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Abstract: Super-resolution (SR) is able to improve the spatial resolution of remote sensing images, 
which is critical for many practical applications such as fine urban monitoring. In this paper, a new 
single-image SR method, deep gradient-aware network with image-specific enhancement 
(DGANet-ISE) was proposed to improve the spatial resolution of remote sensing images. First, 
DGANet was proposed to model the complex relationship between low- and high-resolution 
images. A new gradient-aware loss was designed in the training phase to preserve more gradient 
details in super-resolved remote sensing images. Then, the ISE approach was proposed in the testing 
phase to further improve the SR performance. By using the specific features of each test image, ISE 
can further boost the generalization capability and adaptability of our method on inexperienced 
datasets. Finally, three datasets were used to verify the effectiveness of our method. The results 
indicate that DGANet-ISE outperforms the other 14 methods in the remote sensing image SR, and 
the cross-database test results demonstrate that our method exhibits satisfactory generalization 
performance in adapting to new data. 

Keywords: super-resolution; CNN; remote sensing; deep gradient-aware network; image-specific 
enhancement 

 

1. Introduction 

Remote sensing (RS) has become an indispensable technology for various applications, 
including agricultural survey, global surface monitoring, and climate change detection. However, 
owing to the limitations of RS devices, atmospheric disturbances, and other uncertain factors, it is 
hard to obtain images at the desired resolution [1]. Low-resolution RS images are gradually becoming 
an obstacle to many advanced tasks, such as finer-scale land cover classification [2], object recognition 
[3], and precise road extraction [4]. 

Super-resolution (SR) methods are devoted to improving image resolution beyond the 
acquisition equipment limits [5]. SR has the advantages of low cost, easy implementation, and high 
efficiency compared to updating image acquisition devices. Remote sensing super-resolution (RS-SR) 
approaches can be roughly divided into two categories: single-image SR (SISR) and multi-image SR 
(MISR). The former requires only one image of the target scene for generating high-resolution output 
[5], while the latter requires multiple images that differ in terms of their satellite, angles, and sensors. 
For example, the authors of [6] improved the spatial resolution of Landsat images by fusion with 
SPOT5 images; the authors of [7] fused the information of multi-angle images for super-resolution; 
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the authors of [8,9] merged multispectral images with panchromatic images to generate images with 
high spatial and spectral resolutions. MISR usually requires the input of multiple low-resolution (LR) 
images of the same region, which are difficult to collect in practical applications. Additionally, the 
feature extraction and fusion process with various resolutions and sensors are time-consuming, 
which restricts the applications of these techniques in real scenarios. Therefore, SISR is typically used. 

According to the evolutionary trend and the complexity of the methods, we roughly divided the 
SISR approaches into interpolation-based approaches and machine learning-based approaches. 
Additionally, as deep learning methods (which are part of machine learning methods) have boomed 
in recent years and have achieved great success in SISR, we separated deep learning-based methods 
from machine learning methods into a third category. 

The main idea of interpolation-based SISR is to locate each pixel of an HR image to be restored 
in the corresponding LR images and to interpolate the pixel’s value accordingly [10]. Bicubic, bilinear, 
and nearest-neighbor interpolation approaches are commonly used, and some novel interpolation 
methods are available [11–13]. Interpolation-based approaches offer a simple and fast way to improve 
image resolution [14]. However, they restore the missing values from a local perspective; thus, the 
generated images usually lack detailed information. 

Machine-learning-based approaches attempt to overcome the shortcomings of interpolation-
based approaches by a data-driven mechanism. The neighbor embedding method [15], sparsity-
based methods [16–19], local regression [20], self-similarity algorithm [21], anchored neighborhood 
regression [22,23], and naive Bayes [24] are effective machine learning SISR approaches. Accurate 
representation of image features is key to the success of machine learning methods [25]. However, 
the expression ability of handcrafted features in machine learning is limited; therefore, it is difficult 
to handle complex data with high quality and high resolution. 

In recent years, deep learning-based methods have demonstrated their powerful nonlinear 
expression and deep feature extraction capabilities. [26] first introduced the convolutional neural 
network (CNN) to solve SISR tasks, which showed excellent performance. Subsequently, many CNN-
based methods emerged, such as in [27–29]. Residual learning [25,28,30–35] has been proposed to 
relieve the difficulty of training deeper networks and to improve SR performance. Some models use 
prior information, such as edges [36] and segmentation probability maps [37], to improve the details 
and fidelity of the super-resolved images. Deep Laplacian pyramid networks (LapSRN) [38], 
EnhanceNet [39], and the enhanced deep residual network (EDSR) [40] have all achieved great 
success in SISR.  

However, some challenges are encountered. First, preserving the geographic information such 
as terrain, structure, and edge details precisely is of great significance for RS-SR, as this information 
can strongly affect the accuracy of subsequent analysis. The image gradient, which can sensitively 
reflect the changes in small details of an image [41], is highly important for RS images, and many RS 
applications have utilized this image gradient information. For instance, [42] used the gradient map 
to represent the topographic surface, and [43] used the gradient map to extract object boundaries for 
satellite image classification.  

Moreover, the available supervised learning methods perform much better when the test images 
and the training set are highly similar; however, if the test images differ substantially from the 
training set, the results may be strongly affected. Because RS images are acquired from different 
sensors, their spectral, temporal, and spatial resolutions are different. It is difficult to include all 
scenarios in the training set, which limits the practicality of the existing supervised models. 

In view of the above problems, the deep gradient-aware network with the image-specific 
enhancement (DGANet-ISE) method is proposed to obtain higher resolution RS images. Specifically, 
an enhanced deep residual network is constructed to learn the relationship between low-resolution 
(LR) and high-resolution (HR) images. During the training phase, a new gradient-aware loss is 
proposed in this network to promote the extraction of more high-frequency information, and to 
generate HR images with more detail. Additionally, when faced with inexperienced images, the 
image-specific enhancement approach is designed in the test phase to further improve SR 
performance. Each test LR image is inputted into the DGANet to obtain a relevant super-resolved 
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HR image. Then, the HR image is further improved via the ISE method. No additional information 
is needed in this module, which focused on the specific characteristics of the single image and on 
realizing adaptive enhancement. In summary, our contributions are fourfold: 

(1) A new SISR method, DGANet-ISE, which includes a deep gradient-aware network and an 
image-specific enhancement approach, is proposed to improve the spatial resolution of RS 
images. 

(2) A deep gradient-aware network is proposed to model the complex relationship between LR and 
HR images. A new gradient-aware loss is designed in the training process to preserve more 
image gradient information in the super-resolved RS images. 

(3) This paper proposes an image-specific enhancement approach to further improve the SISR 
performance of RS images and to enhance the generalization capability and the adaptability of 
our method when facing inexperienced images.  

(4) Three data sets are used for evaluating the performance of DGANet-ISE. Compared to 14 
methods, the experimental results indicate the superiority of DGANet-ISE.z` 

2. Materials and Methods 

The objective of SISR is to construct an HR image from an LR image 𝐼ோ. Representing the target 
HR image and the estimated image as 𝐼ுோ and 𝐼ுோᇲ, respectively, the more similar 𝐼ுோᇲ and 𝐼ுோ are, 
the better the SR effect is. The images have 𝐶 color channels, and 𝑊 is the width and 𝐻 is the height 
of the images. 𝑡 refers to the upscaling factor. In this section, a detailed description of the proposed 
method is presented. In addition, the evaluation criteria and comparison methods are introduced. 

2.1. Overview of the Proposed Method 

In this work, a new RS-SR method, DGANet-ISE, is proposed, as illustrated in Figure 1. The 
method mainly involves training and testing phases. The training phase aims at learning the complex 
relationships between LR and corresponding HR images. DGANet is the core element of this phase, 
and it is based on the enhanced residual network. This model employs residual and skip connections 
to devise a deep architecture, and it exhibits strong feature representation and nonlinear fitting 
abilities. As geographic information such as the terrain and edges are highly important for RS image 
interpretation, the precise preservation of more geographic details in the super-resolved images 
should be a focus of research. However, 𝐿1 and 𝐿2 losses generate blurry images in generation 
problems [44]. Therefore, we innovatively propose a new gradient-aware loss to alleviate this 
problem. Gradient-aware loss imposes gradient constraints to focus on the high-frequency signals in 
RS images, such as boundaries, edges, and terrains. As such, the proposed model can generate HR 
images with more detailed geographic information. 
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Figure 1. The architecture of deep gradient-aware network with image-specific enhancement 
(DGANet-ISE). The training phase aims at learning a complex relationship between low-resolution 
(LR) and corresponding high-resolution (HR) images. DGANet is the core element of the training 
phase, and the gradient-aware loss is proposed for facilitating the preservation of more high-
frequency information in the estimated HR images. In addition, the ISE approach is first proposed in 
the testing phase. By using the specific information of each test LR image, image-specific enhancement 
(ISE) can further boost the generalization of DGANet-ISE on inexperienced data sets. 

In the testing phase, the trained DGANet model is applied to generate primary HR results. 
However, if the testing images differ substantially from the training set (e.g., the images collected 
from different satellites), the performances of existing supervised learning methods will be strongly 
affected. To address this problem, an unsupervised learning-based enhancement approach, ISE, is 
introduced to further improve the performance and generate final HR images. ISE uses each input 
LR image to supplement more global information, and it has several advantages: (a) no additional 
supplementary data are required; (b) it focuses on the specific information and features of each test 
image, i.e., image-specific enhancement; (c) it boosts the generalization performance on 
inexperienced data sets. 

2.2. Structure of DGANet 

DGANet is proposed to extract the deep features of an LR image and upscale LR feature maps 
into HR output, as shown in Figure 2. The network contains different types of layers, including 
convolutional (Conv) layers, rectified linear unit (ReLU) layers, and pixel-shuffle layers. Based on 
these layers, residual blocks (ResBlocks) and upsample blocks (UpBlocks) are subsequently 
constructed. The ResBlocks are employed to construct deep networks, and UpBlocks to efficiently 
transform low-resolution feature maps into high-resolution size. 
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Figure 2. Structure of DGANet. The network mainly consists of four modules: the first module 
extracts low-level features from the input images; the second module utilizes ResBlocks to learn more 
complex and deeper features; the third module transforms the feature maps from the LR domain to 
HR domain; the last module provides more global signals to the HR image through global residual 
learning. 

ResBlock: In each ResBlock, there are two Conv layers and one ReLU layer. The output is 
obtained by summing the input and the result obtained through the Conv and ReLU layers, as shown 
in Figure 2.  

UpBlock: To transform the input feature maps to the target HR image, the UpBlocks are 
constructed based on one Conv layer and one pixel-shuffle layer. 𝑡 represents the upscale factor. The 
Conv layer transforms the feature maps to  𝑡ଶ  channels and the pixel-shuffle layer is a periodic 
shuffling operator that rearranges the elements of a tensor  𝐶 ൈ𝑊 ൈ 𝐻 ൈ 𝑡ଶ  to a tensor of shape 𝐶 ൈ 𝑡𝑊 ൈ 𝑡𝐻 (Figure 3). Each UpBlock upscales 2 times. Therefore, if the upscale factor is 2, one 
UpBlock is used; if the upscale factor is larger, multiple UpBlocks are used to improve the size 
gradually. 

 

Figure 3. The pixel-shuffle layer transforms feature maps from the LR domain to the HR image. 

According to Figure 2, the whole network mainly consists of four modules: low-level features 
are extracted from the input image with Conv layers at the first module; the ResBlocks in the second 
module are used to learn more complex and deeper features; the third module transforms the feature 
maps from the LR domain to the HR domain; the last module is the global residual block, in which 
the input image is interpolated to high resolution directly to provide a large number of global signals 
of the input image. 
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Take an upscale factor of 8 as an example (the size of the input LR image is 32 × 32), Table 1 
gives an exact representation of the components of DGANet. The kernel size of each Conv layer is 3 × 3. Five ResBlocks are used to extract the deep features sufficiently in this network. For the global 
residual block, the bilinear interpolation algorithm is used to directly transform the input image to 
another image with the target resolution. In addition, the Adam optimizer was used to train the 
model, and the loss function will be introduced in the next section. The learning rate was 0.0001 and 
was halved every 40 epochs, and the batch size in the training phase was 32. 

Table 1. The specific architecture of DGANet when the upscale factor is 8. 

Layer Kernel Size Number of Kernels Output Size Stride 
Conv  3 × 3 64 32 × 32 1 

ResBlock1 
Conv 3 × 3 64 32 × 32 1 
Conv 3 × 3 64 32 × 32 1 

ResBlock2 
Conv 3 × 3 64 32 × 32 1 
Conv 3 × 3 64 32 × 32 1 

ResBlock3 
Conv 3 × 3 64 32 × 32 1 
Conv 3 × 3 64 32 × 32 1 

ResBlock4 
Conv 3 × 3 64 32 × 32 1 
Conv 3 × 3 64 32 × 32 1 

ResBlock5 
Conv 3 × 3 64 32 × 32 1 
Conv 3 × 3 64 32 × 32 1 

Conv  3 × 3 64 32 × 32 1 

UpBlock1 Conv 3 × 3 64 × 2 × 2 32 × 32 1 
pixel-shuffle  64 × 64  

UpBlock2 
Conv 3 × 3 64 × 2 × 2 64 × 64 1 

pixel-shuffle  128 × 128  

UpBlock3 
Conv 3 × 3 64 × 2 × 2 128 × 128 1 

pixel-shuffle  256 × 256  
Conv  3 × 3 3 256 × 256 1 

2.3. Gradient-Aware Loss 

As images usually change quickly at the boundaries between objects, the image gradient is 
significant in boundary detection [41]. Therefore, the gradient information is usually used to extract 
object edges [43] and to reflect the changes in the surface’s topography [42] from RS images. 𝐿1 and 𝐿2 losses are widely used in deep learning applications, which are expressed below, where 𝑀 is the 
number of samples of one batch. The batch size was 32 in this work. 𝐿1 = ∑ ห𝐼ுோ − 𝐼ுோᇲ หெୀଵ 𝑀  (1) 

𝐿2 = ∑ (𝐼ுோ − 𝐼ுோᇲ )ଶெୀଵ 𝑀  (2) 

Although they can accurately represent the global pixel difference between images, they usually 
lead to smooth and blurred images [45], and little attention is paid to the important structure and 
edge information of RS images. Therefore, we propose a new gradient-aware loss (𝐿ீ) that facilitates 
the preservation of more edge and structure information and generates sharper HR images. The Sobel 
operator (𝑆𝑜𝑏 ) [46] can effectively detect edges, and it enhances high spatial frequency details. 
Therefore, this operator is applied to generate gradient maps of the target image 𝐼ுோ  and the 
predicted 𝐼ுோᇲ images. 𝐺𝑀(𝐼ுோ) = 𝑆𝑜𝑏(𝐼ுோ) (3) 𝐺𝑀(𝐼ுோᇲ) = 𝑆𝑜𝑏(𝐼ுோᇲ) (4) 
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The gradient-aware loss is defined as the mean of 𝑀 samples. The mean absolute error is used 
to evaluate the difference between gradient maps 𝐺𝑀(𝐼ுோ) and 𝐺𝑀(𝐼ுோᇲ), as shown below: 𝐿ீ = ∑ ห𝐺𝑀(𝐼ுோ ) − 𝐺𝑀(𝐼ுோᇲ )หெୀଵ 𝑀  (5) 

To maintain the balance between the global pixel error and the gradient error, a hyperparameter 𝑘 is introduced. From the experiment, we found that 𝑘 works best at 0.1 (as shown in Appendix A). 
Therefore, 𝑘 = 0.1 was used in this paper, and the overall loss function can be formulated as 𝐿 = 𝑘 × 𝐿ீ + 𝐿1 (6) 

By using gradient-aware loss, more high-frequency information, such as edges and terrain, will 
be preserved in the super-resolution process, and sharper HR images with higher accuracy will be 
generated. 

2.4. Image-Specific Enhancement 

The performance of supervised methods largely depends on the training data set. If the test 
images differ substantially from the training set, the performance on inexperienced data will be 
greatly affected. As for RS images, they differ in terms of sensors, times, places, colors, types, and 
resolutions. It is hard to collect training samples that cover all scenarios, resulting in the insufficient 
generalization ability of many supervised SR methods. In this paper, the ISE algorithm is proposed 
to provide an effective solution to improve the generalization and adaptability of our method.  

The core strategy of ISE is to back-project the error between the emulated and actual LR image 
to the SR image and to iteratively update it. This approach is inspired by the iterative back-projection 
algorithm (IBP) [47]. The specific procedure of ISE is presented in Algorithm 1, where the iteration 
number is 𝑛 and 𝑁 is the largest iteration number. The input of ISE is the original LR input 𝐼ோ and 
the predicted HR image 𝐼ுோᇲ obtained from the DGANet. The 𝐼ுோᇲ is firstly downsampled to the LR 
domain (𝐼ோᇲ). The difference image (𝐷𝑖𝑓𝑓) between 𝐼ோ and 𝐼ோᇲ  is calculated. Then, the difference 
image is upsampled to the HR size, and subsequently, 𝐼ுோᇲ can be updated by adding 𝐷𝑖𝑓𝑓ு to the 
predicted image. This process is repeated iteratively until the difference is sufficiently small or the 𝑁 
has been reached. The bilinear interpolation algorithm was used for upsampling and downsampling 
operations in this paper. 

ISE is based on the assumption that if the estimated HR image is closer to the target image, the 
LR image 𝐼ோᇲ  derived from the estimated HR image should be more similar to the input LR image. 
By backward-projecting the difference image between 𝐼ோ and 𝐼ோᇲ to the super-resolved HR image, 
more differences can be considered in the estimated HR image. We can thereby obtain better SR 
results. 

Algorithm 1. ISE 
Input: LR input (𝐼ோ), predicted HR image (𝐼ுோᇲ); 
Output: Enhanced HR image (𝐼ாுோ); 
While 𝑛 < 𝑁 or 𝐷𝑖𝑓𝑓ு is not sufficiently small 
1. 𝐼ோᇲ = downsample(𝐼ுோᇲ) 
2. 𝐷𝑖𝑓𝑓 = 𝐼ோ − 𝐼ோᇲ  
3. 𝐷𝑖𝑓𝑓ு = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐷𝑖𝑓𝑓)  
4. 𝐼ுோᇲ =  𝐼ுோᇲ + 𝐷𝑖𝑓𝑓ு 
5. 𝑛 = 𝑛 + 1 𝐼ாுோ =  𝐼ுோᇲ  
Return 𝐼ாுோ  

The main advantages of ISE include that it requires no additional images for training. 
Furthermore, as ISE focuses on the characteristics of every single image, the image-specific 
information is used to further improve the quality of the super-resolved HR image. This way, the 
limitations that are due to the training data set can be effectively alleviated. 
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2.5. Evaluation Criteria and Baselines  

2.5.1. Evaluation Criteria 

The mean squared error (MSE), peak signal-to-noise ratio (PSNR) [48], and structural similarity 
index (SSIM) [49] are used to evaluate the performance of models, which are expressed as follows: 𝑀𝑆𝐸 = ∑ ∑ (𝑋, − 𝑋,)ଶ௧ுୀଵ௧ௐୀଵ 𝑡ଶ𝑊𝐻  (7) 

𝑃𝑆𝑁𝑅 = 20 × 𝑙𝑜𝑔ଵ MAX𝑅𝑀𝑆𝐸(𝑋,𝑋) (8) 

𝑆𝑆𝐼𝑀 = (2𝜇𝜇 + 𝑐ଵ) × (2𝜎 + 𝑐ଶ)(𝜇ଶ + 𝜇ଶ + 𝑐ଵ) × (𝜎ଶ + 𝜎ଶ + 𝑐ଶ) (9) 

where 𝑋 is the target high-resolution image; 𝑋 is the super-resolved image which is generated from 
the low-resolution image; 𝑡𝑊 and 𝑡𝐻 are the width and the height of the HR image, respectively; 𝑀𝐴𝑋 represents the maximum pixel value in the original 𝑋 image; 𝑅𝑀𝑆𝐸 is the root mean squared 
error; 𝜇  and 𝜇  are the average pixel values of 𝑋  and 𝑋 , respectively; 𝜎  and 𝜎  are the 
variances of 𝑋  and 𝑋 , respectively; and  𝜎  is the covariance of 𝑋  and 𝑋 . Moreover, 𝑐ଵ =(𝑘ଵ𝐿)ଶ, 𝑐ଶ = (𝑘ଶ𝐿)ଶ, where both variables are used to stabilize division with a weak denominator, and 𝐿 is the dynamic range of the pixel values. The default values of 𝑘ଵ and 𝑘ଶ are 𝑘ଵ = 0.01 and 𝑘ଶ =0.03. 𝑀𝑆𝐸 is commonly used to measure the error of super-resolved images. An 𝑀𝑆𝐸 that is closer 
to 0 implies a higher model accuracy. 𝑃𝑆𝑁𝑅 is measured in decibels (dB). 𝑆𝑆𝐼𝑀 is used to measure 
the similarity between two images [5]; the larger the value of 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀, the better the SR 
performance. 

2.5.2. Methods to be Compared 

Fourteen widely used SISR methods, which are shown in Table 2Error! Reference source not 
found., were compared with DGANet-ISE. These SR methods use LR input images with three 
channels to generate super-resolved images. The input and output schemes were the same as 
proposed DGANet-ISE. The theory and characteristics of these methods were described in the 
corresponding references shown in Table 2.  

Table 2. Methods that are considered in the comparison experiments. 

Methods Abbreviation Category Reference 
Nearest neighbor interpolation NNI 

Interpolation 
[50] 

Bilinear interpolation BLI [51] 
Bicubic interpolation BCI [51] 

Classical sparsity-based super resolution  SCSR 
Machine 
learning 

[52] 
Neighbor embedding NE [15] 

Simple functions SF [53] 
Sparse coding SC [52] 

Super resolution convolutional neural network SRCNN 

Deep learning 

[26] 
Efficient sub-pixel convolutional network ESPCN [54] 
Enhanced deep super resolution network EDSR [40] 

Fast SR convolutional neural network FSRCNN [53] 
7 convolutional layers network CNN-7 [25] 
Local-global combined network LGCNet [25] 

Deep compendium model DCM [29] 
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3. Results 

In this section, the data sets and the implementation details are introduced firstly. Subsequently, 
the performance of DGANet-ISE is verified by comparison with 14 different SR methods, and cross-
database tests are performed to evaluate the generalization ability of our method. 

3.1. Data Sets and Implementation Details 

3.1.1. Data Sets 

Three different data sets were employed to verify the effectiveness and superiority of DGANet-
ISE. 

RSI-CB256 [55] contains 35 categories and about 24,000 images, which were collected for scene 
classification. This data set is rather challenging as the scenes are widely different. The pixel size of 
the images is 256 × 256 with 0.3–3 m spatial resolutions. Figure 4 shows the samples for 10 categories 
in the RSI-CB256 data set. 

 
Figure 4. Ten example categories of the data set, including an airplane, bridge, city building, coastline, 
container, dam, forest, highway, parking lot, and residents. 

UCMerced [56] consists of 21 classes of land use images, including agricultural, airplane, beach, 
buildings, etc. Each class has 100 images with 256 × 256 pixels, and the spatial resolution is 1 foot 
(≈0.3 m).  

Landsat-test is widely used, and the super-resolution of these images is of great value for many 
applications, such as finer land cover monitoring. The test images used in this paper were Landsat 5 
TM data of band 7 (2.08–2.35 µm), band 4 (0.76–0.90 µm), and band 2 (0.52–0.60 µm). The data set 
was downloaded from the Google Earth Engine (https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LT05_C01_T1). The spatial resolution is 30 m. During the 
experiment, we cut the image into approximately 400 small images of 256 × 256 pixels. This data set 
is different from the RSI-CB256 and UCMerced data sets in two aspects: (1) the resolution of the 
Landsat data set is much smaller than the other two data sets, resulting in very different geographic 
information and scene content in the same image size; (2) the first two data sets are artificially selected 
into categories, while Landsat-test data set is a real unselected scene. 

3.1.2. Implementation Details 

As there are not enough corresponding LR–HR image pairs in reality, we downsampled the 
images using the Bicubic interpolation (BCI) algorithm with a factor of 𝑡 ∈ {2, 4, 8} to obtain LR 
images of different scales. Many studies, such as [29,35], have used BCI to generate LR–HR image 
pairs. The RSI-CB256 data set was used to compare our model with commonly used SISR methods, 
and all images were randomly divided into training samples (80%) and test samples (20%). 
Furthermore, in order to evaluate the generalization ability of our model, the Landsat-test data set 
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was utilized for a cross-database test. That is, the models trained on RSI-CB256 were directly applied 
to the SR experiments of Landsat-test without any tuning. This is difficult because the data were 
collected from different sensors and have different spatial resolutions.  

In addition, the UCMerced data set was randomly split into two balanced halves for training 
and testing, according to [35], which is consistent with other RS-SR methods, including CNN-7 [25], 
LGCNet [25], DCM [29], etc. Therefore, we compared our method with these RS-SR methods using 
the UCMerced data set. 

The interpolation-based and deep learning-based methods were implemented in Python, and 
the machine learning-based methods were implemented in MATLAB. In addition, the models were 
used with the default settings suggested by the authors. The generation of LR images and the 
calculation of the evaluation criteria were implemented in the same Python environment to ensure 
the consistency and accuracy of the results. 

3.2. Comparison with Baselines 

In this section, we experimented on the RSI-CB256 and UCMerced data sets, respectively. 
UCMerced is widely used in RS-SR; therefore, we compared our methods with the following RS-SR 
methods available in the literature [29], which experimented on the UCMerced data set as well. The 
upscale factors were 2 and 4, and the PSNR and SSIM results are shown in Table 3. In addition, Figure 
5 provides a more vivid presentation of the comparison of the PSNR and SSIM results. 

(a) (b) 

Figure 5. Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) comparison results 
using the UCMerced data set. (a) PSNR results of different methods; (b) SSIM results of different 
methods. 

Table 3. Comparison results on the UCMerced data set. 

Upscale factor BCI SC SRCNN FSRCNN CNN-7 LGCNet DCM DGANet-ISE 

2 
PSNR 30.76 32.77 32.84 33.18 33.15 33.48 33.65 33.68 
SSIM 0.8789 0.9166 0.9152 0.9196 0.9191 0.9235 0.9274 0.9344 

4 PSNR 25.65 26.51 26.78 26.93 26.86 27.02 27.22 27.31 
SSIM 0.6725 0.7152 0.7219 0.7267 0.7264 0.7333 0.7528 0.7665 

According to the table, compared with recent RS-SR methods, DGANet-ISE yields the best 
results. Although the PSNR values of our method and DCM are close, our SSIM results are larger 
than those of all of the compared approaches. The experimental results indicate that our method is 
good at structure reconstruction of RS images. 
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Additionally, another experiment was conducted on the RSI-CB256 data set, and DGANet-ISE 
was compared with three kinds of SISR methods: interpolation-based methods (nearest-neighbor 
interpolation (NNI), bilinear interpolation (BLI), and BCI), machine learning-based methods (simple 
functions (SF), neighbor embedding (NE), and classical sparsity-based super-resolution (SCSR)), and 
deep learning-based methods (super-resolution convolutional neural network (SRCNN), efficient 
sub-pixel convolutional network (ESPCN), and enhanced deep super-resolution network (EDSR)). 
The experiments were conducted with three different upscale factors, i.e., 𝑡 ∈ {2, 4, 8}. The detailed 
results are presented in Table 4. In addition to the quantitative assessments, visual results are 
provided for a qualitative and intuitive evaluation. Three test images of a parking lot, a residence, 
and a dam were chosen as examples, and Figures 6–8 show the super-resolved HR images for 𝑡 ∈{2, 4, 8}, respectively. 

Table 4. Comparison between the different methods under different upscale factors on the RSI-CB256 
data set (The bold values are the best among all the methods). 

Methods Category 
𝒕 = 𝟐 𝒕 = 𝟒 𝒕 = 𝟖 

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM 
NNI 

Interpolation 
 

88.25 31.90 0.8701 211.43 27.80 0.6886 357.27 25.48 0.5390 
BLI 90.03 31.90 0.8531 205.46 27.99 0.6822 345.12 25.65 0.5544 
BCI 69.74 33.29 0.8858 182.56 28.55 0.7087 321.93 25.96 0.5652 
SF 

Machine learning 
53.16 34.65 0.9094 190.15 28.30 0.6956 365.47 25.40 0.5440 

NE 81.48 32.33 0.8664 224.26 27.44 0.6497 404.56 24.69 0.5032 
SCSR 48.01 34.94 0.9195 153.26 29.25 0.7505 293.43 26.31 0.5819 

SRCNN 

Deep learning 

35.30 36.82 0.9414 131.71 29.93 0.7782 279.40 26.43 0.5921 
ESPCN 32.94 37.35 0.9457 117.33 30.52 0.7961 254.08 26.82 0.6137 
EDSR 32.34 37.59 0.9475 115.85 30.64 0.8007 249.25 27.04 0.6228 

DGANet-ISE 31.26 37.92 0.9477 112.08 30.90 0.8046 240.17 27.22 0.6312 

From the global perspective, it is obvious that as the upscale factor increases, the accuracy 
gradually decreases, because achieving super-resolution from a lower resolution image is much more 
difficult. Furthermore, according to Table 4, DGANet-ISE significantly outperforms the baselines. 
With the exception of DGANet-ISE, the results of EDSR are the best among the other methods. The 
PSNR values of DGANet-ISE are 0.33 dB, 0.26 dB, and 0.18 dB larger than those of EDSR when 𝑡 is 
2, 4, and 8, respectively. 

BCI, SCSR, and DGANet-ISE are the most prominent within the interpolation, machine-learning, 
and deep learning categories, respectively. For example, when 𝑡 = 2, the MSE values of BCI and 
SCSR are 69.74 and 48.01, respectively, much smaller than the other methods of the same category. 
With regard to deep learning methods, our proposed model exhibits superior performance on the 
SISR task. The MSE and PSNR results of our method are the best among all of the methods. For 
instance, when 𝑡 = 2, the error of our proposed method is the smallest (MSE = 31.26), while PSNR = 
37.92 dB and SSIM = 0.9477 are the largest. 
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Figure 6. Super-resolution (SR) results obtained by different methods over the test image of a Parking 
lot with an upscale factor of 2. (a) LR image, (b) ground-truth HR image, (c) NNI, (d) BLI, (e) BCI, (f) 
SF, (g) NE, (h) SCSR, (i) SRCNN, (j) ESPCN, (k) EDSR, and (l) DGANet-ISE. 

 
Figure 7. SR results obtained by different methods over the test image of a Residence with an upscale 
factor of 4. (a) LR image, (b) ground-truth HR image, (c) NNI, (d) BLI, (e) BCI, (f) SF, (g) NE, (h) SCSR, 
(i) SRCNN, (j) ESPCN, (k) EDSR, and (l) DGANet-ISE. 
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Figure 8. SR results obtained by different methods over the test image of a Dam with an upscale factor 
of 8. (a) LR image, (b) ground-truth HR image, (c) NNI, (d) BLI, (e) BCI, (f) SF, (g) NE, (h) SCSR, (i) 
SRCNN, (j) ESPCN, (k) EDSR, and (l) DGANet-ISE. 

Focusing on the visual results (Figures 6–8), the HR images super-resolved by different methods 
vary in terms of their features. For example, images obtained from NNI and NE have regular dense 
squares, similar to mosaics. This causes very blurred edges of these super-resolved images. The 
reason is that both algorithms rely heavily on the values of neighboring pixels or patches and ignore 
other significant structural details. NE performs better as it considers that the LR patches and the 
corresponding HR patches have similar local geometries.  

In addition, images super-resolved via BLI and SCSR have very blurred boundaries (Figure 
8d,h). We conducted a thorough analysis and found that both the BLI and SCSR algorithms use linear 
features for SISR, which results in the emergence of stripes when 𝑡 increases. The basic idea of SCSR 
supposes that a signal can be represented as a sparse linear combination with respect to an 
overcomplete dictionary. A linear feature extraction operator behaves like a high-pass filter for 
feature representation of LR image patches [52]. In this way, the SCSR images have sharper edges 
than those of NE and BLI. 

The HR images (Figure 7i–l) obtained by the deep learning methods generate smoother textures 
than the other two kinds of methods. DGANet-ISE yields more competitive visual results, because 
they are the most similar to their ground-truth HR counterparts. Our proposed DGANet-ISE recovers 
more texture and structure details, such as the edges of the dam in Figure 8. The edges of the dam 
generated by our method are very clear, whereas the edges are blurred or even missing in other 
images. This is because the gradient-aware loss proposed in our method can capture more gradient 
information of the RS images, which can facilitate the generation of sharper edges and textures. In 
summary, the proposed method performs the best compared to other methods. 

3.3. Cross-Database Test 

To further evaluate the robustness and generalization capability of DGANet-ISE, the Landsat-
test data set was applied for a cross-database test, i.e., the models trained on the RSI-CB256 data set 
were directly used to super-resolve the Landsat-test data set without any fine-tuning or modification. 
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The results of the comparison between the different approaches under the three upscale factors are 
presented in Table 5, and Figure 9 shows the visual results of the different methods on an example 
image. 

 
Figure 9. SR results obtained by different methods over the Landsat-test image with an upscale factor 
of 4. (a) LR image, (b) ground-truth HR image, (c) NNI, (d) BLI, (e) BCI, (f) SF, (g) NE, (h) SCSR, (i) 
SRCNN, (j) ESPCN, (k) EDSR, and (l) DGANet-ISE. 

Table 5. SR results on the Landsat-test data set. 

Methods 
𝒕 = 𝟐 𝒕 = 𝟒 𝒕 = 𝟖 

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM 
NNI 18.05 36.91 0.9344 47.21 32.83 0.8387 92.84 30.00 0.7373 
BLI 17.32 37.03 0.9320 42.61 33.21 0.8465 85.07 30.32 0.7601 
BCI 13.08 38.23 0.9470 36.34 33.88 0.8627 75.97 30.77 0.7695 
SF 11.00 38.99 0.9537 39.45 33.44 0.8495 90.52 29.90 0.7476 
NE 13.74 37.72 0.9350 35.24 33.49 0.8373 78.57 30.07 0.7403 

SCSR 10.50 39.13 0.9534 32.38 34.37 0.8741 69.69 31.15 0.7760 
SRCNN 9.87 39.72 0.9612 34.79 34.53 0.8773 82.01 30.89 0.7688 
ESPCN 10.66 39.63 0.9586 32.75 34.81 0.8835 84.25 31.12 0.7654 
EDSR 8.98 40.06 0.9635 28.09 35.17 0.8907 71.30 31.41 0.7833 

DGANet-ISE 7.23 40.70 0.9669 25.49 35.42 0.8951 61.37 31.76 0.7873 

The Landsat-test data set differs substantially from the training samples, since the spatial 
resolution of training samples is 0.3–3m, while the spatial resolution of Landsat-test images is 30 m, 
and the scene contents in the same image size are very different. Therefore, it poses a great challenge 
to apply these supervised learning models directly to such test images. 

According to the results, our proposed method shows a reasonably satisfactory performance 
compared to the other methods. For instance, when 𝑡 = 2, the PSNR is 40.70 dB, which is 0.64 dB 
larger than that of EDSR and 1.57 dB larger than that of SCSR. This is because the ISE algorithm 
focuses on the personalized features of each test image, and provides a fast additional improvement 
of the super-resolved HR image obtained from the deep gradient-aware network. In summary, 
DGANet-ISE has strong robustness and generalization capability on new data sets. 
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4. Discussion 

In this section, ablation studies were conducted to analyze the performance of the proposed 
gradient-aware loss and the impact of the ISE algorithm. 

4.1. Dependency on the Type of Loss Functions 

For evaluating the effectiveness of gradient-aware loss, we trained the same network with the 𝐿1, 𝐿2, and gradient-aware losses on training samples of the RSI-CB256 data set. The detailed results 
on the test samples of the RSI-CB256 data set are presented in Table 6Error! Reference source not 
found.. As we can see, the PSNR results of 𝐿1 loss are slightly better than those of the 𝐿2 loss, and 
our proposed loss function yields the best results. When the upscale factor is 2, the PSNR obtained 
with the gradient-aware loss (37.92 dB) is 0.2 dB better compared to the L1 loss (37.72 dB) and the L2 
loss (37.66 dB).  

To assess the detailed information preservation capability of the gradient-aware loss, an image 
that belongs to the “Residence” class was selected for further analysis. Figure 10 presents the 
reconstructed HR images obtained using the three-loss functions with an upscale factor of 8. The 
PSNR result of the proposed loss is 25.54 dB, which is 0.15 dB larger than L1 loss. The shape and the 
direction of the swimming pool that is obtained with the gradient-aware loss are much closer to 
reality. In addition, the PSNR and SSIM results obtained by our gradient-aware loss are much better 
than 𝐿1  and 𝐿2  losses. In summary, our proposed gradient-aware loss is able to generate HR 
images more accurately. 

Table 6. Comparison of the results of different loss functions. 

Upscale Factor 
𝑳𝟐 loss 𝑳𝟏 loss Proposed loss 

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM 
2 31.31 37.66 0.9483 31.85 37.72 0.9469 31.26 37.92 0.9477 
4 114.39 30.67 0.7997 114.53 30.76 0.8015 112.08 30.90 0.8046 
8 245.83 27.04 0.6197 245.77 27.10 0.6260 240.17 27.22 0.6312 

 

Figure 10. Images obtained using different loss functions with an upscale factor of 8: (a) ground-truth 
HR image, (b) 𝐿2 loss, (c) 𝐿1 loss, and (d) proposed loss. 

4.2. Impact of ISE 

Since ISE aims to improve the SR results of inexperienced data, in this part, cross-data set test 
performances of the method with and without ISE were compared. The DGANet and EDSR trained 
on the RSI-CB256 data set were directly applied to the Landsat-test data. The results are presented in 
Table 7 and Figure 11 gives a visual comparison. The results in Table 7 illustrate that the ISE approach 
can further improve the SR performance. For instance, when the upscale factor is 2, the PSNR of EDSR 
and DGANet is improved by 0.46 dB and 0.23 dB, respectively. By using the specific information of 
the test image, ISE can further enhance the HR results of DGANet. As ISE is an unsupervised 
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approach, it can greatly improve the generalization and adaptivity of the models, and reduce the 
dependence on the training set. 

 
Figure 11. Images obtained with and without ISE with an upscale factor of 4: (a) ground-truth HR 
image, (b) EDSR, (c) EDSR-ISE, (d) DGANet, (e) DGANet-ISE. 

Table 7. Comparison results of with or without image-specific enhancement (ISE). 

Upscale Factor 
EDSR EDSR-ISE DGANet DGANet-ISE 

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM 
2 8.98  40.06  0.9635  7.57  40.52  0.9665  8.01  40.47  0.9647  7.23  40.70  0.9669  
4 28.09  35.17  0.8907  26.15  35.34  0.8933  26.10  35.37  0.8939  25.49  35.42  0.8951  
8 71.30  31.41  0.7833  65.29  31.60  0.7840  62.28  31.72  0.7868  61.37  31.76  0.7873  

5. Conclusions 

A new SISR method, DGANet-ISE, was proposed in this work to increase the spatial resolution 
of RS images. Specifically, the deep gradient-aware network and image-specific enhancement are two 
important components of DGANet-ISE. The first part extracts features and learns the precise 
representation between the LR and HR domains. The gradient-aware loss was first proposed in this 
part to preserve the important gradient information of RS images. Image-specific enhancement was 
used to improve the robustness and adaptability of our method, thus further improving the 
performance. Based on the above, three different data sets were used as experimental data sets. The 
proposed DGANet-ISE was applied to super-resolve the RS images with three upscale factors, which 
yielded remarkable results. Compared to other SISR methods, DGANet-ISE is better from both 
quantitative and visual perspectives. Moreover, the results of the cross-database test demonstrate 
that the proposed approach exhibits strong generalization and robustness, and provides an excellent 
opportunity for practical applications. 
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Appendix A 

To analyze the influence of the hyperparameter 𝑘 value on the model, we plotted the trends of 
the average PSNR and SSIM values of 𝑘 = {1,0.1, 0.01,0.001,0.0001,0.00001} versus the number of 
iterations (up to 200 epochs) in Figure A1. The experiment was conducted with an upscale factor of 
2. When 𝑘 = 1, the PSNR is lower than other cases. In terms of the SSIM results, 𝑘 = 1 and 0.1 
performed better than the others. Therefore, in this paper, we used 𝑘 = 0.1 as the final weight of the 
gradient-aware loss. 

 

Figure A1. Comparison of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) 
between the five different 𝑘 values. 
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