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Abstract: A growing literature is dedicated to the understanding of carotenoid beneficial health
effects. However, the absorption process of this broad family of molecules is still poorly understood.
These highly lipophilic plant metabolites are usually weakly absorbed. It was long believed that
β-carotene absorption (the principal provitamin A carotenoid in the human diet), and thus all other
carotenoid absorption, was driven by passive diffusion through the brush border of the enterocytes.
The identification of transporters able to facilitate carotenoid uptake by the enterocytes has challenged
established statements. After a brief overview of carotenoid metabolism in the human upper
gastrointestinal tract, a focus will be put on the identified proteins participating in the transport and
the metabolism of carotenoids in intestinal cells and the regulation of these processes. Further progress
in the understanding of the molecular mechanisms regulating carotenoid intestinal absorption is still
required to optimize their bioavailability and, thus, their health effects.
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1. Introduction

Carotenoids are hydrophobic molecules synthesized by plants and by some microorganisms
(bacteria, algae, or fungi). Carotenoid physicochemical properties determine their distribution in the
cellular environment: carotenoids are associated with membrane lipid bilayers and cytosolic lipid
droplets. More than 600 different carotenoids have been found in nature, but only 40 in the human diet
and about 20 have been clearly identified in human blood and tissues [1,2].

Carotenoids are polymers of isopentenyl diphosphate with 40 carbon atoms. They derive
chemically from a basic structure formed by the linear sequence of 8 isoprenic units, associated in two
groups of four units head to tail. The first molecule of this biosynthesis pathway is phytoene, which
presents 3 conjugated double bonds in the center of the molecule and 6 other unconjugated double
bonds through the length of the molecule. Phytoene is then enzymatically desaturated to produce
phytofluene and eventually lycopene, a linear basic structure (C40H56) with many conjugated double
bonds showing a characteristic red color [3]. Other carotenes derive from lycopene by cyclization and
dehydrogenation, and xanthophylls derive from carotenes by oxidation [4] (Table 1). Some xanthophyll
carotenoids such as β-cryptoxanthin [5] or lutein [6] can be found in esterified forms. Additionally,
each carotenoid double bond can take a trans or cis configuration. Most of natural carotenoids are
all-trans molecules, but cis-isomers can be produced during heat treatments [7]. Finally, it is worth
mentioning that small amounts of apocarotenoids, i.e., cleavage products of parent 40-C carotenoids,
can be naturally found in foods and/or produced during food processing, but usually represent less
than 5% of the parent carotenoid levels [8,9].

The main dietary sources of carotenoids are colored fruits and vegetables (Table 1).
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Table 1. Main dietary carotenoids.

Carotenoids Molecular Structure Examples of Food Sources
(mg/100 g) [10,11]

Phytoene
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Phytoene 

 

Tomato juice: 2.24 
Carrot juice: 0.94 

Phytofluene 

 

Tomato juice: 0.86 
Carrot juice: 0.59 

Lycopene 
 

Tomato sauce: 15.92 
Tomatoes: 3.03 

Watermelon: 4.87 

β-carotene 
 

Raw carrot: 8.84 
Canned carrot: 5.78 

Cooked spinach: 5.24 

α-carotene Carrot juice: 1.70 

β-
cryptoxanthin 

 

Sanguinello juice: 
0.02 

Lutein 
 

Cooked spinach: 7.04 
Lettuce: 2.64 

Carotenoid health properties were initially mainly accredited to their antioxidant properties as 
carotenoid are, at least in vitro, powerful radical quenchers [12]. Later, new investigations have 
highlighted the carotenoid ability to regulate intracellular signalling cascades, thus influencing both 
gene expression and protein translation in a broad number of metabolic pathways related to 
inflammatory and oxidative stress modulation [13]. However, the physiological relevance of these 
observations still needs to be fully established in humans. Interestingly, randomized placebo-
controlled clinical trials have evidenced that supplementation with the xanthophylls lutein and 
zeaxanthin, which specifically accumulate into the human macula, was associated with improved 
visual function and decreased risk of progression to late age macular degeneration. These 
xanthophylls also display encouraging preventive and therapeutic effects on cataracts and 
retinopathies [14]. Finally, some carotenoids, such as α-carotene, β-carotene and β-cryptoxanthin, are 
vitamin A precursors. Indeed, they can be cleaved, mainly at the intestinal level, and metabolized 
into retinol (cf. Section 3.2). 

After a short description of carotenoid fate in the human upper gastrointestinal lumen, a focus 
will be put on the identified proteins participating in carotenoid transport and metabolism in 
intestinal cells and on the regulation of these processes. 
  

HO

OH

Tomato juice: 2.24
Carrot juice: 0.94

Phytofluene
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Carotenoid health properties were initially mainly accredited to their antioxidant properties
as carotenoid are, at least in vitro, powerful radical quenchers [12]. Later, new investigations have
highlighted the carotenoid ability to regulate intracellular signalling cascades, thus influencing
both gene expression and protein translation in a broad number of metabolic pathways related to
inflammatory and oxidative stress modulation [13]. However, the physiological relevance of these
observations still needs to be fully established in humans. Interestingly, randomized placebo-controlled
clinical trials have evidenced that supplementation with the xanthophylls lutein and zeaxanthin, which
specifically accumulate into the human macula, was associated with improved visual function and
decreased risk of progression to late age macular degeneration. These xanthophylls also display
encouraging preventive and therapeutic effects on cataracts and retinopathies [14]. Finally, some
carotenoids, such as α-carotene, β-carotene and β-cryptoxanthin, are vitamin A precursors. Indeed,
they can be cleaved, mainly at the intestinal level, and metabolized into retinol (cf. Section 3.2).

After a short description of carotenoid fate in the human upper gastrointestinal lumen, a focus
will be put on the identified proteins participating in carotenoid transport and metabolism in intestinal
cells and on the regulation of these processes.
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2. Digestion Process of Carotenoids

Fat-soluble micronutrients, including carotenoids, follow the fate of lipids in the human upper
digestive tract. The first step of their digestion is thus their dissolution in the fat phase of the meal [15,16].
This phase is emulsified into lipid droplets in the stomach and duodenum.

The hypothesis that a carotenoid cis-isomerization could take place during gastric digestion was
emitted [17], but finally refuted by a study in humans [16]. Recently, in vitro digestion experiments
mimicking duodenal conditions showed that no significant isomerization of lycopene, β-carotene, or
lutein occurred either [18].

It has been suggested that xanthophyll ester hydrolysis by lipases is indispensable prior to
absorption. The cholesterol ester hydrolase (CEH) from pancreatic juice is likely responsible for the
release of free xanthophyll from xanthophyll esters [5]. The remaining xanthophyll esters, if any, may
either be cleaved at the brush border level or enter the enterocyte to be hydrolyzed in the cytosol [19].

During duodenal digestion, carotenoids are incorporated with other lipids (i.e., cholesterol,
phospholipids) and lipid digestion products (i.e., free fatty acids, monoacylglycerols, lysophospholipids)
into mixed micelles [20]. A fraction of carotenoids may also associate with proteins. For instance, the
milk lipocalin β-lactoglobulin is able to bind β-carotene and does not alter its absorption compared to
mixed micelles [21]. However, the mechanisms of carotenoid absorption may depend on carotenoid
binding vehicles. Mixed micelles are likely isolated from the rest of the bolus in the unstirred water
layer of the glycocalyx area and approach the brush border membrane [22] where carotenoids can be
absorbed by passive diffusion and/or via a transporter-dependent process (see Section 3).

Carotenoid bioaccessibility (i.e., the fraction of carotenoids released form their food matrix
and included in mixed micelles—which represents the fraction of carotenoids potentially able to be
absorbed by the intestine) is highly variable. An in vitro digestion study highlighted that lycopene
bioaccessibility was very limited (from 0.1% in raw tomatoes to 1.5% in tomato puree), β-carotene
bioaccessibility was fairly low (from about 4% in carrot puree to 14% in carrot juice), while lutein
bioaccessibility was the highest (from 37% in raw spinach leaves to 48% in boiled spinach). These values
correlate with in vivo data and highlight the fact that the disruption of the food matrix by thermal
treatment or processing can increase carotenoid bioaccessibility [10]. Xanthophylls were consistently
shown to display a higher bioaccessibility than carotenes in different studies [10,11], probably because
the presence of one or two hydroxylated group(s) increases their solubility into the micellar structures.
Interestingly, phytoene and phytofluene also displayed a very high bioaccessibility. This may be linked
to their more flexible molecular structure, compared to other carotenoids, which likely increase their
incorporation into mixed micelles as well [11].

3. Carotenoid Absorption through the Enterocyte

Absorption efficiency of labelled β-carotene is widely variable among clinical studies, fluctuating
from ≈3% to 80%, but usually ranging from 10% to 30% [23,24]. This can partly be due to the variable
bioaccessibility of β-carotene (see above), but it may also reflect its moderate uptake and transport
through the enterocyte. It should be mentioned that β-carotene absorption efficiency was usually
measured following a single meal. However, the intestine can store β-carotene from a first meal to
release it during subsequent postprandial phases in humans [25]. β-carotene absorption efficiency
may, thus, be underestimated in some trials.

Studies using differentiated Caco-2 cell monolayers showed that phytofluene, β-carotene, and
lutein uptakes were similar and significantly higher than that of phytoene, while lycopene uptake was
the lowest [26,27]. In the same way as bioaccessibility, uptake efficiency thus seems to correlate with
carotenoid polarity and flexibility. This may be explained by the fact that polar and flexible carotenoids
present a better affinity for lipid transporters and/or for plasma membranes, which would lead to an
increased absorption.
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3.1. Apical Transport Across the Brush Border Membrane of the Enterocyte

Carotenoid uptake by the enterocytes has been considered to occur by passive diffusion for four
decades, which was inconsistent with the high inter-individual variability in absorption observed in
humans, as well as with the isomer selectivity and the competition for absorption between carotenoids
and other fat-soluble micronutrients observed at the intestinal level (see [20] for review). Different teams
started to re-explore carotenoid absorption mechanisms in the 2000s and several lipid transporters
playing a role in carotenoid uptake by the intestinal cell have since been identified.

A first critical result was the identification of the gene ninaD encoding a class B scavenger
receptor, essential for xanthophyll cellular distribution in Drosophila [28]. In 2005, we then identified
the Scavenger Receptor class B type I: SR-BI as a key transporter of lutein in human intestinal
Caco2 TC7 cells. This ubiquitous transmembrane glycoprotein found at the apical membrane of
the enterocytes is expressed following a decreasing gradient from the duodenum to the colon [29].
Intestinal SR-BI was shown to facilitate the uptake of free cholesterol, but also of other lipids such
as cholesterol esters, phospholipids, and triacylglycerol hydrolysis products, thus presenting a low
substrate specificity [30,31]. The effective role of SR-BI in terms of cholesterol transport is still subject
to debate [32] and SR-BI was recently presented as a cholesterol sensor [33], regulating chylomicron
secretion [34]. Its involvement in the intestinal uptake of carotenoids has been extended to lycopene [35],
provitamin A carotenoids [36], as well as to phytoene and phytofluene [27]. As SR-BI is also involved
in the uptake of vitamin D [37], E [38], and K [39], in cultured cells and in mice, we suggest that another
primary role of SR-BI in the gut is the transport of minor molecules, such as fat-soluble vitamins and
carotenoids. However, we specifically showed, using both Caco2 cells and transfected HEK cells, that
SR-BI was not involved in the uptake of micellar preformed vitamin A (retinol) [36].

Another pervasive scavenger receptor of interest is CD36 (CD 36 molecule). This membrane
protein is highly expressed at the brush border level of the duodenum and the jejunum [40]. It is
supposed to play a key role in the intestinal uptake of long-chain fatty acids [41], but also displays a
broad substrate specificity [42,43]. Recently, CD36 has been described as a lipid sensor and its impact
on chylomicron secretion has been established in many studies [44]. Besides, CD36 facilitates, directly
or indirectly, fat-soluble vitamin uptake in the intestine [37,39,45]. CD36 was also shown to facilitate
the uptake of lycopene, β-carotene, α-carotene, β-crypthoxanthine, and lutein, but not that of phytoene
and phytofluene, in transfected Griptite cells and/or cultured adipocytes [27,36,46]. This result was
confirmed ex vivo for β-carotene using brush-border membrane vesicles from CD36-deficient and
wild-type mouse intestines [47].

A last candidate for carotenoid uptake is the NPC1-like transporter 1 (NPC1L1), which is a
major sterol transporter in the intestine [37,48]. NPC1L1 was suggested to be involved in α-carotene,
β-carotene, β-cryptoxanthin, and lutein intestinal uptake [49,50], but not in that of lycopene, phytoene,
and phytofluene [27,35].

It is still possible that a fraction of carotenoid is absorption via a passive diffusion process,
depending on the carotenoid concentration in the lumen. We previously showed in Caco-2 cells
that vitamin D absorption is carrier-mediated at physiological concentrations and occurs by passive
diffusion at pharmacological concentrations [37]. We suggest that a similar phenomenon occurs
for carotenoids.

Recently, we showed that a fraction of phytoene and phytofluene taken up by the intestinal cells
could be effluxed back to the lumen [27]. This phenomenon was previously acknowledged for fat-soluble
vitamins such as vitamin D, E, and K and was shown to be, at least partly, SR-B-dependent [37–39].
This efflux may contribute to the limited absorption efficiency of carotenoids. Further research is needed
to clearly identify the membrane transporters participating in this pathway. Besides SR-BI, ABCB1
(ATP binding cassette B1, also known as P-glycoprotein) and ABCG transporters, such as ABCG5, appear
as good candidates. Indeed, a recent study combining in silico, cell culture, animal, and genetic approaches
showed that ABCB1 was involved in vitamin D intestinal efflux [51]. Additionally, polymorphisms in the
ABCG5 gene tended to contribute to individual response to lutein supplementation in humans [52].
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3.2. Cytosolic Transport and Intracellular Metabolism

No carotenoid carrier protein has clearly been identified in the human gut so far. However, the
lutein-binding protein HR-LBP (Human Retinal Lutein-Binding Protein) present in the human retina
cross-reacts with antibodies raised against a carotenoid-binding protein present in the Bombyx mori
midgut [53], suggesting that it could be an intestinal intracellular transporter of xanthophylls [54].
As carotenoid membrane transporters SR-BI, CD36, and NPC1L1 can traffic in the enterocyte, especially
after a fat load, we previously suggested that they may act as cytosolic carotenoid transporters [20].
However, this hypothesis still remains to be verified. Similarly, the association found between
a genetic variant in the Intestinal Fatty-Acid Binding Protein (IFABP) and the fasting plasma
lycopene concentrations in humans [55] still need to be challenged to assess whether IFABP is
actually a carotenoid-carrier.

Up to 40% of absorbed carotenoids remain unmetabolized [56]. β-carotene can be cleaved
into retinal by a cytosolic enzyme, BCO1 (β-carotene oxygenase 1), via a one-step process in the
enterocyte [57]. β-Carotene “low-converter” phenotypes, which have been reported in several clinical
studies [58], are likely due to genetic variation in BCO1 gene. Other provitamin A carotenoids, such as
β-crypthoxanthin, can be cleaved into retinal though a multi-step process involving both mitochondrial
BCO2 (β-carotene oxygenase 2) and cytosolic BCO1 [59]. The produced retinal is subsequently
converted into retinol and esterified into retinyl esters by the lecithin:retinol acyltransferase (LRAT)
and probably by the diacylglycerol acyltransferase 1 (DGAT1) that displays an acyl-CoA:retinol
acyltransferase activity [60,61]. Both provitamin A and nonprovitamin A carotenoids can also be
cleaved asymmetrically in apocarotenoids by BCO2 [62]. However, a recent study showed that only
traces of asymmetric [13C]-β-apo-carotenals were found in plasma after [13C]-β-carotene ingestion,
suggesting a lack of significant postprandial intestinal BCO2 activity in healthy humans [63].

No cis-trans isomerization of β-carotene was measured in intestinal cultured cells [26].
As cis-isomerization does not occur in the gastrointestinal lumen (see above), the site of the 9-cis
isomerization of β-carotene reported in vivo [64] remain undetermined. Conversely, lycopene
isomerization in cis-isomers was identified to occur at the enterocyte level [65].

A summary of carotenoid transport pathways across the enterocyte is depicted in Figure 1.
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PTF = phytofluene; Lyc = lycopene; βC = β-carotene; αC = α-carotene; βCr = β-cryptoxanthine;
Lut = lutein; Car = carotenoids; Apocar = apocarotenoids; A = passive diffusion; B = unidentified apical
transporter; C = unidentified basolateral efflux transporter; ? = putative pathway, and ER = endoplasmic
reticulum. Carotenoids are captured from mixed micelles and possibly from carrier proteins by apical
membrane transporters SR-BI, CD36, and NPC1L1. A fraction of PT and PTF can then be effluxed back
to the intestinal lumen via apical membrane transporters (likely SR-BI and possibly other transporters).
Another fraction is transported to the site where they are incorporated into chylomicrons. Some
proteins may be involved in intracellular transport of carotenoids, but none has been clearly identified.
Provitamin A carotenoids are partly metabolized into retinyl-esters. Retinyl-esters and carotenoids are
secreted in the lymph into chylomicrons, while a part of xanthophylls and a part of the more polar
metabolites, such as some apocarotenoids, may be secreted via an HDL pathway.

3.3. Secretion Through the Basolateral Membrane of the Enterocyte

During the postprandial period, the major fraction of free carotenoids and retinyl esters originating
from provitamin A carotenoid cleavage are packaged into chylomicrons (apoB-dependent pathway)
that are secreted into the lymph to further join the bloodstream [20]. A non-apoB-dependent pathway
(via high-density lipoproteins, HDL), mediated by the ABCA1 transporter, has been involved in
vitamin E absorption [66] and possibly allows a part of free retinol absorption [20]. This HDL pathway
may also exist for xanthophylls, such as lutein and zeaxanthin [67], but has not been proven to occur
for other carotenoids. However, recent studies showed that several genetic variants in ABCA1 gene
were associated with lycopene [68], β-carotene [69], and lutein [70] postprandial responses in healthy
subjects. Thus, further research is needed to fully understand the contribution of the intestinal HDL
pathway to carotenoid absorption in humans.

4. Regulation of Carotenoid Transporter Expressions in the Enterocyte

Crucial factors modulating the expression and/or the activity of intestinal proteins involved in
carotenoid absorption are provitamin A carotenoids, through a feedback regulation. Indeed, studies
have pointed out that SR-BI activity is partly controlled by retinoids. Using both mouse models and
human cell lines, it was specifically shown that retinoic acid produced from dietary precursors by
BCO1 induced the expression of the intestinal transcription factor ISX that repressed the expression of
both BCO1 [71] and SR-B1 [72], thus impacting both carotenoid conversion and uptake [73].

Additionally, many dietary factors other than retinoids were shown to regulate transporter
expression in the intestine and may, thus, indirectly impact on carotenoid absorption.

Among these dietary factors, fat and fatty acids seem to play major roles. For instance, SR-BI
expression in Caco-2 cells is increased by micellar oleic and ecosapentaenoic acids [74]. Conversely,
CD36, NPC1L1, or ABCA1 expressions in rodent intestines are downregulated by dietary fat, including
oleic acid [75,76] and cholesterol [77]. Such downregulation in NPC1L1 and ABCA1 expressions was
also found after exposure of cultured intestinal FHs 74 or Caco-2 cells to phytosterols [78,79] and to
long-chain polyunsaturated fatty acids [74,80].

In addition, dietary glucose increases SR-BI expression in both Caco-2 cells and mouse
intestines [81] and decreases Caco2 cell ABCA1 expression [82].

Finally, some polyphenols were shown to decrease both SR-BI, NPCL1, and ABCA1 expressions
in Caco-2 cells [83,84] and so did the cholesterol-lowering drug ezetimibe [49].

Host factors can also regulate carotenoid transporters. Among them, insulin resistance increases
SR-BI intestinal expression in hamsters [85]. SR-BI post-transcriptional regulation also seems be
dependent on bile secretion, with bile salts leading to a rise of intestinal SR-BI expression in rodents [86].
Finally, NPC1L1 expression was increased by estrogen [87] and cholecystokinin [88] in mouse intestines,
while its expression was decreased by peptide YY in Caco-2 cells [89] (see [90] for review).

As the above results were exclusively obtained in cultured cells and animal studies, further
investigations are deeply needed to address their relevance in humans.
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5. Conclusions

To conclude, the understanding of carotenoid intestinal absorption by the intestine is far from
being fully understood. Proteins including lipid membrane transporters (i.e., SR-BI, CD36, NPC1L1),
the cleavage enzyme BCO1, and the transcription factor ISX have been showed to play important roles
in carotenoid intestinal uptake and metabolism, but other proteins likely remain to be identified.

Genome-wide association studies (GWAS) and candidate gene association studies have identified
correlations between single nucleotide polymorphisms in SCARB1 (encoding SR-BI), CD36, NPC1L1,
BCO1, and ISX and carotenoid blood concentrations. Interestingly, these studies also highlighted the
impact of polymorphisms in genes encoding proteins likely indirectly linked to carotenoid metabolism
(i.e., ELOVL fatty acid elongase 2). The involvement of such proteins in carotenoid intestinal metabolism
still needs to be defined [91].

Carotenoid “low responder” or “high responder” phenotypes presumably correspond to
individuals bearing associations of several “disadvantageous” or “advantageous” polymorphisms,
respectively. In the future, it would thus be of major interest to take into account the carotenoid “low
responder” or “high responder” phenotypes that are due to different transport and/or conversion
efficiency, to propose tailored dietary recommendations to individuals and to thus optimize carotenoid
health benefits.
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Abbreviations

ABCA1 ATP binding cassette A1
ABCB1 ATB binding cassette B1
ABCG5 ATP binding cassette G5
BCO1 β-carotene-oxygenase 1
BCO2 β-carotene-oxygenase 2
CD36 CD36 molecule
CEH cholesterol ester hydrolase
DGAT1 diacylglycerol acyltransferase 1
HR-LBP human retinal lutein-binding protein
ISX intestine-specific homebox
FABP fatty-acid-binding protein
HDL high-density lipoproteins
LRAT lecithin retinol acyltransferase
NPC1L1 NPC1-like transporter 1
SR-BI scavenger receptor class B type 1
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