was able to provide us with the first perfusion-

related maps of the human spinal cord in-vivo without contrast agent injection, alleviating 

concerns regarding the use of several gadolinium chelates15,16. In addition, along with 

perfusion information, IVIM provides microstructural information from the diffusion 

coefficient, which can be useful in the joint assessment of perfusion and tissue integrity in 

the context of SC injuries. 
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5. Conclusion 

This study ultimately provides, to our knowledge, the first perfusion-related maps 

of the human SC, paving the way to in-vivo study of SC micro-vascularization processes, 

for earlier diagnostic of perfusion abnormalities in a more distant future. Ultrahigh field 

MRI acquisition developments and numerical simulations were combined to quantify 

IVIM parameters and related estimation errors for representative in-vivo SNRs. Although 

the technique did not show sufficient reliability to achieve patient- and level-specific 

IVIM mapping, the developed method provided preliminary results of SC perfusion 

mapping highlighting a very small perfusion difference between GM and WM (~1% of 

microvascular volume fraction) on group-averaged maps. Developments to increase SNR 

so as to reduce scan time and to address potential modeling biases are warranted. 
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Supporting Information Table S1: Acquisition protocol 

Sequence Orientation Phase-encoding 
direction 

Resolution 
(mm3) 

Bandwidth FOV/number 
of slices 

Partial 
Fourier 

iPat TE 
(ms) 

TR (ms) Synchronised 
on pulse 
oximeter 

Purpose and 
tips 

2D 
localizers 

Sagittal, 
coronal, 
axial 

2D 1.0x1.0x5  260Hz/px 320x320mm2, 
3, 7, 5 slices 
per 
orientation 

6/8 None 3 7 No Preliminary 
FOV 
positioning 

2D 
saturation-
prepared 
turbo-flash 

Sagittal 2D 1.0x1.0x5 199Hz/px 264x264mm2, 
7 slices 

None None 3.05 5000 Yes B1 map for coil 
voltage 
calibration 
within FOV 

2D turbo-
spin echo 

Sagittal 2D 0.6x0.6x2.2 579Hz/px 192x192mm2, 
4 slices 

None GRAPPA 
2 

34 4814 Yes IVIM FOV 
positionning 
according to 
spinal cord 
curvature, 
vertebral levels 
localization 

2D b=0 
spin-echo 
single-shot 
EPI 

Axial 2D 0.77x0.77x5  1130Hz/px 103x99mm2, 
6 slices 

5/8 GRAPPA 
3 

51.6 Adapted 
to 
subject’s 
cardiac 
cycle 
and SAR 
limits 

Yes Quick check of 
shimming and 
image quality 
(eventual 
signal loss, 
distortions, 
artefacts). 
Improve 
shimming if 
needed.  
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2D multi-
echo 
spoiled 
gradient-
echo  

Sagittal 2D 1.35x1.35x5 981Hz/px 258x263mm2, 
13 slices 

None None 4.08 
5.1 

200 Yes B0 map to 
inspect B0 
inhomogeneity 
within FOV. 
Improve 
shimming if 
too much 
variations. 

2D spin-
echo 
single-shot 
EPI with 
IVIM b-
value 
distribution 
and 
repetitions 
number per 
b-value as 
described 
in the 
article 

Axial Diffusion-
encoding 

Phase-
encoding 

0.77x0.77x5 1130Hz/px 103x99mm2, 
6 slices 

5/8 GRAPPA 
3 

51.6 Adapted 
to 
subject’s 
cardiac 
cycle 
and SAR 
limits 

Yes IVIM protocol 
split into 6 runs 
(3 diffusion-
encoding 
directions with 
forward and 
reverse phase-
encoding to 
correct image 
distortions in 
post-
processing) 

R-L  R>L  

L>R  

A-P R>L  

L>R  

I-S R>L  

L>R  

Multi-echo 
gradient-
echo 

Axial 2D 0.4x0.4x5 289Hz/px 150x150mm2, 
6 slices 

6/8 GRAPPA 
2 

3.51 
9.34 
15.17 
21 

500 No Cord and gray 
matter 
depiction 

R-L, A-P, I-S: right-left, anterior-posterior and inferior-superior directions. 
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Supporting Information Figure S1: Experimental optimization of acquisition parameters 
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(A) Experimental optimization of basic acquisition parameters. In a first session, parameters were changed one-by-one starting from a parameter 
set previously defined on phantom (“base” protocol define in top table). SNR was quantified within SC across 8 repetitions of 4 b-values (5, 150, 

600, 800 s/mm2) for each parameter set for images acquired with forward and reversed phase-encoding, after denoising and removal of Gibbs 
artifacts and after distortion correction. Given the low mumber of repetitions, the “difference” method (as described in Reeder et al.58) was 

employed here to quantify SNR. Final images were visually inspected in comparison with the anatomic multi-echo gradient-echo image to assess 
whether distortion correction was satisfactory or whether unacceptable distortions persisted. Based on those results, an “optimized” parameter set 

was defined to maximize SNR and was evaluated in a second session (different volunteer), across 24 repetitions of the same b-values. The 
“optimized” parameter set yielded an SNR increase of 27% compared to the “base” parameter set on b≃0 images. (B) Numerical optimization of 

NRR (number of cycles to acquire all slices, also called number of concatenations) to maximize SNR efficiency. Based on the large angle spin-
echo signal equation52 ("=90º, T1=1251ms in SC at 7T22, TE=51.6ms), the optimal NRR can be calculated for the specific cardiac cycle duration 

of the subject (e.g., for a cardiac cylce of 900ms, the division of the slices acquisition across 3 cycles yields the higher SNR efficiency). 
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Supporting Information Figure S2: Comparison of IVIM fitting approaches for the human 
spinal cord: the two-step segmented approach versus the one-step approach 

 

 

 

 

 

 

 

 

 

 

Estimation errors on each IVIM parameter according to (fIVIM, D*) true values with Dtrue=0.3´10-3 mm2/s (D^, similar to diffusivity in SC 
transverse plane) for the two fitting approaches and different levels of SNR: ∞ (no noise), 180 (maximum measured in-vivo SNR), 120 (mean), 
60 (minimum). On the y-axis of each graph, fIVIM varies from 1 to 30% while on the x-axis D* varies from 3 to 35 ´10-3mm2/s (bounds defined 

according to IVIM literature in brain white and gray matter as described in section 2.1). Median [min-max] errors are indicated on top of graphs. 
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Estimation errors on each IVIM parameter according to (fIVIM, D*) true values with Dtrue=1.5´10-3 mm2/s (D||, similar to diffusivity along SC 

axis) for the two fitting approaches and different levels of SNR: ∞ (no noise), 180 (maximum measured in-vivo SNR), 120 (mean), 60 
(minimum). On the y-axis of each graph, fIVIM varies from 1 to 30% while on the x-axis D* varies from 3 to 35 ´10-3mm2/s (bounds defined 

according to IVIM literature in brain white and gray matter as described in section 2.1). Median [min-max] errors are indicated on top of each 
graph. 
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Supporting Information Figure S3: In-vivo SNR 
distribution within spinal cord for the cohort studied 

Histogram of the in-vivo voxel-wise SNR measured within the entire SC for the whole 

cohort in lowest b-value images (b ≤35 s/mm2) after the post-processing pipeline was 

applied. This SNR was calculated voxel-wise as the ratio of the mean signal across 

repetitions to the SD across repetitions. A factor of !"#$%$&'&'()* was applied to reflect 

the SNR value of the average of all repetitions, which is exactly the input data fed into the 

fitting algorithm. Vertical black lines indicate SNR values used in Monte-Carlo 

simulations, which are approximately the minimum, maximum and mean values across 

subjects of the average voxel-wise SNR within SC (60, 180 and 120 respectively). 

 

 

 

 

 

 

 


