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Abstract 

The polyphenols resveratrol (RSV) and curcumin (Cur) are phytoalexines and natural antibiotics with numerous 

pharmacological functions and metabolic impacts. Recent evidences show a broad control of gut microbiota by 

polyphenols which could influence glycemic regulation. The aim of this work is to estimate the respective effect 

of resveratrol (RSV) and curcumin (Cur) alone or in association on the control of glycaemia and on gut microbiota. 

A five-week chronic treatment of hyperglycemic mice with RSV and/or Cur, resulted in a differential effect on 

glucose tolerance test, and modified gut microbiome. We precisely identified groups of bacteria representing a 

specific signature of the glycemic effect of RSV. Inferred metagenomic analysis and metabolic pathway 

prediction showed that the sulfur and branched chain amino-acid (BCAA) metabolic activities are tightly 

correlated with the efficacy of RSV for the control of glycaemia. The impact on BCAA metabolism was further 

validated by serum metabolomics analysis. Altogether, we show that polyphenols specifically impact gut 

microbiota and corresponding metabolic functions which could be responsible for their therapeutic role. 
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Introduction 

Dietary polyphenols have been of great interest in recent decades due to their therapeutic activities. Resveratrol 

(3,5,4’-trihydroxy-trans-stilbene; RSV) and Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-

3,5-dione; Cur) are natural polyphenols which have numerous pharmacological properties. RSV is a phytoalexine 

with anti-inflammatory activity that is found in various plants, such as grape skin [1]. This anti-inflammatory 

activity of RSV is supportive of a role in the control of disease where the etiology involves an inflammatory 

process. Indeed, low grade chronic inflammation is characteristic of the etiology of for metabolic diseases such 

as diabetes and obesity [2]. In response to a prolonged period of fat-enriched diet, the metabolic organs, liver, 

adipose, and pancreatic islets are infiltrated by immune cells such as macrophages and lymphocytes [3]. These 

cells secrete cytokines which inhibit insulin secretion and action and, leading to obesity and type 2 diabetes 

(T2D). A leading hypothesis regarding the origin of inflammation in metabolic disease is the gut microbiota [4]. 

Type 2 diabetic patients [5] and high-fat diet-fed mice [6] are characterized by a gut microbiota dysbiosis which 

is causal to the disease as demonstrated in gut microbiota transfer to germ free mice [6]. One of the 

corresponding mechanisms is the gastrointestinal translocation of bacterial components from the gut, across 

the intestinal epithelial barrier, to the tissues. Bacterial fragments such as lipopolysaccharides [7], and even full 

bacteria [8], can trigger the proliferation of macrophages and preadipocytes within the tissues leading to a 

chronic inflammation [4]. This translocation process is due to an impaired intestinal immune defense [6]. 

Therefore, control of metabolic inflammation by targeting the intestinal inflammatory activity could be a 

therapeutic strategy for metabolic diseases. Whether polyphenols are involved in this mechanism remains 

unknown, but the possibility is supported by published data. Indeed, RSV controls gut microbiota in different 

animal models such as dextran sulfate sodium-induced colitis [9] or in response to a fat-enriched diet [10-12], 

and even in humans [13]. As a result of the modulation of gut microbiota dysbiosis, insulin secretion and 

sensitivity were improved and hyperglycemia was corrected [14, 15]. Other polyphenols such as Cur, an extract 

of Curcuma longa, have shown similar health benefits such as anti-infectious, anti-tumor, and anti-inflammation 

effects [16]. The anti-inflammatory effect of Cur has been demonstrated in several cell type, and in different 

physiopathological context, including type 2 diabetes [17]. Altogether there is a need to precisely study changes 
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in gut microbiota in response to different polyphenols in order to decipher the specific changes, notably in terms 

of metabolic activities, which could be at play in the control of glycaemia.  

To this aim a cohort of mice was fed a high-fat diet to induce hyperglycemia, and were treated with polyphenols 

alone or in combination to evaluate their impact on gut microbiota and correlate metagenomics parameters 

with glycaemia. Importantly, we aimed at isolating the impact of hyperglycemia from the impact on body weight 

change, and therefore used a dedicated fat-enriched diet as described [18, 19]. We aimed at studying the impact 

of polyphenols on microbiota and the subsequent effect on glycaemia, rather than the impact of a drastic 

glycemic change on gut microbiota. Therefore, we studied the effect polyphenol treatments on early onset 

glycemic conditions. We show that the polyphenols specifically affect gut microbiota, and notably sulfur and 

branched chain amino-acid metabolic pathways, which correlate with glycaemia. Serum metabolomic analyses 

further supported this result.  
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Materials and methods  

 

1. Polyphenol formulation 

The RSV (Omnipharm, Chambery, France) and Cur (Omnipharm, Chambery, France) were mixed at the dose of 

60mg/Kg/day and 30mg/Kg/day, respectively, with a specific formulation (Yvery, Marseille, France). This 

formulation contains 100mg of RSV and 50mg of Cur with 125 mg of polysorbate 20 (Sigma, France) and 2.25g 

of polyglyceryl-3Dioleate (Sigma, France) as described [20]. This formulation enables the polyphenols to be 

absorbed with a 10 time increased efficacy and to last up to 5 hours into the blood [20]. The RSV, Cur or RSV and 

Cur within their formulation were daily mixed with the High-fat Diet (HFD) diet.  

 

2. Animals and treatments  

Eight week-old male C57Bl/6J wild type mice (Charles River, L’Arbresle, France) were housed in SOPF (Specific 

and Opportunistic Pathogen Free) conditions with a 12-/12-hour light (10 p.m.)/dark (10 a.m.) cycle and had 

free access to water and food. After one week of acclimatization, mice were divided to five groups. One group 

(n=7) was maintained on normal chow diet (NC, energy content: 12% fat, 28% protein, and 60% carbohydrate) 

and another group (n=8) was fed a high-fat diet (HFD, energy content: roughly 72% fat comprising corn oil and 

lard, 28% protein, and <1% carbohydrate, SAFE, Augy, France). Additional groups of HFD-fed mice (n=8 per 

group) were supplemented with RSV, Cur, or both. Mice were maintained on these diets for five weeks. The 

high-fat diet was used specifically to induce hyperglycemia for study at early onset of diabetes, and therefore 

considered pre-diabetic. This procedure prevented from the direct effect of hyperglycemic control which could 

secondarily impact gut microbiota. This time course allows changes in gut microbiota before the development 

of long term chronic disease where gut microbiota dysbiosis could be a secondary effect to metabolic 

impairments. Altogether, gut microbiota dysbiosis occurs within less than 4 weeks, i.e. before the onset of 

obesity, which allows the study of a direct effect of the polyphenols on the regulation of glycemia without the 

confounding impact of obesity, as described in numerous instances [6, 8, 18]. All animal experimental 

procedures were approved by the local animal ethical committee of the Rangueil hospital under the 
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authorization number ’31-278’ and were in accordance with the institutional animal care and use committee 

guidelines. 

Oral glucose tolerance test  

An oral glucose tolerance test (OGTT, 2g/kg of glucose) was performed in 6h-fasted mice after five weeks of 

treatment as described [6].  

Statistical Analyses 

Results are presented as means ± SEM. One-way ANOVA followed by Tukey-Kramer post-test was used to assess 

the statistical significance between groups.A two-sided p-value <0.05 was considered statistically significant. 

Statistical analyses were performed using GraphPad Prism version 6.0g for Mac OS X (GraphPad Software, San 

Diego, CA). 

 

3. Analysis of the microbiota 

DNA extraction and 16S rDNA targeted metagenomic sequencing  

The bacterial population present in the samples has been determined using next generation high throughput 

sequencing of variable regions of the 16S rRNA bacterial gene, with a specific protocol established by Vaiomer. 

The metagenomics workflow was used to classify organisms from a metagenomic sample by amplifying specific 

regions in the 16S ribosomal RNA gene and was exclusive to bacteria. Total DNA bacteria from the ceacum was 

extracted, as previously described [21]. The V3-V4 hyper-variable regions of the 16S rDNA gene were amplified 

from the DNA extracts during a first PCR step using Vaiomer universal 16S primers V2 [21]. The joint pair length 

was set to encompass 476 base pairs amplicon and included specificity for the 16S rDNA gene of 95% of the 

bacteria in the Ribosomal Database Project. For each sample, a sequencing library was generated by addition of 

sequencing adapters and multiplexing indexes during a second PCR step. The pool was denatured, diluted and 

loaded onto the Illumina MiSeq cartridge according to the manufacturer’s instructions using MiSeq Reagent Kit 

v3 (2x300 bp Paired-End Reads). (Illumina, San Diego, CA, USA).  

Bioinformatic analyses of metagenomics data 
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The targeted metagenomic sequences from microbiota were analyzed using the bioinformatics pipeline 

established by Vaiomer [21]. After demultiplexing of the bar coded Illumina paired reads, single read sequences 

were cleaned and paired for each sample independently into longer fragments. After alignment against a 16S 

reference database, sequences were clustered into operational taxonomic units (OTU) with a 97% identity 

threshold. Remaining sequencing errors were filtered out by eliminating the OTU with less than 3 sequences, 

and a taxonomic assignment was performed in order to determine community taxonomic profiles against the 

RDP database using the RDP Classifier tool. To estimate individual sample microbial alpha diversity, rarefaction 

curves were generated based on metrics and the number of OTUs present in the samples was determined 

(Shannon diversity index). t-Distributed Stochastic Neighbor Embedding (t-SNE) was used for dimensionality 

reduction for the visualization of the OTU dietary group datasets. 

Differential analysis of bacterial taxa and inferred metagenomics 

The taxonomic output matrix containing the count data for OTUs per sample was processed with the online 

Galaxy interface for LEfSe (linear discriminant analysis effect size) algorithm using an alpha parameter 

significance threshold for the Kruskal-Wallis (KW) test among classes set to 0.05 and the logarithmic LDA score 

cut-off was set to 2.0 [22]. The functional metagenome was inferred from the clustered 16S sequences using the 

PICRUSt software (version 1.0.0) as per the instructions provided for the Genome Prediction Tutorial for PICRUSt 

(http://picrust.github.io/picrust/tutorials/genome_prediction.html#genome-prediction-tutorial) with 

recommended scripts and default settings. As described in the PICRUSt tutorial, the sequences previously 

grouped into OTU were processed through the QIIME closed reference OTU picking tool with a 97% similarity 

threshold to obtain a set of OTU IDs from the Greengenes reference collection (gg_otus_13_5.tar.gz) as input 

for prediction of corresponding metagenomes by PICRUSt. Through this inference process, the abundance 

values of each OTU were normalized to their respective predicted 16S rRNA copy numbers and then multiplied 

by the respective gene counts for metagenome prediction. The resulting core output was a list of Kyoto 

Encyclopedia of Genes and Genomes (KEGG) orthologues and predicted gene count data for each sample. We 

used in house scripts to parse the output into KEGG module categories for functional pathways and structural 

complex hierarchies using the KEGG database (http://www.genome.jp/kegg/module.html). The output matrix 
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containing the relative abundance of KEGG orthologous groups (KO) per sample was processed with the online 

Galaxy interface for LEfSe using an alpha parameter significance threshold for the Kruskal-Wallis (KW) test 

among classes set to 0.05 and the logarithmic LDA score cut-off was set to 2.0. Respective cladograms were 

generated with modules at the lowest level. Quantitative plots of differential features were generated from 

normalized module level predicted gene data showing means with standard deviation using GraphPad Prism 6 

software (GraphPad Software, La Jolla, CA, USA). 

Statistical Analyses 

For statistical analyses of gut microbiota related data, nonparametric Mann-Whitney tests and nonparametric 

Kruskal-Wallis tests followed by Dunn’s multiple comparison tests and Spearman’s correlations were conducted 

using computer software (PRISM, Version 6.05, GraphPad, Inc., La Jolla, CA) and a software environment (R, 

Version 3.1.2, https://cran.r-project.org/bin/windows/base/old/3.1.2/).   

Denaturing gradient gel electrophoresis (DGGE) 

Total DNA was isolated from caecum was amplified by PCR, targeting the V3 region of the 16S rRNA gene using 

the universal bacterial primers HDA1-GC and HDA2 (Supplementary Table 1) as described 13.  

Bacterial culture 

Seven bacterial strains chosen from 16S rDNA analyses were included in this study: Alistipes shahii, Alistipes 

putredinis, Bacteroides fragilis, Bacteroides irregular, Clostridium butiricum, Clostridium nordii, and Odoribacter 

splanchnicus. All strains were cultured using a 5% sheep blood-enriched Columbia agar (COS) and incubated 48-

hours at 37°C in anaerobic condition generated by GENbag anaer systems (BioMérieux). 

In vitro bacterial sensitivity to polyphenol 

The in vitro susceptibility testing of RSV and Cur against clinical strains of Alistipes shahii, Alistipes putredinis, 

Bacteroides fragilis, Bacteroides irregular, Clostridium butiricum, Clostridium nordii, and Odoribacter 

splanchnicus was performed on Mueller-Hinton-2 agar by diffusion method as previously described [23] by 

depositing following solutions: 100 µM of RSV, 50 µM Cur, or 100 µM RSV + 50 µM of Cur solutions in a 0.5 mm 

diameter well dug into the MH2 agar medium. Beforehand, 1mL of bacterial suspension calibrated at 10 x 107 

cells / mL was spread on agar to obtain a homogeneous bacterial culture. All petri dishes were incubated in an 
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anaerobic condition for 48 h at 37°C. The diameters of the zones of growth inhibition for the tested bacteria 

were measured and photographed using a Scan 1200 (Interscience, St-Nom-la-Bretêche, France) to determine 

the antimicrobial activity of RSV, Cur or RSV+Cur. 

 

4. Analysis of the metabolites in plasma 

Plasma sample processing 

Ten µL of plasma aliquoted from each sample were mixed to set the quality control (QC) samples and prepared 

as previously described [24]. Briefly, after drying under a stream of nitrogen, the protein free methanol extract 

was derivatized with O-methoxylamine hydro-chloride in pyridine. Then, index marker solution was added (0.3 

mg mL-1 docosane, nonadecane, decane, dodecane, and pentadecane in pyridine) prior to centrifugation at 

15,800g for 15 min. The resulting supernatant (90µL) was immediately transferred to GC/MS vials for analysis to 

prevent any sample decay. 

GC/MS 

Analyses were carried out on a Agilent gas-chromatography 6890-mass spectrometer 5973N fitted with a 

split/splitless injector, connected to HP5 column, 30 m length, 0.25 mm ID and 0.25µm film thickness. The 

injector was set at 260°C in splitless mode. The analytes were eluted using a temperature gradient (injection at 

50°C, +10°C/min to 70°C, 2 min hold, +5°C/min to 110°C, +30°C/min to 290°C, and +20°C/min to 325°C). The 

mass spectrometer interface was heated at 300°C and the electron impact ionization was performed at 70eV at 

230°C. Data was acquired at 2.8 scan/min. 

Data post-processing 

MS files were processed by the Shimadzu GCMS postrun analysis® software. During runs the intensity values 

were normalized to tryptophan-d4 or cholesterol-d4 added as internal standard as previously described [25]. 

The web interface Workflow4Metabolomics was then used to extract results [26]. MS features displaying more 

than 30% of relative standard deviation in the QC samples were discarded, resulting in retention of 60 different 

features. Metabolite annotation was performed using the National Institute of Standards and Technology (NIST) 

and Gölm databases for fragment matching patterns and ECLs. 



10 

 

Statistics for metabolomics 

Statistical analyses were performed using SIMCA P+12 (Umetrics, Umea, Sweden). Partial least square-

discriminant analyses (PLS-DA) were used to calculate the statistical distance among the study group 

metabolomes and to select the most relevant variables attached to group discrimination [27]. After PLD-DA, 

variables selection was performed on the variable importance in projection (VIP) score calculated by the SIMCA 

algorithm, plotted in a normal probability plot distribution and selected with 80% confidence interval.  For all 

statistical significant PLS-DA models, the P values obtained after variables selection and cross-validation ANOVA 

were lower than 0.001, with a low residual (regression/residual less than 4), a class variance explained (R2Y) 

over 88%, and class variance predicted (after cross-validation) over 81%, and a variables variance explained 

(R2X) over 71%. Permutation tests (200 hundred permutations) ascribing false class assignment to observations 

gave bad R2Y and Q2Y values, indicating that model predictions were not due to chance. 
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Results 

Resveratrol improves glucose tolerance of high-fat diet-fed pre-diabetic mice 

To explore the therapeutic effect of polyphenols on glycemic parameters and gut microbiota ecology we fed the 

mice with a high-fat diet for 5 weeks with RSV, Cur, or the combination of RSV and Cur. RSV improved the 

glycemic control of the HFD-fed mice following an oral glucose challenge (Fig. 1A and 1B). In contrast, Cur had 

a less significant impact on glycaemia (Fig. 1C and 1D). Interestingly, the combination had no effect on the 

glycaemia of the HFD-fed treated mice (Fig. 1E and 1F). Plasma triglycerides, cholesterol, and insulin were not 

impacted by any of the treatments (data not shown).  

 

Effect of polyphenols on gut microbiota in high-fat diet-fed pre-diabetic mice 

We hypothesized that polyphenols could impact hyperglycemia via a modulation of the gut microbiota dysbiosis. 

Thus gut microbiota samples were sequenced. The sequencing of the 16S rDNA genes followed by taxonomic 

classification (Fig. 2A) and dimensional reduction analyses (Fig. 2B) demonstrated first that the fat-enriched diet 

dramatically changed the ecology of the gut microbiota at the phylum, family, and genus taxonomic levels when 

compared to the NC-fed mice. Compared to the NC-fed mice, the HFD-fed mice were characterized by an 

increased abundance in the phyla Proteobacteria and Deferribacteres (Fig. 2A). At the family level the proportion 

of Rikenellaceae, Bacteroidaceae, Peptostreptococcaceae, and Deferribacteraceae were increased in HFD-fed 

mice (Fig. 2A). In contrast, the proportion of Lactobacillaceae family were notably absent from the HFD mouse 

cecal samples. The HFD also decreased the abundance of the families Lachnospiraceae and 

Porphyromonadaceae. At the genus level, the HFD increased the proportion of Alistipes, Bacteroides, and 

Odoribacter (Fig. 2A). The appearance of Mucispirillum and Clostridium XI were also promoted by HFD 

treatment, while Lactobacillus was diminished greatly compared to the NC-fed mice. A dimensional reduction 

plot depicting the relationships between the microbiota for each cecal content sample, with respect to the five 

dietary groups, shows that the high-fat diet treatment had a strong impact (Fig. 2B). The treatment of the HFD-

fed mice with either RSV or Cur further and similarly modifies the microbiota ecology. Interestingly, the Cur and 

RSV association treatment of HFD-fed mice had a strong impact on gut microbiota ecology. Changes of the gut 
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microbiota ecologies were also observed at the level of the taxonomic diversity as calculated using the Shannon 

index (Fig. 2C). The mice fed a HFD had an increased Shannon diversity at both taxonomic levels. The RSV and 

Cur treatments or combination reversed the increased bacterial diversity.  

To more precisely identify the differential taxons at all taxonomic levels, we performed LEfSe analyses followed 

by a linear discriminant analysis of the taxonomic count data (Fig. 3). The impact of a HFD generated numerous 

differences at all taxonomic levels (Fig. 3A). Among them the proportion of Deferibacteraceae, 

Peptostreptococcaceae, and Desulfovibrionaceae was increased by the HFD while the proportion of 

Lactobacillaceae, Coriobacteriaceae, and Anaeroplasmataceae was reduced. 

Focusing on the comparison of the HFD group to the HFD+RSV group, we showed that when RSV was consumed 

by the mice the ratio between Firmicutes/Bacteroidetes phyla increased while the proportion of Proteobacteria 

reduced (Fig. 2A and 3B). At the family level RSV increased the proportion of Ruminococcaceae while reducing 

that of Rikenellaceae and Peptostreptococcaceae (Fig. 2A and 3B). Cur treatment impacted different taxa and 

mostly reduced Rikenellaceae while increasing Bacteroidaceae. Importantly, combination of RSV and Cur 

inhibited the impact of RSV by further reducing the proportion of Ruminococcaeae and Porphorymonadaceae 

(Fig. 2A and 3C). At the level of genus, RSV reduced the proportion of Alistipes and Clostridium XI whereas 

increasing Anaerotruncus (Fig. 2A). We then precisely identified the taxa increased by the HFD-treatment and 

reversed by the RSV and masked by the Cur (Supplementary Table 2 and Fig 3D). Out of 14 taxonomic elements 

showing differences between groups 10 were characterized by an increased abundance in NC compared to HFD. 

We then compared which of the taxon had its frequency reduced by HFD (difference between NC and HFD), 

reversed by the RSV treatment (Difference between HFD and HFD-RSV and that the impact of RSV was reversed 

by Cur (difference between HFD-RSV and HFD-CUR). Only one taxon (S24-7 family) was identified using a Venn 

analysis (Supplementary Table 2, Fig. 3E). Altogether the S24-7 family could be considered as an important 

target of the RSV treatment which could explain the improved glycemic control induced by the polyphenol. The 

linear regression analysis showed a negative correlation between the glycemic index of glucose intolerance and 

the proportion of the bacteria (Fig. 3I). Conversely, we analyzed the taxons which frequency were increased by 

the HFD treatment but reduced by the RSV, and that the reduction was blunted by the Cur (Supplementary 
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Table 2, Fig. 3F). We identified Bifidobacterium pseudolongum and a member of the Peptostreptococcaceae 

family (Fig. 3G and 3H).   

To identify all taxa impacted in response to a single diet (different treatments) we performed linear regression 

analyses for the HFD groups only (HFD, HFD+RSV, HFD+Cur, and HFD+RSV+Cur) between the relative abundance 

of the bacteria and the glycemic index (AUC). In addition to the Bacteroidales S24-7 family (as above), we also 

identified Prevotellaceae family (Bacteroidales order) and Akkermansia muciniphila as having a negative 

correlation with glycemic index of glucose intolerance (Fig. 3J and 3K). In contrast, we identified the 

Peptococcaceae family (Clostridiales order), Lachnospiraceae Dorea genus (Clostridiales order), and 

Mucispirillum schaedleri as having a positive correlation with glycemic index of glucose intolerance (Fig. 3L, 3M, 

and 3N).  

To investigate the impact of RSV alone within the context of a HFD (i.e. HFD+RSV), on glycemia we performed 

linear regression analyses between the relative abundance of bacterial taxons and the glycemic index within 

only the HFD+RSV treated group. As for the Bacteroidales S24-7 family, a negative correlation was shown for 

the genus Lactobacillus (Lactobacillales order) and Prevotella (Bacteroidales order) (Fig. 3O and 3P). As for the 

impact of HFD, the Peptococcaceae family (Clostridiales order) and Mucispirillum schaedleri demonstrated a 

positive correlation with the glycemic index of the glucose tolerance test (Fig. 3Q and 3R).  We hypothesized 

that the lack of effect of RSV and Cur combination on glycemia might be due to differential effect of the two 

polyphenols on gut microbiota. Based on the 16S rDNA data (Supplementary Table 2) and DGGE analysis results 

(Fig 3S), several bacteria strains were selected according to the gut microbiota analysis and cultured in the 

presence or absence of polyphenols. We selected 4 bacterial strains according to their capacity to grow and with 

respect to the differential results induced by the polyphenol treatments (Alistipes, Bacteroides, Clostridium, 

Odoribacter). The results show that only Alistipes putredinis was sensitive to the antibiotic action of RSV while 

Cur counteracted this effect (Fig. 3T).          

 

To investigate potential microbial mechanisms of glycemic control, we used the PICRUSt computational 

approach to predict the functional composition of the bacterial metagenomes derived from each dietary group. 
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The 16S targeted metagenomics profiling information for the cecal contents of each mouse were used to assign 

KEGG orthologies based on bacterial genomic content, and then combined to predict the composite 

metagenomes. The composite metagenomes were then parsed into KEGG derived modules for pathway and 

structural complex prediction. Pathway modules represent tight functional units in KEGG metabolic pathway 

maps (e.g. glycan metabolism) and structural complexes often form molecular machineries. The pathway and 

structural complex data were then analyzed by LEfSe for predicted gene enrichment using the same dietary 

group comparisons as for the taxonomic evaluations (Fig. 4). 

Predicted microbial genes in cecal contents impacted by the HFD-treated mice were the most numerous and 

diverse, including many assigned to pathways involved in carbohydrate and amino acid utilization (Fig. 4A). The 

group receiving the NC diet showed enrichment in pathways for glycan, glycosaminoglycan, and other 

carbohydrate metabolism. This could be expected given the fact that the amount of complex carbohydrate is 

substantially higher in NC compared to HFD. Similarly, the NC diet appears to enrich for branched chain amino 

acid and purine/pyrimidine metabolism, as well as degradation of aromatic compounds. In contrast, the HFD 

diet shows enrichment for genes involved in nitrogen and sulfur metabolism, and biosynthesis of secondary 

metabolites including amino-acids. Out of the numerous pathways which were different between NC and HFD-

fed mice, only some were reversed by the RSV treatment. These include the sulfur metabolism and the 

biosynthesis of secondary metabolites (Fig. 4B and Supplementary Table 3). Others, that we did not focus on 

since out of the scope, were impacted by Cur alone (Fig. 4C). Two of the pathways impacted by RSV, notably the 

dissimilatory sulfur pathway, were antagonized by Cur (Fig. 4D and Supplementary Table 3). A linear regression 

analysis showed that the proportion of the predicted dissimilatory sulfate reduction pathway was positively 

correlated with glycemia in the HFD-fed mice (Fig. 4G). Venn diagram show that none of the pathways which 

were reduced by HFD and reversed by RSV while prevented by Cur were identified (Fig. 4E). Conversely, we 

identified two pathways which were increased by the HFD and reversed by the RSV while prevented by Cur (Fig. 

4F). The first one was related to energy metabolism (i.e. sulfur metabolism) and the second was related to 

aromatic amino acid metabolism (i.e. tyrosine metabolism; Supplementary Table 3). 
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Similar to the predicted metabolic pathways, the predicted structural complex modules had the most significant 

differences for NC diet mice compared to HFD mice (Fig. 5A). Modules pertaining to energy metabolism, such 

as ATP synthesis and ABC type II transporter systems, are predicted to be depleted by HFD while components 

related to environmental signaling such as bacterial secretion systems were enriched. The impact of RSV on 

predicted gene enrichment compared to HFD alone was more limited (Fig. 5B). The effect of RSV on the 

predicted metagenome was to reduce the genes related to sulfur metabolism and biosynthesis of metabolites. 

In comparison, the predicted impact of Cur on RSV was to reduce the HFD induced changes in glycan, 

glycosaminoglycan, and other carbohydrate metabolism as well as reduce contributions to nitrogen metabolism 

and biosynthesis of secondary metabolites (Fig. 5C). An additional interesting feature of the Cur supplemented 

diet is the predicted reduction of lipopolysaccharide metabolism (Fig. 5C). The HFD with RSV and Cur 

combination altered only three predicted pathway modules compared to HFD with RSV supplementation alone 

(Fig. 5D). We then analyzed the global impact of RSV on predicted structural complex modules (Supplementary 

Table 4). The impact of RSV supplementation with the HFD is less deep rooted in the predicted hierarchies, but 

includes a shift in various PTS (phosphotransferase system) carbohydrate specific transporters and a reduction 

of amino acid transport systems. The effect of Cur on the HFD is again broader ranging, but also includes PTS 

carbohydrate specific transporters a reduction of amino acid transport systems. In addition, the 

supplementation of Cur is predicted to reduce the abundance of pathogenicity related genes of gram negative 

bacteria, namely those of type III and type VI secretion systems. 

Altogether, our data show that the polyphenol treatments improved the gut microbiota dysbiosis induced by 

the HFD by putatively impacting bacterial metabolic pathways.  

 

Polyphenols regulate plasma metabolomics 

To identify whether the polyphenols could have a systemic impact, we performed metabolomics studies on 

plasma. The impact of the polyphenols was examined by projection of latent structure-discriminant analysis 

(PLS-DA) (Fig. 6A). Three significant components could be calculated after 7 fold cross-validation, explaining 

57.7% of total observation variance (R2(X)), 40% of group variance (R2(Y)), and 23.2 % of predicted group 
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variance (Q2(Y)). The classes (dietary groups) were significantly heterogeneous (P=0.003 after cross-validation 

ANOVA). Class assignment ranged from 12.5 to 100% confidence (P=7.7e-012, fisher probability test), as 

reported in the confusion matrix (Supplementary Table 5). Finally, a permutation test assessing overfitting 

indicated that the discriminant model was not spurious (Q2 values being negative at the intercept after 20 

permutations) (Supplementary Table 6). The metabolic distance among the dietary groups were best displayed 

using the “c” vectors of the PLS-DA, correlating the class variables with the observations scores. It indicates the 

“barycentric” coordinates of each class in the loading space, and summarizes a metabolome score for each 

dietary group (Fig. 6B). Strikingly, figure 6B clearly showed that both HFD+RSV and HFD+Cur metabolomes 

clustered together with a low degree of dissimilarity (dissimilarity index values on the ordinate axis), and 

exhibited more proximity to the normal low fat chow diet than did the metabolome of both HFD alone or 

HFD+RSV+Cur. This representation also clearly showed that adding both RSV and Cur to a high-fat diet almost 

completely abrogated the biological effect induced by each component separately. To get into more details, we 

then compared the metabolic impact of the diets pairwise, e.g. HFD vs HFD+RSV, and HFD+RSV vs HFD+RSV+Cur. 

In both cases, the PLS-DA models were robust, using 4 to 5 components describing over 98% and 83% of the 

explained (R2Y) and predicted (Q2Y) variances, respectively, and Q2Y values at the intercept being negative in 

the permutation test. A further improvement was obtained on the P values after CV-ANOVA (all P < 0.0007) after 

selection of the most discriminating variables (variable importance score criteria over 1.3, selected from a 

threshold over 80% confidence interval in a normal probability distribution) (Fig. 6C and 6D).  

Twelve metabolites were found discriminant among the HFD and the HFD+RSV (among them 4 could not be 

annotated), or HFD and HFD+Cur (among them 3 could not be annotated). When comparing the metabolites 

that shifted away from the HFD with either the addition of RSV or Cur, we identified metabolites involved in 

amino acid metabolism, including branched chain amino acid isoleucine strongly increased in RSV treatment 

over HFD, and aromatic amino acid proline (Fig. 6E). Importantly, numerous short chain fatty acids were 

quantified in the blood of polyphenol treated mice, suggesting a strong impact on gut microbiota dietary fiber 

fermentation.   
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We also analysed the metabolites which were impacted by the RSV and Cur combination treatment, parallel to 

the observations for hyperglycemia. As anticipated we identified glucose, glucitol, and originally isoleucine which 

is tightly linked to gut microbiota dysbiosis (Fig. 6E). These data suggest the impact of gut polyphenols on gut 

microbiota dysbiosis at the intersection with metabolism.  
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Discussion 

 

In this study we identified predicted pathways of gut microbiota impacted by a chronic treatment with two 

different polyphenols in mice at their early onset of chronic hyperglycemia. Specific sulfur metabolism, short 

chain fatty acid metabolism, and branched chain amino-acids were mechanisms potentially responsible for the 

impact of resveratrol on glycaemia. Interestingly, the Cur treatment was found to antagonize the action of RSV.  

The role of polyphenols on the control of metabolism has been reported the last few decades. Numerous modes 

of action, including anti-inflammatory and anti-oxidant activities, have been demonstrated to be responsible for 

the metabolic impact [28]. However, a novel mode of action has emerged recently which reconciles the anti-

inflammatory/oxidant mode of action, the impact on metabolism, and the antibiotic activity of polyphenols [29]. 

The role of gut microbiota on metabolic disease is now considered the leading hypothesis [30]. Gut microbiota 

dysbiosis characterizes type 2 diabetes [4, 5] which, upon the induction of metabolic endotoxemia [31] (i.e. a 

raise in the blood concentration of the pro-inflammatory bacterial molecule lipopolysaccharides) triggers the 

TLR4/CD14 pathway, increases inflammation, and induces insulin resistance [9]. Other microbiota related 

mechanisms are currently being studied which abrogate inflammation, such as the production of short chain 

fatty acids acetate, propionate, and butyrate. Fermentative bacteria such as the Bifidobacterium produce 

significant amounts of SCFA from dietary fibers. Butyrate has been shown to reduce intestinal inflammation in 

studies of inflammatory bowel disease [32-34], notably through a mechanism implying the activation of the anti-

inflammatory IL10-producing TReg lymphocytes [35]. Finally, the role of branched chain amino-acids are 

emerging as associated with the control of glycemia and hepatic steatosis [36, 37]. 

Our present data are in agreement with this line of evidence since we show that the glycemic control by RSV is 

associated with a specific change in gut microbiota ecology. We previously have reported that RSV controls 

glucose metabolism and modulates gut microbiota ecology [10]. We here demonstrate that the S24-7, 

Prevotellaceae, Peptostreptococaceae, and Verucomicrobiaceae families are associated with diabetes 

protection, irrespective of the mouse treatment. Conversely, the Bifidobacteriaceae were positively associated 

with hyperglycemia. Since then, numerous data have confirmed our observations [38, 39]. In addition to the 
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bacterial taxons we have now added the knowledge that RSV impacts some microbial pathways controlling 

carbohydrate and amino-acid metabolism, as well as numerous phosphorylation systems, as shown by metabolic 

pathway enrichment prediction. We have focused on the pathways which are associated with the glycemic 

control through linear regression. The most significant pathway correlation was related to the microbial sulfur 

metabolism. This pathway is related to the metabolism of bile acids [40] and has been previously shown in 

humans to be a signature of type 2 diabetes [41]. Sulfur can accept electrons in the respiratory chain instead of 

oxygen and allowing the growth of strict anaerobes such as Bifidobacterium, and therefore prevent from the 

oxidative stress generated by oxygen. Our data here present a change in Bifidobacterium induced by RSV and is 

prevented by Cur, which fits with the anti-diabetic effect of RSV. These first set of analyses reveal that RSV 

impacts the gut microbiota dysbiosis, notably sulfur metabolism, and favors the growth of Bifidobacteria. A clear 

demonstration of the role played by Bifidobacterium has been proposed on glycemia. The chronic treatment 

with a strain of Bifidobacterium improves the glycemic control through a mechanism reducing inflammation, 

metabolic endotoxemia, and insulin resistance [8, 42]. These bacteria are important fermenters of dietary fibers 

that could be responsible for the metabolic control. This hypothesis is supported by our data which show 

through metabolomics studies that SCFA are increased in the blood of polyphenol fed mice. SCFA are important 

molecules to prone an anti-inflammatory effect on gut immune system [35]. Recent data from our laboratory 

have causally demonstrated the role of an impaired intestinal immune defense and the development of type 2 

diabetes [6]. We identified that a reduced TReg lymphocyte frequency in the lamina propria of the small 

intestine was causally induced by the gut microbiota dysbiosis and could contribute to the development of 

hyperglycemia [6]. Through a microbiota related vaccination strategy we could improve intestinal defense and 

immune system, thereby preventing the development of type 2 diabetes [43]. Importantly, in addition to the 

impact by RSV on sulfur and short chain fatty acid metabolism, we also observed changes in amino-acid and 

phosphorylation transport systems (PTS) of different amino-acids and carbohydrates. This suggests that even 

without changing the fat-enriched diet, the RSV treatment strongly impacts the bacterial predisposition to 

modify the energy metabolism and consequently interaction with the host. To validate the metagenomics 

hypotheses, we performed metabolomics on blood samples and observed that isoleucine we increased uniquely 
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in RSV and not in Cur-treated mice, while glucose and glucitol concentrations were reduced in RSV mice only. 

This observation parallels the glucose control suggesting a causal relationship. Isoleucine has been reported, in 

large meta-analyses, as associated with the type 2 diabetes [44], and derivatives such as hydroxyl-isoleucine 

were even characterized with hypoglycemic properties [45]. This conclusion is consistent with our observation 

of the glucose lowering effect of RSV. We observed that the combined RSV and Cur treatment reversed the 

glycemic control of RSV. We here notice as well that the relative distribution of Bifidobacteriaceae, S24-7, and 

Peptostretococacceae were impacted by the HFD, reversed by the RSV, and the RSV effect was also masked by 

Cur.  

Subsequently, the reciprocal effect of RSV and Cur on gut microbiota was examined. Four bacteria strains, the 

abundance of which were modified in the presence of polyphenols, were selected and tested using a culture 

plate inhibition assay with thein the polyphenols. We observed significant inhibition of the growth of Alistipes 

putredini by RSV, which was antagonized by Cur. In a previous study [10], we have also found that the abundance 

of this species was increased by HFD, which was normalized following the treatment with RSV. Therefore, 

Alistipes putredinis may have a leading role in T2D pathogenesis and the inhibition effect of Cur on RSV of glucose 

homeostasis.  

 

Altogether, we here precisely correlated the efficacy of RSV on the glycemic control with changes in gut 

microbiota. We added to the knowledge the observation that several bacterial taxons were tightly impacted by 

the high fat diet, while RSV reversed this impact. Finally, the Cur treatment could reverse the impact of RSV. Our 

data can be used as the basis of novel therapeutic strategies associating polyphenols to probiotics for the control 

of glycaemia. 
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Figure 1. Curcumin reduce resveratrol effect on glucose tolerance. A, C, E) Glycemic profiles by oral test 

glucose tolerance (OGTT) for five weeks of diet: NC (n=7), HFD (n=8), HFD+RSV (n=8), HFD+Cur (n=8), 

HFD+RSV+Cur (n=8). A) NC vs HFD vs HFD+RSV, C) NC vs HFD vs HFD+Cur, E) NC vs HFD vs HFD+RSV+Cur. B, D, 

F) Area under the curve for glucose (AUC). B) NC vs HFD vs HFD+RSV, D) NC vs HFD vs HFD+Cur, F) NC vs HFD 

vs HFD+RSV+Cur. Data are presented as mean ± S.E.M; Bars not sharing the same letter were significantly 

different in ANOVA followed by Tukey-Kramer post hoc test p < 0,05  

 

Figure 2. Relative abundance, diversity, and dimensional reduction plot of cecal content microbiomes.  A) 

Stacked column bar graphs depicting the dietary group average relative abundances and distribution of the most 

highly abundant resolved taxa at the phylum and family level for this study. B) Dimensional reduction plot (t-

distributed stochastic neighbor embedding, t-SNE) depicting the relationships between the microbiomes for 

each cecal content sample with respect to the five dietary groups. C) Plot of microbiome diversity (Shannon 

index) for each cecal content sample with respect to the five dietary groups. Data are presented as % of total 

reads ± SD; Bars not sharing the same letter were significantly different in ANOVA followed by Tukey-Kramer 

post hoc test p < 0,05 

 

 

Figure 3. Differential abundances of bacterial taxa in cecal contents.  Cladograms derived from pairwise group 

LEfSe analysis of 16S sequences from cecal contents after 5 weeks of diet: NC (n=7), HFD (n=8), HFD+RSV (n=8), 

HFD+Cur (n=8), HFD+RSV+Cur. A) NC vs. HFD, B) HFD vs. HFD+RSV, C) HFD vs. HFD+Cur, and D) HFD+RSV vs. 

HFD+RSV+Cur.  The cladograms show the taxonomic levels represented by rings with phyla at the innermost ring 

and genera at the outermost ring, and each circle is a member within that level. Taxa at each level are shaded 

(green, yellow, blue, red, or purple) according to the dietary group in which it is more abundant (P < 0.05; LDA 

score 2.0). Microbiome enrichment common between groups. The taxonomic groups were identified from 

pairwise group LEfSe analysis of 16S targeted metagenomic sequencing data derived from cecal contents after 

5 weeks of diet. E) Venn diagram of taxonomic groups enhanced by NC or HFD+RSV diets in comparison to HFD 
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or HFD+RSV+Cur diets (HFD+Cur modules excluded), and F) taxonomic groups enhanced by HFD or HFD+RSV+Cur 

diets in comparison to NC or HFD+RSV diets. Commonality of microbiome enrichment results of positively and 

negatively association with glycemic index by group as identified by regression analysis. G) Bifidobacterium 

pseudolongum and H) Peptostreptococcaceae (Clostridiales order) which were identified at the common 

intersection of the Venn diagram in panel F.  Regression analysis of HFD groups for I) S24-7 family (Bacteroidales 

order) J) Prevotellaceae (Bacteroidales order), and K) Akkermansia muciniphila which demonstrate a negative 

correlation with glycemia area under curve (AUC). Regression analysis of HFD groups for L) Peptococcaceae 

family (Clostridiales order) M) Lachnospiraceae Dorea genus (Clostridiales order), and N) Mucispirillum 

schaedleri which demonstrate a positive correlation with glycemia area under curve (AUC).  Intragroup 

regression analysis of HFD+RSV for O) Lactobacillus genus (Lactobacillales order) and P) Prevotella (Bacteroidales 

order) which demonstrate a negative correlation with glycemia area under curve (AUC), while Q) 

Peptococcaceae family (Clostridiales order) and R) Mucispirillum schaedleri demonstrate a positive correlation 

with glycemia area under curve (AUC). The data points in the regression plots are differentially highlighted for 

HFD (yellow), HFD+RSV (blue), HFD+Cur (pink), and HFD+RSV+Cur (violet). S) RSV effect on Alistipes putredinis. 

DGGE profiles generated from the caecal content of mice fed normal chow (NC), high fat diet (HFD), HFD+RSV, 

HFD+Cur, and HFD+RSV+Cur for 5 weeks. The arrow denotes a subset of band, which have disappeared with the 

RSV treatment. This band, was cloned and sequenced. T) Antibiotic effect of RSV, Cur and RSV+Cur on Alistipes 

putredinis. 100 μM RSV, 50 μM Cur and 100 μM RSV + 50 μM Cur were used in this susceptibility test. 

 

Figure 4.  Predicted gene enrichment of pathways.  

Cladograms derived from pairwise group LEfSe analysis of PICRUSt data derived from sequencing of cecal 

contents after 5 weeks of diet: NC (n=7), HFD (n=8), HFD+RSV (n=8), HFD+Cur (n=8), HFD+RSV+Cur.  A) NC vs. 

HFD, B) HFD vs. HFD+RSV, C) HFD vs. HFD+Cur, and D) HFD+RSV vs. HFD+RSV+Cur.  The cladograms show the 

pathway hierachy represented by rings with pathway modules at outermost ring. Pathway hierarchies at each 

level are shaded (green, yellow, blue, red, or purple) according to the dietary group in which the PICRUSt analysis 

predicted higher gene abundance (P < 0.05; LDA score 2.0). Pathway enrichment common between groups.  
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Commonality of KEGG pathway module enrichment results positively and negatively associated with glycemic 

index by group. The pathway modules were predicted from pairwise group LEfSe analysis of PICRUSt data 

derived from sequencing of cecal contents after 5 weeks of diet.  E) Venn diagram of KEGG pathway modules 

enhanced by NC or HFD+RSV diets in comparison to HFD or HFD+RSV+Cur diets (HFD+Cur modules excluded), F) 

KEGG pathway modules enhanced by HFD or HFD+RSV+Cur diets in comparison to NC or HFD+RSV diets, and G) 

regression analysis for dissimilatory sulfate reduction module.  

 

Figure 5. Predicted gene enrichment of structural complexes.  

Cladograms derived from pairwise group LEfSe analysis of PICRUSt data derived from sequencing of cecal 

contents after 5 weeks of diet: NC (n=7), HFD (n=8), HFD+RSV (n=8), HFD+Cur (n=8), HFD+RSV+Cur.  A) NC vs. 

HFD, B) HFD vs. HFD+RSV, C) HFD vs. HFD+Cur, and D) HFD+RSV vs. HFD+RSV+Cur.  The cladograms show the 

structural complex hierachy represented by rings with modules at outermost ring. Structural complex 

hierarchies at each level are shaded (green, yellow, blue, red, or purple) according to the dietary group in which 

the PICRUSt analysis predicted higher gene abundance (P < 0.05; LDA score 2.0). Structural complex enrichment 

common between groups.  Commonality of KEGG structural complex module enrichment results positively and 

negatively associated with glycemic index by group. The structural complex modules were predicted from 

pairwise group LEfSe analysis of PICRUSt data derived from sequencing of cecal contents after 5 weeks of diet.  

E) Venn diagram of KEGG structural complex modules enhanced by NC or HFD+RSV diets in comparison to HFD 

or HFD+RSV+Cur diets (HFD+Cur modules excluded), and F) KEGG structural complex modules enhanced by HFD 

or HFD+RSV+Cur diets in comparison to NC or HFD+RSV diets. 

 

Figure 6. Characterization of plasma metabolic changes induced by HFD alone (red) or supplement with RSV 

(green), Cur (yellow) or RSV+Cur (blue) comparing to NC (black). A) Tri-dimensional PLS-DA score plot showing 

group discrimination according to dietary treatment. B) Clustering analysis of summarized metabolome score 

for each dietary with degree of dissimilarity. Characterization of plasma metabolic changes induced by HFD 

supplemented with RSV comparing to HFD alone or HFD+RSV+Cur. C) Di-dimensional PLS-DA score plot 
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showing the discrimination between HFD supplemented RSV (green) and HFD (red). D) Di-dimensional PLS-DA 

score plot showing the discrimination between HFD supplemented RSV (green) and HFD+RSV+Cur (blue). E) 

Venn plot showing the shift metabolites of polyphenol supplemented comparing with HFD. 5 of 7 metabolites 

from mice group treated with RSV were identified (Right side); 3 of 7 metabolites from mice group treated with 

Cur were identified (Left side); and 4 of 5 common metabolites from mice group treated with Cur and from mice 

group treated with RSV were identified (in the middle).   
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