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Abstract
Introduction  Plant and crop metabolomic analyses may be used to study metabolism across genetic and environmental 
diversity. Complementary analytical strategies are useful for investigating metabolic changes and searching for biomarkers 
of response or performance.
Methods and objectives  The experimental material consisted in eight sunflower lines with two line status, four restorers (R, 
used as males) and four maintainers (B, corresponding to females) routinely used for sunflower hybrid varietal production, 
respectively to complement or maintain the cytoplasmic male sterility PET1. These lines were either irrigated at full soil 
capacity (WW) or submitted to drought stress (DS). Our aim was to combine targeted and non-targeted metabolomics to 
characterize sunflower leaf composition in order to investigate the effect of line status genotypes and environmental condi-
tions and to find the best and smallest set of biomarkers for line status and stress response using a custom-made process of 
variables selection.
Results  Five hundred and eighty-eight metabolic variables were measured by using complementary analytical methods such 
as 1H-NMR, MS-based profiles and targeted analyses of major metabolites. Based on statistical analyses, a limited number of 
markers were able to separate WW and DS samples in a more discriminant manner than previously published physiological 
data. Another metabolic marker set was able to discriminate line status.
Conclusion  This study underlines the potential of metabolic markers for discriminating genotype groups and environmental 
conditions. Their potential use for prediction is discussed.
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SLA	� Specific leaf area
VIP	� Variable importance in the 

projection
WW	� Well-watered

1  Introduction

Sunflower (Helianthus annuus L.) is the fourth major crop 
providing seed for oil production worldwide. In 2016, 
world production reached 45 MT from 26 Mha, principally 
in Europe (around 70%), Ukraine being the world leader 
(Oilworld 2016; Hussain et al. 2018). Worldwide produc-
tion has increased constantly ever since (Oilworld 2016). 
Sunflower accounts for more than 50% of total world table-
oil consumption. Additionally, its high biodegradability 
makes it suitable for non-alimentary uses such as in paints 
and bioplastics.

Native to North America and introduced into Europe 
in the sixteenth century, sunflower became a major crop 
in this area in the early 1960s. Further development was 
achieved after the introduction of hybrid varieties in the 
early 1980s. Hybrid varieties are based on the use of cyto-
plasmic male-sterile (CMS) lines (Vear 2016), like many 
other crops (Chen and Liu 2014). The male sterility used for 
sunflower hybrid production, called PET1-CMS, was first 
identified from an interspecific cross between Helianthus 
petiolaris and H. annuus. It results from the reorganization 
of mitochondrial DNA that generated a new open reading 
frame ORFH522 co-transcribed with apt1 gene and coding 
a 16 kDa protein. This leads to modified mitochondrial func-
tions and affects pollen development (Balk and Leaver 2001) 
through a decline in the mitochondrial membrane integrity 
and the respiratory control ratio. The mitochondrial pro-
tein ORFH522 appears to be expressed in all tissues, but 
the deleterious phenotype associated with PET1-CMS has 
been thought to be limited to the anthers, and no apparent 
extra phenotypes have been found in other organs (Horn and 
Friedt 1999; Balk and Leaver 2001).

To complement the mutational effect, a nuclear restora-
tion gene (noted Rf1) is used in sunflower hybrid production. 
Restoration genes are nuclear and generally encode tetratri-
copeptides that are thought to transcriptionally control the 
CMS mitochondrial gene (Chen and Liu 2014; Igarashi et al. 
2016; Yu et al. 2016). Finally, sunflower hybrid production 
is based on crossing a restorer line called R bearing a func-
tional restoration allele Rf1 (that recovers the PET1-CMS 
male-sterility phenotype) to a male-sterile PET1-CMS line 
called A (carrying a recessive rf1 allele). To maintain this 
male-sterile line, a maintainer line called B, isogenic to the 
A line, is also used. Each B line carries the rf1 allele but is 
male-fertile, as it does not carry the CMS-PET1 cytoplasm. 

Therefore, the B line is widely used for phenotypic and agro-
nomic description of the line.

Since the introduction of hybrid varieties, sunflower has 
undergone an active breeding process (Vear 2016), mainly 
thanks to molecular marker-assisted selection. Hybrids have 
been selected with increased resistance to downy mildew 
(Qi et al. 2016), sclerotinia (Talukder et al. 2014) and water 
stress (Marchand et al. 2013; Owart et al. 2014), although 
sunflower is often cited as moderately drought-tolerant (Hus-
sain et al. 2018). This selection process will benefit from 
the recent sequencing of the maintainer inbred line XRQ 
(Badouin et al. 2017). As part of these selection efforts, our 
group is currently involved in searching for metabolic mark-
ers of sunflower performance. A definition of biomarkers 
(and their sub-category metabolic markers) emerged from 
the field of medicine as a characteristic objectively measured 
to indicate a given biologic, pathologic or pharmacologic 
response (Fernandez et al. 2016). In plant science, meta-
bolic markers have been defined as metabolites or groups 
of metabolites that are measured to predict or discriminate 
plant responses or performance (Fernandez et al. 2016). 
The use of metabolic markers to predict criteria of plant 
performance is recent, with pioneering papers dating from 
the early 2010s (Meyer et al. 2007; Riedelsheimer et al. 
2012). The possibilities offered by these markers in plant 
selection processes were reviewed recently and a pipeline 
to search and use them has been proposed (Fernandez et al. 
2016). The authors emphasized that the search for meta-
bolic markers requires a first step of analysis on a small 
core set of genotypes. The present article investigates this 
first step, which includes (1) testing the analytic pipeline to 
establish the dynamic range of targeted metabolites, (2) con-
firming the presence of several secondary or “specialized” 
metabolites (as defined by Hartmann 2007; Pichersky and 
Lewinsohn 2011) and (3) investigating which metabolites 
are essential for differentiating groups of samples such as, in 
our case, water treatment (well-watered, WW, vs. drought-
stressed, DS) and line status (maintainer, B, vs. restorer, R). 
These metabolites could later serve as metabolic markers. 
Furthermore, we tested different statistical methods for vari-
able selection in order to find the best and smallest sets of 
metabolite markers. Indeed, for a given agronomical trait, 
the deployment of metabolic markers among breeders will 
depend on their cost (Fernandez et al. 2016).

For this purpose, we used a combination of targeted and 
untargeted metabolomic analyses on sunflower leaf samples 
obtained from B or R lines and in WW and DS conditions. 
Our results show that a limited number of markers can 
clearly differentiate WW from DS samples and in a more 
discriminant manner than the physiological data presented in 
Blanchet et al. (2018), which are classically used to discrimi-
nate individuals subjected to DS. To our surprise, another 
leaf metabolic marker set was able to discriminate B lines 
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from R ones. Our data underline the potential of metabolic 
markers for discriminating genotypes and environmental 
conditions. Their potential use in sunflower breeding for 
performance prediction is discussed.

2 � Materials and methods

The protocols used are detailed in Online Resource 1 and 
summarized here.

2.1 � Plant material and growth conditions

The experiment was performed in 2013 in the phenotyping 
platform “Heliaphen” (Gosseau et al. 2018). Eight sunflower 
lines, four B and four R lines, were grown in two conditions 
(WW and DS) with three replicates, leading to a total of 48 
samples. Irrigation was stopped at 38 days after germination 
(DAG; Schneiter and Miller 1981) for DS plants. Soil evapo-
ration was estimated according to Marchand et al. (2013). 
Both WW and DS plants were weighed four times per day by 
the Heliaphen robot to estimate plant transpiration (Gosseau 
et al. 2018). At 47 DAG, leaves for metabolomic analyses 
were harvested without their petiole and frozen in liquid 
nitrogen. Two other leaves (mature and young leaves) were 
harvested for physiological trait measurements. During the 
experiment, two samples were excluded before leaf sam-
pling (excessive irrigation was detected when analysing final 
Heliaphen readings) and four samples could not be analysed 
because of insufficient powder quantity. This resulted in a 
total of 42 samples submitted to metabolic analyses.

2.2 � Physiological trait measurements for plant 
phenotyping

Plant and leaf physiological data are part of a larger dataset 
presented in Blanchet et al. (2018). Specific leaf area (SLA) 
was determined according to Allinne et al. (2009). Both leaf 
osmotic potential (OSM_POT) and leaf osmotic potential at 
full turgor (OSM_POT_100) were measured as described 
in Poormohammad Kiani et al. (2007). To assess carbon 
isotope discrimination (CID), samples were oven-dried, 
ground, weighed and analysed using a continuous low iso-
tope ratio mass spectrometry at the Stable Isotope Platform 
SHIVA (University of Toulouse, France).

2.3 � Targeted compound measurements

For each sample, about 20 mg fresh weight were extracted 
as in Hendriks et al. (2003). Sucrose, glucose, and fructose 
(Jelitto et al. 1992), malate (Nunes‐Nesi et al. 2007), citrate 
(Tompkins and Toffaletti 1982) and glucose-6-P (Gibon 
et al. 2002) were determined in the ethanolic supernatant. 

Starch (Hendriks et al. 2003) and protein (Bradford 1976) 
contents were determined on the pellet. Assays were carried 
out in 96-well microplates.

Individual free amino acid analysis was carried out using 
an UPLC separation with fluorescent detection after deri-
vatization using 6-aminoquinolyl-N-succinimidyl carbamate 
(AQC)-tag (a method hereafter referred to as UPLC-Fluo).

For lipid analysis, fatty acid methyl esters (FAMES) 
were measured after hydrolysis of 20 mg dry weight (DW) 
with 2.5% H2SO4 (v/v) in methanol. GC-FID was per-
formed using an Agilent 7890 gas chromatograph (Agilent, 
Santa Clara, California) equipped with a Carbowax column 
(15 m × 0.53 mm, 1.2 µm; Alltech Associates, Deerfield, IL, 
USA) and flame ionization detection. FAMES were identi-
fied by comparing their retention times with commercial 
fatty acid standards (Sigma, Saint-Quentin Fallavier, France) 
and quantified using ChemStation (Agilent).

2.4 � 1H‑NMR analysis of major polar compounds

Polar metabolites were extracted from lyophilized powder 
(40 mg DW per biological replicate) with an ethanol–water 
series (80/20, 50/50, 0/100 v/v) at 80 °C as described in 
Deborde et al. (2009) with modifications. This three-step 
extraction process (ethanol–water series) was chosen to take 
into account the diverse affinities and solubilities of leaf 
major polar compounds (i.e. sugars, organic acids, amino-
acids) for ethanol or water, in order to obtain an accurate 
view of these compounds in leaf extracts. The 1D (cpmg 
and single-pulse) spectra were processed using the NMR-
ProcFlow application v1.1 (Jacob et al. 2017; http://nmrpr​
ocflo​w.org/). For the cpmg dataset, this resulted in 479 nor-
malized variables corresponding to spectral regions (named 
Unk_ppm:number in Online Resource 2) which included 
compounds that were annotated later on. The assignments 
of metabolites in the 1H-nuclear magnetic resonance (NMR) 
spectra were made by comparing the proton chemical shifts 
with public or local spectral databases and by spiking the 
samples with the corresponding commercial compounds. 2D 
experiments were performed on a representative selected 
extract taken from the WW condition. Quantification of 11 
identified compounds was performed by using quantified 
single-pulse spectra dataset and calibration curves.

2.5 � LC–ESI–QTOF–MS untargeted analysis 
of semi‑polar metabolites

Liquid chromatography–electrospray-ionization–time-of-
flight–mass spectrometry (LC–ESI–QTOF–MS) profiling 
of aqueous methanol extracts containing 0.1% formic acid 
was performed with extracts obtained from 20 mg DW lyo-
philized powder. An Ultimate 3000 HPLC (Dionex, Sun-
nyvale, CA, USA) was used to separate metabolites on a 

http://nmrprocflow.org/
http://nmrprocflow.org/
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reversed-phase C18 column using an acetonitrile gradient in 
acidified water. Metabolites were detected by using a hybrid 
quadrupole/time-of-flight mass spectrometer (micrOTOF-Q, 
Bruker Daltonics, Bremen, Germany). Electrospray ioniza-
tion in positive mode was used to ionize the compounds. 
A quality control sample (QC) was injected after each set 
of ten samples. The MS data were processed using XCMS 
(Smith et al. 2006) and R scripts for filtering. A total of 
1519 features were detected and reduced to 540 metabolic 
variables after filtering. The corresponding MS-based vari-
ables were named using their nominal masses in dalton and 
retention time in seconds in Online Resource 2 (MxxxTyyy). 
Metabolite identification was performed using the accurate-
mass data and Orbitrap (Thermo Fisher, Villebon-sur-Yvette, 
France) MS and MS/MS data of a representative sample 
extract.

2.6 � Statistical analyses

All statistical analyses were performed using the R Soft-
ware (http://www.r-proje​ct.org/), the R package mixOmics 
(Rohart et al. 2017) and the BioStatFlow online tool (bio-
statflow.org) which is based on R scripts. Two-way ANOVA 
with FDR correction was performed to highlight line status 
or water-treatment effects and interaction. The parameters 
used for partial least squares-discriminant analysis (PLS-
DA) in BioStatFlow were adjusted to a tenfold cross-valida-
tion (CV) to generate the model (and calculate the Q2) and 
200-randomized permutations to estimate the robustness of 
the generated model. Some graphical outputs for PLS-DA 
were produced by mixOmics, using the same parameters 
than with BioStatFlow. An additional R script from Fu et al. 
(2017) was used to perform least absolute shrinkage and 
selection operator (LASSO) and sparse partial least square 
(sPLS) selection. Principal component analysis (PCA) and 
partial least square (PLS) were performed on data mean-
centred and scaled to unit variance. All statistical analyses 
were performed on the data set in Online Resource 2 or 
subsets of this file.

3 � Results

3.1 � Sunflower leaf metabolic contents measured 
by targeted and untargeted approaches

In total, 27 metabolites plus starch and protein content were 
targeted and quantified in sunflower leaf. Major soluble sug-
ars (i.e. the ones with the highest content), organic acids 
and chlorophylls were quantified with spectrophotometric 
analyses. FAMES and free amino acids were measured by 
using GC-FID and UPLC-fluo, respectively. These data are 
presented for the different conditions in Fig. 1 and Online 

Resource 3—Fig. S1. We targeted these compounds because 
they are (1) often considered as putative metabolic mark-
ers (Fernandez et al. 2016) and (2) valuable candidates for 
a high-throughput metabolic marker approach, as they are 
easy and cheap to measure.

The concentrations of these 29 compounds were summed 
to estimate their contribution to leaf biomass. This yielded 
about 45% of leaf dry mass. Glucose was found to be the 
major soluble sugar. Its concentration (32–45 mg g−1 DW) 
was in the same range as that of sucrose, but 8–10 times 
higher than fructose depending on the chosen conditions. 
Glutamate, alanine and serine were found to be the most 
abundant amino acids. In leaves, linolenic acid (C18:3) was 
the most abundant fatty acid (7.5–18.6 mg g−1 DW), fol-
lowed by linoleic acid (Fig. 1).

1H-NMR profiling was performed on polar extracts to 
further analyse metabolites from primary metabolism in the 
millimolar range. Four hundred and seventy-nine regions 
were observed in the 1H-NMR cpmg dataset, of which 20 
compounds were annotated (Online Resource 4). Eleven 
identified compounds were measured and quantified with the 
1H-NMR quantitative single-pulse dataset, but only nine of 
them were kept in the final dataset to avoid redundancy with 
targeted spectrophotometric measurements. When summed, 
these compounds represented an additional 5% of the leaf 
dry mass (Online Resource 4).

LC–ESI–QTOF–MS analysis of semi-polar extracts was 
performed to analyse specialized metabolites. The most 
intense peaks that were detected in the sample extracts, 
based on their intensity in the XCMS table generated by a 
relative area under curve (AUC) approach, were tentatively 
annotated. Orbitrap-MS data were used in order to gain pre-
cision on mass measurement and to perform MS/MS. Online 
Resource 5 shows the annotation table generated using a 
representative spectrum of a leaf extract with annotation of 
the most intense peaks. The two most intense peaks were 
annotated as mono and di-caffeoyl quinic acid. With a reten-
tion time around 17–20 min, several methylated flavonoids 
were also detected. Finally, three smaller peaks ranging in 
retention time from 15 to 17 min were found to putatively 
represent sunflower sesquiterpenoids. Several peaks after 
25 min remained elusive.

Several metabolite concentrations differed between the 
conditions, as highlighted by a two-way ANOVA (p < 0.05 
with FDR correction, Online Resource 6—Table S1a).

3.1.1 � Difference between DS and WW samples

The most striking difference was the large increase in each 
individual amino acid concentration found for DS sam-
ples, with an average increase of 15-fold, (Fig. 1a, Online 
Resource 6—Table S1a). On the other hand, starch, protein 
content, linolenic and palmitoleic acids were slightly but 

http://www.r-project.org/
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significantly lower in DS (Fig. 1a; Online Resources 3—Fig 
S1a and 6—Table S1a). Minor differences in starch, pro-
tein, soluble sugars and GABA were observed between B 
and R lines (Fig. 1b and Online Resource 3—Fig S1b) but 
none of them was statistically significant (Online Resource 
6—Table S1a).

Among the variables that were highly significant under 
DS (two-way ANOVA test), most of them were uniden-
tified 1H-NMR spectra regions (Online Resource 6—
Table S1a). Among them, myo-inositol, glycine betaine 
and trigonelline were significantly higher under DS, 
whereas chlorogenate and formate were significantly lower 

(two-way ANOVA test; Online Resources 4 and 6—Tables 
S1a). For the other nine compounds identified in 1H-NMR 
spectra (amino acids and sugars), excellent correlations 
were found with spectrophotometric and chromatographic 
targeted methods (data not shown).

Finally, only a small group of m/z were significantly 
different under DS (Online Resource 6—Table  S1a). 
Four of them were putatively annotated as heliannuol, 
3-O-caffeoylquinic acid, tryptophan and phenylalanine. 
The last two were also detected by the UPLC-fluo tar-
geted method.

Fig. 1   Concentrations of 27 metabolites measured by targeted meth-
ods (UPLC-Fluo for amino acids, GC-FID for FAMES, spectropho-
tometry for others) in leaf of B or R sunflower lines cultivated in two 
conditions (WW and DS). Results are expressed in mg  g−1 DW in 
the four types of samples. a WW (white bars) or DS (black bars). b 

Maintainer B lines (white bars) or restorer R lines (black bars). Ver-
tical bars represent standard deviations. Asterisk indicates variables 
that were found significantly different between groups after two-way 
ANOVA test (p value < 0.05)
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3.1.2 � Difference between B and R samples

For the B and R lines, no targeted metabolites were sig-
nificantly different. Two unidentified 1H-NMR variables 
had a p value < 0.05 (Unk_6.8936 and Unk_3.8733, Online 
Resource 6—Table S1a,). However, except for chlorogenic 
acid, most organic acids measured displayed a lower con-
centration in R lines leaf samples (Fig. 1b, Online Resource 
4). Finally, the rest of the variables that were found signifi-
cantly different for line status were unidentified MS-based 
variables (Online Resource 6—Table S1a), except for two 
putatively annotated flavonoids (Online Resources 5 and 
6—Table S1a).

3.2 � Workflow for identifying metabolic markers 
of water treatment and line status

The analytical methods allowed the generation of a matrix of 
1048 metabolic variables (Online Resource 2). This matrix 
included 27 targeted metabolites, starch, total protein content 
and 9 annotated 1H-NMR variables. The remaining variables 
were composed of 1H-NMR unidentified spectral regions 
and 540 MS-based signatures. The matrix was processed 
through a three-step biostatistical pipeline to select the more 
relevant variables to discriminate samples according to water 
treatment and line status: (1) elimination of redundant vari-
ables, (2) variable selection for each sample cluster and (3) 
final PLS-DA model calculation (Fig. 2).

3.2.1 � Elimination of redundant metabolic variables

Since a single metabolite can be encompassed within sev-
eral 1H-NMR buckets or MS-based ions, we first reduced 
this full data set by hierarchical clustering (BioStatFlow, 
Pearson correlation, average linkage as aggregation method). 
Clusters were generated with a correlation threshold of 0.85. 
Within each cluster, MS-based metabolic variables corre-
sponding to adducts or isotopes were eliminated while the 
one with the highest AUC was kept. For 1H-NMR buckets, 
we used a similar process in order to keep buckets bearing 
the highest AUC. After this curation process (Fig. 2), the 
new dataset comprised 588 variables (Online Resource 7).

We then tested the discrimination potential of this curated 
data set on our sample groups using an unsupervised sta-
tistical approach. PCA was first carried out (Fig. 3). The 
first two components displayed in Fig. 3a (water treatment) 
and Fig. 3b (line status) explained 25% of the total vari-
ability. The separation of our sample groups was incom-
plete, although slightly better for DS. We then performed 
a supervised method (PLS-DA) on this 588-variable data-
set for each type of sample group. Each PLS-DA analysis 
was able to discriminate WW from DS samples (Online 
Resource 3—Fig. S2a), and B from R lines (Online Resource 

3—Fig. S2b), in the 2D space based on the first two latent 
variables. Predictive ability (Q2) and proportion of vari-
ance (R2) explained by the model were higher than 0.9 and 
0.8 in both cases (Table 1), respectively. Each model was 
considered as valid as it bore Q2 and R2 values above 0.4 
and 0.5, respectively (Patil et al. 2016). However, in a high-
throughput approach, it is impractical to measure more than 
500 variables to discriminate or predict cluster differentia-
tion. Therefore, our next step was to test a variable selection 
process and to assess the validity of group discrimination 
with PLS-DA after this selection. PLS-DA was chosen to 
easily compare model performance using Q2 values.

3.2.2 � Metabolic variable selection process

To select variables, we compared three different methods 
for each condition (DS or line status), a generalised univari-
ate method (one-way ANOVA) and two multivariate ones 
(sPLS and LASSO penalty; Fu et al. (2017); Fig. 2). The 
588-variable data matrix (Online Resource 7) was submit-
ted to these methods and subsequent PLS-DAs were per-
formed. We compared the Q2 and R2 to assess the quality 
of the variable selection process for each resulting PLS-DA 
model (Table 1). Since our objective was to find the small-
est possible variable set, we analysed datasets of different 
sizes (90, 50 and 20 variables for water treatment; 35 and 20 
variables for line status). We dimensioned the first selected 
data set size according to the numbers of variables with a p 

Full data set 
1048 variables

Elimination of redundant variables (« curation »)
(RMN annotation, clustering and correlation >,85)

Curated data 
set

588 variables

Data filtering – variable selection
ANOVA – sPLS - LASSO

Final predictive models
PLS-DA

« Top »
Water treatment

variables

« Top » 
Line status
variables

Fig. 2   Description of the statistical analysis pipeline used in this arti-
cle
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value < 0.05 following one-way ANOVA (90 for DS and 35 
for line status). We then reduced the data set size down to 
20, a reasonable number of metabolic variables to measure 

when using metabolic markers in a high-throughput manner 
(see discussions on practicality of metabolic markers in Fer-
nandez et al. 2016). For DS, we chose to add an intermediate 

Fig. 3   PCA scores plot (PC1 x PC2 plan) generated with the full set 
of 588 metabolic variables (Online Resource 7) measured in sun-
flower leaf cultivated in a Heliaphen phenotyping platform. a High-
lighting samples with different water treatment. WW, green dots and 

DS, orange dots. b Highlighting line types. B, red dots and R, blue 
dots. Coloured ellipses represent 95% confidence level. The connect-
ing lines attach each individual point to the centre of the confidence 
ellipse

Table 1   Comparison of 
predictive ability (Q2) and 
explained variance explained 
(R2) of the different PLS-DA 
models calculated with different 
selected data sets

Variable selection conditions, cluster and the number of variables used are indicated. Permutation robust-
ness was assessed with 200 CV cycles. The data set providing highest Q2 was highlighted in bold font

Variable selection Condition Data set size Q2 R2 Expl var t1/
year (%)

CV p-value

None Water treatment 588 Variables 0.936 80.2 1.1E−04
Line status 588 Variables 0.916 89 3E−04

ANOVA Water treatment 90 Variables 0.964 83.70 3.04E−03
50 Variables 0.96 88.6 9.00E−05
20 Variables 0.974 83.7 2.71E−03

Line status 35 Variables 0.911 75.60 1.12E−03
20 Variables 0.9 76.10 9.00E−05

LASSO Water treatment 90 Variables 0.982 88.90 1.47E−03
50 Variables 0.982 93.1 2.60E−04
20 Variables 0.985 88.90 1.47E−03

Line status 35 Variables 0.973 92 3.29E−03
20 Variables 0.978 94.30 6.00E−05

sPLS Water treatment 90 Variables 0.985 92.90 8.90E−03
50 Variables 0.992 96.40 6.00E−04
20 Variables 0.988 92.90 4.90E−03

Line status 35 Variables 0.97 82.30 1.36E−03
20 Variables 0.934 79.60 5.00E−04

Custom Water treatment 8 Variables
Metabolites

0.96 85.9 6.00E−05

6 Variables
Physiological

0.686 53.9 3.00E−05
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data set of 50 variables. Q2, R2 and CV-P-values of indi-
vidual models are summarized in Table 1.

The randomized permutations for validation200 cycles) 
of each bore a significant p value, thus demonstrating their 
robustness (Table 1). As expected, the resulting models com-
puted after the selection process displayed a higher Q2 when 
compared to the previous PLS-DA performed with 588 vari-
ables (Table 1; Online Resource 3—Fig. S2). The ANOVA 
selection process produced efficient models but with the 
lowest Q2 in all situations (Table 1). sPLS and LASSO selec-
tion resulted in more discriminant models, the latter for line 
status and the former for water treatment. The most efficient 
PLS-DA models are illustrated in Fig. 4: 50 variables for 
water treatment (sPLS selection) and 20 variables for line 
status (LASSO selection) as well as PCA computed with the 
same data sets (Online Resource 3—Fig. S3).

3.2.3 � Metabolic VIP analyses

In PLS-DA, an important feature is the variable importance 
in the projection (VIP) scores. High VIP-score variables 
strongly contribute to the PLS-DA model. Variables with 
VIP scores higher than 1 are listed in Online Resource 6. 
No matter which variable selection process was applied, 
amino acids were overrepresented in the high VIP-score 
shortlist, underlying their importance in discriminating 
DS and WW samples in our experiment (Online Resource 
6—Table S1b). Two other variables measured by 1H-NMR 
were listed in the VIPs shortlist in nearly all conditions of 
variable selection: inositol and glycine-betaine (Online 
Resource 6—Table S1b). On the other hand, a small num-
ber of LC–MS-based variables had VIP scores higher than 
1 (Online Resource 6—Table S1b). For line status dis-
crimination, all variables with VIP scores higher than 1 

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Component  1

C
om

po
ne

nt
  2

ALA
Asp

Chloro_hydro

chlorogenateGABAGLU

Glucose

GLY

glycinebet

ILE

inositol

LEU

LYS

PHE

PRO

Proteine

Qui_chloro1

Qui_chloro2

SERTHR
Tryptophan

UDP_like3VAL
trigonnelline_

Palmitoleic_acid

Caffeoylquinic_acid

M163T550

M163T653

M233T752
M238T644

M259T930

M263T1611

M269T1313

M275T1188

M276T563

M277T930

M298T483

M326T571

M341T930

M343T934

M355T550

M356T617

M357T550

M359T930
M361T931

M393T1640

M401T982

M406T600

M439T1680

M449T779M465T749

M481T1804
M503T1804

M509T1907M517T680M517T710
M518T710

M520T1301M521T1317

M612T731
M627T664

M668T783
M707T617

M713T740
M723T996

M775T930
M779T982

M806T1659

Unk_1_4802

Unk_2_3638

Unk_2_3755
Unk_2_3996Unk_2_7992

Unk_3_2019

Unk_3_3693

Unk_3_5363

Unk_3_6504

Unk_3_7209
Unk_3_7617

Unk_4_0776

Unk_4_1049
Unk_4_2238

Unk_4_2413

Unk_4_2778Unk_4_3505

Unk_4_4071Unk_4_4642Unk_4_4986
Unk_4_5076Unk_4_5754

Unk_4_6616 Unk_4_8664

Unk_6_4072

Unk_8_2582
Unk_8_4474 Unk_8_4902

Unk_8_5032

Unk_8_5261

Unk_8_8059
Unk_8_8305

-6 -4 -2 0 2 4 6

-5
0

5

X-variate 1: 9% expl. var

X
-v

ar
ia

te
 2

: 7
%

 e
xp

l. 
va

r

- WW
- DS

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Component  1

C
om

po
ne

nt
  2

M181T750

M203T1362

M205T1425

M219T624

M233T1232

M233T13M247T873
M247T994

M248T994

M273T1750M283T1116

M289T723

M299T1458

M303T1508

M319T1240

M345T571

M346T

M361T1468

M377T643
M426T1013

M429T658

M459T866

M479T765

M489T959

M515T808

M521T637

M551T687

M565T842

M567T1141

M579T884

M589T839

M593T980

M651T1563M659T1011

M711T

M815T1135

Unk_4_0245Unk_4_1893

Unk_6_8936

Unk_8_2582

a

b

-4 -2 0 2 4 6

-6
-4

-2
0

2
4

X-variate 1: 6% expl. var

X
-v

ar
ia

te
 2

: 7
%

 e
xp

l. 
va

r

R
B

Fig. 4   PLS-DA of metabolic data sets of sunflower leaf on variables 
selected from the set of 588 metabolic variables (Online Resource 
7) after a selection process based on sPLS or LASSO. a PLS model 
scores (left) and loadings plot (right) of the 50 best sPLS selected 
variables discriminating the two water treatments WW (green dots) 

and DS (orange dots). b PLS model scores (left) and loadings plot 
(right) of the 20 best LASSO selected variables discriminating the 
two-line types, B maintainer lines (red dots) and R restorer lines (blue 
dots). Coloured ellipses represent 95% confidence level
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were unidentified ions or 1H-NMR spectral regions (Online 
Resource 6—Table S1c).

3.3 � Cost‑efficient metabolic markers

Simplicity of measurement and cost-efficiency of metabolic 
markers are arguably as important as their prediction capac-
ity (Fernandez et al. 2016). In other words, measuring a set 
of markers with a (slightly) lower predictive capacity might 
be relevant if the marker set is easier or cheaper to measure. 
A simple solution is often to replace untargeted methods 
with targeted ones. We estimated the cost-reduction potential 
by a factor of 3–20 (Fernandez et al. 2016). Another pos-
sibility is to measure globally a family of compounds when 
they are affected in the same way by a given treatment or 
condition, like in our case for amino acids in DS samples 
(Fig. 1a).

To illustrate this point, we selected metabolic variables 
(from Online Resource 7) known to be simple or cheap to 
measure and relevant for water treatment discrimination. 
Since all free amino acids measured were increased in DS 
samples, we replaced them by a single variable representing 
their sum (hereafter called total free amino acids). Finally, 
we chose total free amino acids, citrate, glycine-betaine, ino-
sitol, sucrose, glucose, protein and starch. This set of eight 
variables was offered a clear determination of DS and WW 
samples in an unsupervised analysis (PCA, Fig. 5a). Addi-
tionally, the generated PLS-DA model was efficient with 
Q2 = 0.96, and R2 = 0.55 (Table 1, Online Resource 3—Fig 
S4a). We could not perform this approach for line status 
since most of their high VIP-score variables were unidenti-
fied metabolic signatures.

3.4 � Comparison with physiological variables for DS 
markers

Physiological markers are used to assess the impact of DS 
on plant. In our experiment, SLA, OSM_POT and CID were 
measured in young and mature leaves at the end of DS. To 
test the quality of our PLS-DA model built with selected 
metabolic variables, we compared its discriminative capacity 
with a PLS-DA model built with this physiological data-
set comprising six variables extracted from a larger dataset 
published in Blanchet et al. (2018). Unsupervised PCA com-
puted with this dataset showed poor separation of DS and 
WW samples (Fig. 5b). Furthermore, the PLS-DA model 
built with these physiological data displayed a Q2 = 0.68 and 
an R2 = 0.54 (Table 1, Fig. 4b), but was less efficient than 
those built with the minimal set of eight metabolic variables 
(Q2 = 0.96, R2 = 0.55; Table 1, Online Resource 3—Fig S4a).

4 � Discussion

4.1 � Sunflower leaf metabolite composition

Sunflower is an important crop that provides most of the 
table oil used worldwide. However, few metabolomic data 
are available to date concerning both its primary and special-
ized metabolism. We now present one of the largest sets of 
primary metabolites in adult sunflower leaf, with absolute 
quantification of 38 metabolites and with several compounds 
not quantified by Moschen et al. (2017) using GC–MS.

Several points can be made about sunflower leaf compo-
sition. Malate, citrate and chlorogenic acid were the major 
organic acids (Fig. 1, Online Resource 4) and linolenic acid, 
linoleic acid and palmitic acid were the major fatty acids 
detected. This is in contrast with the fatty acids in sunflower 
seed where linoleic acid is the most abundant. Serine, ala-
nine and glutamate were the major free amino acids (Fig. 1). 
Glucose and sucrose were the major soluble sugars in leaf 
but their concentrations were at least eight times higher than 
that of fructose. This might be due to some specificity of the 
fructose metabolism in the Asteraceae family. In sunflower, 
fructose is not metabolized into inulin (a fructose-derived 
polymer) but is transported and then accumulated in the stem. 
For example, Martínez-Noël et al. (2015) found that fructose 
was three times more concentrated than any other soluble 
sugar in this organ. This might explain the difference between 
glucose and fructose concentrations in our leaf samples.

Considering the specialized metabolites detected via 
LC–ESI–QTOF–MS, the peaks presenting the highest inten-
sities were putatively annotated (Online Resource 5). They 
include compounds from three families: caffeoylquinates, 
methyl-flavonoids and sesquiterpenoids. These compounds 
had all been previously detected in sunflower biochemical 
analyses. Caffeoylquinic acid is a compound commonly 
found in sunflower. It plays a role in lignification and cor-
relates with leaf age in sunflower (Koeppe et al. 1970). It 
is the dominant phenolic acid in sunflower florets (Liang 
et al. 2013) and is also present in seeds (Karamać et al. 
2012; Pedrosa et al. 2000). When present in sunflower oil, 
caffeoylquinates including oxidized chlorogenic acid can 
generate green-coloured oxidized complexes by reacting 
with sunflower proteins (Wildermuth et al. 2016). This oxi-
dative reaction between chlorogenic acid and proteins partly 
explains why sunflower proteins are still underused in the 
food industry, despite their qualities such as their cheapness 
and absence of allergens (Wildermuth et al. 2016). Several 
putative methylated flavonoids were also detected (Online 
Resource 5). These compounds have been used as chemot-
axonomic markers for the Astereaceae family (Emerenciano 
et al. 2001). Finally, specific sunflower sesquiterpenoids 
were also detected, one of which was putatively identified 
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as niveusin. In sunflower, this compound and its derivatives 
are thought to offer potential as insecticides (Prasifka et al. 
2015).

4.2 � Variable selection process

Variable selection is necessary in metabolomics, especially 
when looking for metabolic markers (Fernandez et al. 2016). 
However, numerous methods can be used for the variable 
selection process and have already been the subject of dis-
cussion (for review, Grissa et al. 2016). We submitted our 
initial dataset to three variable selection processes: ANOVA, 
sPLS and LASSO penalty.

4.3 � Biomarkers of line status

Leaf samples of R and B lines were discriminated with the 
metabolic data set mostly through unidentified markers 
measured by LC–ESI–QTOF–MS (Online Resource 6—
Table S1c). R lines, which in sunflower breeding are used to 
restore the CMS phenotype, have a nuclear-encoded Rfl gene 
that might act as a transcriptional activator (Balk and Leaver 
2001; Chen and Liu 2014). The only known function of the 
Rfl gene is to restore male fertility in CMS plants (Chen and 
Liu 2014) as well as the associated changes restricted to the 
mitochondria of floral tissues linked with this loss of fertil-
ity (i.e. mitochondrial membrane integrity and respiration 

Fig. 5   PCA scores plot generated with a an “easy-to-measure” data 
set (total free amino acids, citrate, glycine-betaine, inositol, glucose, 
total proteins and starch) and b six physiological variables (SLA, 

OSM_POT and CID) measured the day before final sampling. Left, 
scores plot. Right, loadings plot
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ratio). Phenotypes associated with the presence of CMS 
or R genes are thought to be limited to floral tissues. The 
fact that we were able to discriminate R and B lines using 
analyses of leaf metabolites suggests that the phenotype is 
not restricted to flowers and that it might affect other plant 
tissues and organs. Interestingly, several organic acids were 
less concentrated in R line samples, although not individ-
ually significantly. This might be due to an effect on the 
mitochondrial metabolism in all organs, but this hypothesis 
needs to be confirmed. Further annotations of the associated 
markers would contribute to propose hypotheses about direct 
or indirect R gene effects in leaf. Additionally, metabolomic 
markers denote intermediate information between genes and 
final phenotypes and might capture multilocus-controlled 
traits and associate alleles producing the same final phe-
notype. The latter property would be interesting in breed-
ing programs to predict the restoration phenotype of novel 
alleles in pre-breeding programs and therefore to identify 
novel sources of restoration for the PET1. However, further 
biochemical and statistical analyses with more R and B lines 
are required since PLS-DA may be prone to overfitting.

4.4 � Biomarkers of water treatment

The discrimination of WW and DS samples using meta-
bolic variables was more efficient than the discrimination 
of line status. Amino acids were clearly the best DS mark-
ers in our dataset, displaying a 5- to 10-fold increase in DS 
sunflower leaves (Fig. 1a). Increases in amino acids under 
DS in sunflower have already been documented, although to 
a lesser extent and in a cultivar-dependent manner (Mani-
vannan et al. 2007). This feature has also been detected in 
other crops such as barley (Lanzinger et al. 2015) and wheat 
(Bowne et al. 2012). Conversely, Moschen et al. (2017) 
found that the concentrations of several leaf amino acids 
were decreased under DS in sunflower (Correia et al. 2005). 
These contradictory results regarding amino acid responses 
might be due to water–stress intensity, sampling stage or 
differences in nitrogen nutrition. In the present study, the use 
of Heliaphen high-throughput phenotyping platform allowed 
the application of a precise and reproducible drought sce-
nario that is available for more thorough understanding of 
the impact of DS on leaf metabolism. Nevertheless, higher 
concentrations of individual amino acids such as proline 
and glycine have been detected in DS leaves (Moschen et al. 
2017). Amino acids, and especially proline, might partici-
pate in osmotolerance under DS, although the case is highly 
debated for the latter (Szabados and Savouré 2010).

In our dataset, other metabolites appeared as good mark-
ers of DS samples, i.e. glycine-betaine and myo-inositol. 
Glycine-betaine is accumulated in various plants under 
abiotic stress (Giri 2011). Generally, plants accumulate 

amounts of glycine-betaine that are too low to significantly 
impact the sap osmotic potential. Rather, it might serve as 
a ROS detoxication agent (Giri 2011). In the case of myo-
inositol, Taji et al. (2006) suggested it might be involved in 
osmotolerance, or alternatively serve as a secondary messen-
ger involved in phospholipid signalling pathways. Finally, 
caffeoylquinates and sesquiterpenoids (a terpene class with 
three isoprene units) were also detected as putative mark-
ers of DS versus WW samples (Online Resources 5 and 6). 
Caffeoylquinates have been associated with DS responses 
in grapevine (Hochberg et al. 2013). Terpenes have been 
shown to be involved in thermotolerance and antioxidant 
effects (Sharkey et al. 2008). Furthermore, terpenes seem to 
have radical scavenging activity contributing to the mitiga-
tion of oxidative damage during stresses. In sunflower leaf, 
genes involved in terpene metabolism have been shown to be 
upregulated under drought conditions (Moschen et al. 2017).

4.5 � Towards a small efficient biomarker dataset

Fernandez et al. (2016) argued that ideal metabolic markers 
should be easy and cheap to analyse. For this purpose, we 
tested the discriminant capacity of a small metabolic marker 
set composed of eight biochemical variables: total free amino 
acids, citrate, glycine-betaine, myo-inositol, sucrose, glucose, 
total proteins and starch. An unsupervised PCA clearly sepa-
rated WW and DS samples when these eight biochemical 
variables were used (Fig. 4a), but not with the physiological 
dataset consisting in six common indicators of DS measured 
at plant level. Indeed, SLA, OSM_POT and CID (measured 
in both young and mature leaves) are often used to character-
ise the water–stress status of a given crop (Fig. 4b). This was 
confirmed when comparing Q2 values for PLS-DA models 
computed with each of these data sets (0.91 and 0.68 respec-
tively). However, since amino acids were overrepresented in 
our PLS-DA model VIPs, our approach might not be general-
izable to any given criterion. Indeed, reducing the number of 
variables was much less efficient in discriminating line status. 
Furthermore, given the fact that amino acid accumulation 
is not always reported for sunflower experiencing drought, 
more studies with various drought scenarios and more lines 
will be required to confirm our conclusions. Finding the right 
balance between cost reduction and prediction efficiency of 
each metabolic marker set is likely an achievable goal in 
many situations but will certainly require optimisation for 
each performance criterion studied.

5 � Conclusions

Metabolic markers are a recent development in science. 
Applications such as personalized medicine have recently 
attracted keen interest (Lindon and Nicholson 2014). Their 
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use in agronomy as a potential tool for crop breeding is even 
more recent (Fernandez et al. 2016). In the present work, we 
show that a limited number of metabolic markers can dis-
criminate plant sample groups with different characteristics 
or treatment applications, especially in the case of DS. This 
feature was already noted at early stages of plant develop-
ment in maize (Riedelsheimer et al. 2012). The fact that 
leaves of sunflower lines carrying different alleles of the 
CMS restoration gene were separated by this approach shows 
that metabolomics can reveal an unsuspected metabolic phe-
notype in a given organ. The present work also emphasizes 
the importance of variable selection. The pipeline we pro-
pose (Fig. 2) may not be optimised for all situations (sam-
ple numbers, organ types, analytical approaches…), but will 
provide a preliminary guideline for future users. Another 
important point is the specificity of the list of selected mark-
ers towards the selected stress. Indeed, several metabolites 
could be considered as valid metabolic markers of different 
stresses, simply because their concentrations may be signifi-
cantly altered under various stress situations. To alleviate 
this bias, these markers should be tested under various stress 
scenarios (Fernandez et al. 2016). It will indeed be crucial 
to verify whether such a modelling approach remains valid 
when the predictive metabolomic data and the predicted 
phenotypic data are obtained in different experiments. In 
particular, the possibility to use young plantlets, grown in 
controlled conditions and “metabotyped”, to predict a field 
phenotype of interest could be extremely useful especially 
regarding cost reduction, but will require extreme caution. 
Thus, a careful methodology with a clear choice of perfor-
mance criteria (see Fernandez et al. 2016), stress scenario, 
developmental stages and analytical methods will have to be 
developed to test this hypothesis.
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