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A B S T R A C T

Septate-like junctions display characteristic ladder-like ultrastructure reminiscent of the invertebrate epithelial
septate junctions and are present at the paranodes of myelinated axons. The paranodal junctions where the
myelin loops attach to the axon at the borders of the node of Ranvier provide both a paracellular barrier to ion
diffusion and a lateral fence along the axonal membrane. The septate-like junctions constrain the proper dis-
tribution of nodal Na+ channels and juxtaparanodal K+ channels, which are required for the safe propagation of
the nerve influx and rapid saltatory conduction. The paranodal cell adhesion molecules have been identified as
target antigens in peripheral demyelinating autoimmune diseases and the pathogenic mechanisms described.
This review aims at presenting the recent knowledge on the molecular and structural organization of septate-like
junctions, their formation and stabilization during development, and how they are involved in demyelinating
diseases.

1. Introduction

The septate-like junctions, namely the paranodal junctions, are
present in vertebrate myelinated axons forming a physiological barrier
at the borders of the node of Ranvier. The paranodal junctions are
heterotypic and provide a linkage between the terminal loops of myelin
and the axonal membrane on both sides of the nodal gap where Na+

channels are clustered. The typical ladder-like structure of paranodal
junctions depends on the assembly of a ternary complex of cell adhesion
molecules (CAMs) with axonal Caspr and Contactin facing Neurofascin-
155 on the glial membrane. Nonetheless, the detailed architecture of
the septate-like junctions is still incompletely understood. The mole-
cular components of paranodal junctions are highly conserved during
evolution and the comparison with invertebrate epithelial septate
junctions may give important clues, even if they comprise distinctive
features. Recent advances in imaging of the nodes of Ranvier using
super-resolution microscopy and structural analyses of the Caspr and
Contactin families have brought new insights into the possible ar-
rangement of the paranodal adhesive rows. Finally, the perturbation of
septate-like junctions in pathological contexts and the mechanisms of
action of autoantibodies directed against the paranodal CAMs have
been recently described.

2. The vertebrate paranodal junctions display similarities and
differences with the invertebrate septate junctions

Among occluding junctions, tight junctions appeared restricted to

chordates whereas septate junctions have been characterized in in-
vertebrates to ensure barrier properties and control paracellular diffu-
sion across epithelial cells and glial cells that are insulating neurons
(review in [1,2]). The structural components of septate junctions, such
as Neurexin IV, are evolutionarily conserved and already arose in cni-
darians [3]. To date, more than 20 membrane or membrane-associated
proteins have been implicated in the formation of Drosophila septate
junctions including the conserved core components Contactin, Neur-
exinIV, and Neuroglian [4,5]. This complex of three CAMs is also re-
quired for the formation of vertebrate paranodal junctions, namely with
Contactin, Caspr/Paranodin homologous to Neurexin IV, and Neuro-
fascin-155 homologous to Neuroglian [6] (Table 1). A submembrane
scaffold is implicated in the formation of glial and epithelial septate
junctions in Drosophila including the Four-point-one/Ezrin/Radixin/
Moesin (FERM) protein Coracle which binds NeurexinIV [7] and is
homologous to the vertebrate band 4.1B interacting with Caspr at
paranodes [8]. Besides, a variety of scaffolding and membrane mole-
cules are required for the formation of Drosophila septate junctions -that
are not described in the vertebrate paranodal junctions- such as the PDZ
protein Varicose [9], the claudin-like tetraspan proteins Megatrachea,
Sinuous and Kune-kune [10–12], the immunoglobulin (Ig) family
member Lachesin [13,14], the Ly-6 family proteins including Boudin
and Coiled [15,16], the macroglobulin complement-related protein
[17] and the Na+/K+ ATPase subunits [18]. All these CAMs and
scaffolding molecules are interdependent for their recruitment at the
septate junctions of epithelial cells meaning that when a single protein
of the complex is missing, all the other ones are mis-expressed or mis-
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distributed along the basolateral membrane. However, the timing of
events requiring septate junction genes during Drosophila embryogen-
esis indicates that this multiplicity of genes is likely required for de-
velopmental functions that are independent of their role in forming an
occluding junction in the lateral membrane of epithelia. Nevertheless,
the components of septate junctions in arthropods that include claudin-
like proteins also suggest a common molecular basis with vertebrate
tight junctions to form a paracellular barrier despite their different
morphologies.

At the ultrastructural level, fly septate junctions display strong si-
milarities with vertebrate paranodes showing the typical regularly-
spaced transverse bands, called septa. However, their intermembrane
width differs, which is approximately 15–20 nm for the invertebrate
septate junctions instead of 3–5 nm for the paranodal junctions [5,19].
Another different feature consists of homotypic versus heterotypic cell-
cell junctions in fly and vertebrates, respectively. In Drosophila,
homotypic contacts are formed between Drosophila epithelial or glial
cells whereas heterotypic junctions are established at vertebrate para-
nodes with distinct CAMs on the glial and axonal membranes. The
question of the molecular composition of the transverse bands and
whether there are formed by a complex of CAMs, glycolipids or extra-
cellular matrix components is still unresolved for both types of junc-
tions. Whether the conserved core components Contactin/Caspr/Neu-
rofascin-155 in vertebrates and Contactin/NeurexinIV/Neuroglian in
Drosophila are associated with the presence of transverse bands has
been investigated using genetic approaches. As further detailed in the
next paragraph, each of the vertebrate CAMs is strictly required for the
presence of transverse bands at the axo-glial paranodal junction. In
Drosophila epithelial cells, the transverse bands are lacking in the
NeurexinIV null mutant [4] but are still present in the Contactin or
Neuroglian mutant although disorganized [5] and the paracellular
barrier is altered in each of these mutants. We may note that in the
NeurexinIV mutant, the cell surface targeting of Contactin is prevented
so that the two cis-interacting proteins are missing at the cell-cell
contact. However, to answer the unresolved question of the molecular
composition of septa, experiments are missing such as inducing ectopic
assembly of septate junctions or de novo formation of septate-like
junctions in a heterologous system. With this respect, it is interesting to
mention the tremendous experiments performed to identify the back-
bone of the vertebrate epithelial occluding junctions. Indeed, the re-
constitution of junctional strands of kissing points has been obtained by
introducing a single claudin in fibroblasts [20]. Claudins are the major

CAMs of tight junctions encompassing four membrane-spanning regions
which can polymerize into paired strands at cell-cell contacts. Claudin-
like proteins have been identified in septate junctions of invertebrates
that are required for the correct function of the paracellular barrier.
However, they are interdependent with other CAMs including Neur-
exinIV, Contactin and Neuroglian, which are conserved in the verte-
brate paranodal junctions. Interestingly, the tetraspanin CD9 is a
myelin component that is concentrated at paranodes and required for
the formation of the transverse bands [21]. Tetraspanins display a si-
milar topology but no sequence identity with claudins and are postu-
lated to organize a network of interaction at the cell surface with in-
tegrins, Ig-CAMs and claudins [22]. In conclusion, the relationship
between tight junctions and septate junctions in terms of molecular
evolution is still unclear [23].

3. Septate-like junctions at synaptic contacts in invertebrates and
vertebrates

Intriguingly, some non-conventional synaptic contacts exhibit
structural features resembling the invertebrate epithelial septate junc-
tions (review in [24]). In the developing neuromuscular junctions of
Drosophila embryos and larvae, the presence of regularly structured
electron-dense material in the synaptic cleft was observed [25]. How-
ever, distinct CAMs mediate adhesive contacts at the neuromuscular
junctions including Fasciclin2 and NeurexinI instead of Neuroglian and
NeurexinIV which are characteristics of the fly epithelial septate junc-
tions [4,26,27]. In the vertebrates, septate junctions have been found at
axo-axonic contacts of cerebellar basket cells that form the pinceau
surrounding the Purkinje cell perikaryon and axon initial segment [28].
These junctions display structural features similar to the invertebrate
septate junctions with an intercellular distance ranging between 11 and
18 nm and spacing of transverse bands between 16 and 22 nm.
Therefore, the basket cell axo-axonic junctions differ from the para-
nodal junctions which exhibit a narrower cleft between axo-glial cell
membranes. Their functional role could be to compartmentalize the
extracellular space and regulate the extracellular current flow at the
pinceau to provide ultra-rapid electrical inhibition of Purkinje cells
[29]. The molecular composition of these axo-axonic septate junctions
is still elusive. Noteworthy, Neurofascin is expressed in basket cell
axons and is required for the proper organization of the pinceau [30].

Table 1
Molecular components of Drosophila septate junctions (SJ) and vertebrate paranodal junctions.

Drosophila molecular components Vertebrate molecular components

Gene product Localization/ Function References Gene product Localization/ Function References

Neurexin IV epithelial and glial SJ/ CAM [4] Caspr paranode/axonal CAM [31, 41]
Contactin epithelial and glial SJ/ CAM [5] Contactin paranode /axonal CAM [32, 42]
Neuroglian epithelial and glial SJ/ CAM [5, 18] Neurofascin-155 paranode/glial CAM [45]
Coracle epithelial SJ/ scaffold [7] 4.1B paranode, juxtaparanode/ axonal

scaffold
[47, 48]

Varicose epithelial and glial SJ/ scaffold [9] PALS2/MPP2/MPP6
family

Claudin-like: Claudin family tight junctions/CAM [23]
Megatrachea epithelial (and glial for Kune-kune)

SJ/ CAM
[12]

Kune-Kune [11]
Sinuous [10]

Tetraspanin CD9 paranode/myelin CAM [21]
Na+/K+ ATPase, α and ß (Nervana)

subunits
Epithelial SJ/ CAM (pump-
independent)

[18] Na+/K+ ATPase

Lachesin epithelial and glial SJ/ CAM [13, 14] IgLON family
MAG paranode, internode/ myelin CAM [76]

Ly6 family: CD59
Boudin epithelial SJ/secreted [15]
Coiled epithelial and glial SJ/CAM [16]
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4. Assembly of cell adhesion and scaffolding molecules at the
paranodal junctions

The paranodal junctions are established on both sides of the node of
Ranvier between the axon and the terminal myelin loops emanating
from Schwann cells in the Peripheral Nervous System (PNS) and from
oligodendrocytes in the Central Nervous System (CNS). A similar in-
teracting set of CAMs is vital for the assembly of the paranodes in the
PNS and CNS (Fig. 1). On the axonal side, Contactin, which is a GPI-
anchored CAM of the Ig superfamily associates in cis with Caspr, a
transmembrane glycoprotein related to Neurexins [31–33]. Contactin
and Caspr are interacting in trans with Neurofascin-155, the glial iso-
form of the Ig-CAM Neurofascin, which is expressed on the terminal
myelin loops [34]. The cis-interaction of Contactin with Caspr in the
endoplasmic reticulum is required for its proper folding and export at
the cell membrane [35]. Contactin and Caspr are assembled early
during the secretory pathway and exported having been modified with
immature mannose-rich N-glycans at the axonal surface [36,37]. These

selective glycoforms of Contactin and Caspr bind glial Neurofascin-155,
forming a ternary axo-glial complex [38]. The Ig5–6 domains of Neu-
rofascin-155 are required for Contactin binding [39] and conversely, a
cluster of three N-glycosylation sites on the Ig5 domain of Contactin is
involved in its interaction with Neurofascin-155 [40]. Genetic ablation
of genes encoding the axonal proteins Contactin and Caspr, results in
the disruption of paranodal junctions [41–44] as also observed when
the glial component Neurofascin-155 is missing. In Neurofascin-null
mice, lacking both the glial Neurofascin-155 and the neuronal Neuro-
fascin-186 isoforms, the assembly of the nodal and paranodal com-
plexes is prevented. Indeed Neurofascin-186 plays a critical role in the
clustering of the Na+ channels at the node. Transgenic rescue of Neu-
rofascin-155 in myelinating glia indicates its specific role in the for-
mation of paranodes in the PNS and CNS [44,45]. Similarly, it was
shown that the specific ablation of Neurofascin-155 in myelinating glial
cells alters the formation of axo-glial paranodal junctions [43]. Defi-
ciency in any of the paranodal CAMs results in the disappearance of the
transverse bands, enlargement of the junctional gap width and presence

Fig. 1. Molecular organization of the node of Ranvier in the peripheral nervous system.
A: Distinct complexes of cell adhesion molecules are segregated at the different subregions of the node of Ranvier, the nodal gap, the paranode and the juxtaparanode.
At the paranodal junction, the cis-complex of Caspr and Contactin interacts in trans with Neurofascin-155 on the myelin loops. The axonal CAMs associated with their
subcortical scaffold show a regular periodic organization of 190 nm, which corresponds approximately to the size of a myelin loop. The submembrane cytoskeleton is
aligned with axonal βII spectrin facing glial ankyrinB in alternance with actin rings. The paranodal CAMs could be positioned at the side of myelin loops given the
very short intermembrane distance of 3–5 nm at paranodes.
B: Structural organization and possible horizontal orientation of Caspr and Contactin ectodomains. Caspr and Caspr2 contain an N-terminal discoidin (Ds) and a
central fibrinogen (FBG) domain, four lamininG (L1–4) domains. A module of PGY repeats is only present in Caspr. Contactin is a GPI CAM with six Ig domains that
adopt a horse-shoe conformation and four Fibronectin type III repeats.
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of everted myelin loops. In any of these mutant mice, the proper seg-
regation of ion channels is impaired: the nodal area enriched in Na+

channels is broadened and strikingly the juxtaparanodal K+ channels
are mis-distributed and found at paranodes close to nodal Na+ chan-
nels. Such paranodal alterations are leading to impaired action poten-
tial conduction.

A submembrane scaffold is implicated in organizing the paranodal
junctions. On the axonal side, the paranodal scaffold consists of protein
4.1B and αII/βII spectrin. Caspr interacts via its FERM binding domain
with protein 4.1B. The phenotype associated with 4.1B deficiency has
been reported for different knockout mouse lines. Protein 4.1B is not
required for the formation of the transverse bands although moderate
disorganization of paranodes is observed [46–49]. In the same manner,
βII spectrin-deficiency does not prevent the formation of transverse
bands at paranodal junctions [50,51], consistent with the idea of robust
and redundant mechanisms. On the glial side, ankyrinG and ankyrinB
are found at paranodes in the CNS and PNS, respectively and are in-
teracting with Neurofascin-155. Conditional knockout of ankyrinG in
oligodendrocytes disrupts paranodal junction assembly and delays
nerve conduction during early CNS development, albeit, the paranodal
junctions eventually assemble in the adult [52]. In the PNS, ankyrinB
expressed by Schwann cells is not required for paranodal assembly and
maintenance in the sciatic nerve. The multivalent binding property of
ankyrins may allow them to stabilize many glial Neurofascin molecules
in close proximity to each other and to increase binding avidity for
axonal Caspr/Contactin and facilitate the assembly of septate-like
junctions at paranodes.

What is the developmental schedule for the assembly of paranodal
junctions during myelination? In the rat sciatic nerve, the nodal region
is flanked by Caspr-positive paranodes by post-natal day 2 and the
transverse bands are present at post-natal day 4 [106]. In the CNS, the
paranodal transverse bands are not apparent at post-natal day 15 but
are seen at post-natal day 23 in the mouse spinal cord although Caspr is
already enriched at paranodes before P15 [53]. The dynamics of the
paranodal junction assembly can be observed using in vitro paradigms.
In mixed cultures of dorsal root ganglia myelinated by oligoden-
drocytes, the recruitment of axonal Caspr was shown to mirror the in-
crease in Neurofascin-155 at the contact with oligodendrocytes from
the time of the initial contact until they reach their final distribution at
paranodes [54]. During the wrapping of axons by oligodendrocytes,
Caspr and Neurofascin-155 form a loose coil that finally clusters at the
paranodes. The paranodal CAMs are restricted from freely diffusing in
the lateral plane of the axonal membrane as shown for Caspr using
fluorescent recovery after photobleaching (FRAP) in myelinating cul-
ture of dorsal root ganglia [55]. Therefore, the clustering of the para-
nodal CAMs Caspr and Neurofascin-155 occurs before the formation of
transverse bands and is crucial for the assembly of these structures.

5. Structural organization of the junctional complex at paranodes

The ultrastructural organization of paranodal junctions as observed
with electron microscopy revealed the regularly spaced intermembrane
particles - the septate-like junctions - between the axonal membrane
and the myelin loops. However, the arrangement of the paranodal cell
adhesion molecules and submembrane cytoskeleton concerning the
alignment of the transverse bands is not known. Recent advances in the
nanoscale organization of the nodes of Ranvier in teased sciatic fibers
have been obtained using stimulated emission depletion (STED) mi-
croscopy and auto-correlation analysis [56] (Fig. 2). At paranodes, both
axonal Caspr and glial Neurofascin-155 form 190-nm periodic ar-
rangements with a high degree of interdependence between their po-
sitions along the myelin loops. The defined periodicity of 190 nm is
consistent with the typical lattice of actin/spectrin rings along the axon
[57] and at the axon initial segment [58] and a continuity is observed
between subcortical βII spectrin at paranode and βIV spectrin at the
nodal gap [56]. The co-alignment between Caspr and βII spectrin

suggests the role of the subcortical cytoskeleton in the arrangement of
the paranodal CAMs. As mentioned by the authors, the labeling strategy
with antibodies and the imaging technique do not provide sufficient
resolution to identify sub-patterns along the Caspr and Neurofascin-155
paranodal bands. Therefore, it is not possible to establish a relationship
between the 190-nm periodic pattern formed by CAMs and the pat-
terning of transverse bands spaced by 30 nm as visualized by electron
microscopy. Intriguingly, the periodicity of 190 nm corresponds to the
width of a single myelin loop estimated to 150–200 nm in the CNS
suggesting that one helical coil of Caspr winds around the axon per
myelin loop. These data are in favor of the model proposed by [54] in
which the Caspr/Contactin/Neurofascin-155 complex is located at the
inter-junctional zones of the paranodal loops but is not a constituent of
axoglial septa. Indeed, this distribution correlates with the helical
pattern observed during the expansion of lamellar glial membranes and
the compaction of the paranodal loops during myelinogenesis.

At paranodes where the myelin loops are anchored to the ax-
olemma, the distance between the axonal and glial membranes is re-
duced to approximately 3–5 nm, while at the internodal region under
the compact myelin this distance is 10–20 nm as evaluated using con-
ventional and three-dimensional high-voltage electron microscopy
[19]. However, using electron tomography of the mouse corpus cal-
losum in the CNS, the intercellular space between axon and glia at
paranodes was measured to 6–8 nm [59]. An intriguing question is how
the ternary complex of Contactin, Caspr and Neurofascin-155 might fit
within this limited extracellular spacing. Contactin is a GPI-anchored
CAM with six Ig-like domains and four Fibronectin type III (Fn)

Fig. 2. Nanoscale alignment of the axonal and glial CAMs at paranodes.
(A) Two-color images of sciatic nerve paranodes stained for axonal Caspr and
glial Neurofascin. The red dash line indicates the position of the node (N). Scale
bar: 1 μm.
(B) Profile of intensities for Caspr and Neurofascin-155 in the region indicated
by the yellow dashed box after autocorrelation and cross-correlation for the
merge image. The y axis is aligned with the axon. A longitudinal periodicity can
be observed in-phase for the axonal and the glial CAMs. The grey bars highlight
the±0.2 μm lag.
Adapted from D'Este et al., PNAS 2017.
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domains. The crystal structure first reported for Contactin2 indicates
that Contactins adopt a horse-shoe conformation of the Ig1–4 domains
[60]. The dimensions of the Ig1–4 domains are 9.5 nm for the ellipsoid
length, 4.5 nm corresponding to the side-by-side packing of two do-
mains (Ig1,4 or Ig2,3) and 2.5 nm for the thickness of an Ig domain. The
structural feature of Contactin in the extended conformation would be
consistent with 32 nm if we consider a long axis of a single Ig or Fn
domain to be 4 nm. Interestingly, crystallographic analyses indicate
that the Fn regions in Contactins adopt a bent conformation that might
place the ectodomain parallel to the cell surface [61].

Caspr and Caspr2 both contain an N-terminal discoidin and a central
fibrinogen-like domain, four lamininG (Ln) and two EGF-like domains
and 34 or 36 Cys residues making disulfide bonds, respectively. Caspr
and Caspr2 are highly glycosylated with 15 or 12 putative N-glycosy-
lation sites, respectively. A combination of biophysical techniques in-
cluding small angle X-ray scattering and single particle negative stain
electron microscopy has been employed to relate an overall compact
architecture of Caspr2. Caspr2 displays a three-domain clover leaf
feature with a large lobe comprising the Discoidin, Ln1 and Ln2 do-
mains, a middle lobe with the fibrinogen-like and Ln3 domains and a
small lobe with the Ln4 domain and with the EGF-like domains pro-
viding flexibility between lobes. The dimensions of Caspr2 ectodomain
are estimated to be 14 nm long, 9 nm wide and 5 nm thick [62]. The
molecule should fit horizontally in the juxtaparanodal axo-glial cleft of
putatively 7–15 nm. The ectodomain of Caspr is highly homologous to
Caspr2 except for a short motif adjacent to Ln4 termed PGY, since it
includes 10-fold imperfect repetitions of Pro-Gly-Tyr. The PGY may act
as a conformational ER retention signal in Caspr that compels its as-
sociation with Contactin to be exported at the cell surface [37]. The
PGY may also provide an additional conformational variability to
modify the orientation of Caspr relative to the cell membrane plane.
Whether the orientation of the long axis of paranodal CAMs forming a
ternary complex should be parallel to the axonal membrane or not,
remains to be determined using super-resolution microscopy and site-
directed antibodies. As a matter of comparison, it has been shown that
the related molecules α-Neurexins which are synaptic organizers may
lie parallel to the pre-synaptic and post-synaptic membranes. The ec-
todomain of α-Neurexins consists of six lamininS and three EGF-like
domains with a maximum overall length of 16–22 nm. The crystal
structure of Neurexin1-α revealed that it adopts an unexpected L-
shaped so that it may fit horizontally into the synaptic clefts
(12–24 nm) to form trans-synaptic bridges with different partners [63].

Therefore, the question of how the paranodal CAMs may participate
in the structure of transverse bands is still unresolved. As discussed
below, glycolipids could play a role as implicated in the targeting and
stabilization of paranodal CAMs, but do not appear to be concentrated
at paranodes. To my knowledge, extracellular matrix components and
proteoglycans have not been described at paranodes whereas enriched
at the nodal region. Nevertheless, even if located on the side of the
myelin loops at the inter-junctional zone, Contactin, Caspr and
Neurofascin-155 are strictly required for the formation of transverse
bands and for establishing a fixed distance between the apposed axo-
glial membranes. Indeed, the junctional gap width was estimated to
6–7 nm in the Caspr KO mice instead of 3.5 nm in the wild-type [19].
Similarly, the axo-glial gap at paranode was estimated to be enlarged in
the Contactin KO mice (10.2 versus 5.5 nm in the wild-type) [42]. It is
important to note that the presence of transverse bands and the reduced
paranodal width are critical parameters that determine the extent to
which nodal action currents can be short-circuited underneath the
myelin sheath ensuring saltatory conduction.

6. The paracellular barrier function of the paranodes

The paranodal junctions are separating the nodal region enriched in
Na+ channels from the juxtaparanodal region beneath myelin where
the K+ channels are concentrated. An intriguing question is whether

the paranodal region constitutes a pathway for current flow to and from
the juxtaparanodal K+ channels. Electrophysiological studies showed
that the K+ channel blockers had no significant effect on conduction
except during development [64] or in small caliber myelinated fibers in
the CNS [65]. It was therefore important to examine whether the
paranodal junctions could be penetrable to ion diffusion. In in-
vertebrates, the septate junctions of the subperineural glia are forming
the occluding barrier protecting the nervous system from the high
concentration of K+ in the hemolymph [2]. The classical way to ana-
lyze the role of invertebrate epithelial septate junctions in forming a
paracellular barrier is to inject fluorescent 10 kDa dextran in the body
cavity of Drosophila embryos and to assess the dye exclusion from
salivary glands or tracheal tube. The role of paranodal junctions as
permeability barrier was investigated by injecting a fluorescent 70 kDa
(diameter 12–16 nm) dextran tracer in peripheral nerves. The dextran
tracer has been shown to penetrate from the nodal gap into the para-
nodes and to reach the internodal space with a rate (approximately
5 μm in 100–150 min) consistent with diffusion through the helicoidal
pathway between paranodal loops rather than across the transverse
bands [66]. As an illustration, a 1 μm-diameter axon in the CNS displays
a paranode of 5 μm length with 15 myelin lamellae, which corresponds
to a helicoidal trajectory of 47 μm. Hence, this pathway may serve as a
route for current flow activating the juxtaparanodal channels, and also
for antibodies or toxic molecules in pathological conditions. The pre-
sence or absence of transverse bands is not correlated with the diffusion
parameters of dextran across the paranodes - meaning it is compatible
with diffusion through the helicoidal pathway between loops [67].

7. Role of paranodal junctions in the segregation of membrane
domains: the paranodal fence function

The paranodal junctions play also a critical role in the segregation of
membrane subdomains at the node of Ranvier and participate in the
lateral restriction of the nodal gap enriched in Na+ channels both in the
CNS and PNS [68]. Mice that are deficient for one of the paranodal
CAMs, Contactin, Caspr or Neurofascin-155, show disrupted paranodal
junctions, with the absence of transverse bands and increased axo-glial
distance. Also, these mice have broadened Na+ channel clusters at the
node and strikingly, Kv1 channels that are misdistributed at the para-
nodes instead of being restricted at juxtaparanodes [41–44]. However,
the presence of transverse bands is not strictly correlated with the lat-
eral segregation of nodal and juxtaparanodal ion channels. Instead, the
submembranous cytoskeleton at paranodes comprising protein 4.1B, αII
spectrin and βII spectrin has been shown to function as a boundary
restricting the lateral diffusion of Kv1 channels. Indeed, in the βII
spectrin KO mice, the transverse bands are intact while the Kv1 chan-
nels invade the paranodes [50]. This observation indicates that the
paranodal submembranous cytoskeleton rather than the extracellular
junctional complex is implicated in limiting the lateral diffusion of
membrane channels. Such a paranodal fence function may be based on
similar mechanisms than those underlying the lateral diffusion barrier
at the axon initial segment (AIS). The restricted lateral diffusion at the
AIS has been observed for phospholipids [69] and membrane proteins
such as the Na+ channels [70] and could be related to the high density
of membrane molecules tethered at this axonal subdomain according to
the picket fence model [71]. More recently, the confinement at the AIS
of membrane proteins such as GPI-anchored molecules has been also
shown to reflect the periodic arrangement of the submembrane actin
rings [72]. Interestingly, the septin cytoskeleton may also be implicated
in the segregation of membrane subdomains at the node of Ranvier.
Septins are a large family of cytoskeletal GTP-binding proteins con-
served from yeast to mammals forming heteromeric complexes and
acting as scaffolds to promote compartmentalization of membrane
proteins [73]. Multiple septins (including septin 2, 6, 7, 8, 11) are as-
sociated with myelin and enriched at the node and paranode [74].
Besides, septin 6 is interacting with the raft-associated proteolipid MAL
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(myelin and lymphocyte protein) that plays a critical role in the
maintenance of CNS paranodes [75].

8. Role of glycolipids and lipid rafts in the formation and
stabilization of paranodal junctions

Myelinating glial cells elaborate large quantities of a specialized
membrane that is ensheathing axons and contains an unusual lipid
composition with a large proportion of the glycolipid galactocerebro-
side (GalC) and its sulfate form sulfatide. GalC is synthesized from
ceramide by the ceramide-galactosyl-transferase (CGT) enzyme and
sulfatide by cerebroside sulfotransferase (CST). These glycolipids are
components of the outer leaflet of myelin and their carbohydrate
moieties may be involved in intercellular recognition and potential
intermembrane stabilization of the compacted myelin sheath. However,
the CGT null mutant mice lacking both galactocerebroside and sulfa-
tide, apparently develop normally myelinated axons but exhibit with
age a behavioral phenotype suggestive of dysmyelination with tremor
and paralysis and prematurely death. Among ultrastructural abnorm-
alities of myelinated axons in the ventral spinal cord, the nodes of
Ranvier are dramatically altered with paranodal loops facing away
from the axon and transverse bands that do not form [76]. Precisely, the
paranodal junctions initially form at 2 postnatal weeks without trans-
verse bands and thereafter rapidly deteriorate. The absence of trans-
verse bands is correlated with the diffuse distribution of glial and ax-
onal paranodal CAMs, Neurofascin-155 and Caspr [77]. It has been also
reported that the Myelin-associated glycoprotein (MAG), which is an Ig-
CAM localized at the periaxonal side of the myelin sheath, is interacting
with galactolipids to stabilize the paranodal junctions [53]. As observed
in CGT-deficient mice, the CST null mice only lacking sulfatide, display
strong alteration of paranodes in the PNS and CNS, without clustering
of Caspr and misdistribution of ion channels at the node of Ranvier
whereas the compact myelin is preserved [78]. By which mechanisms
are glycolipids involved in the stabilization of Neurofascin-155 at
paranodes? It is known that glycolipids, which are associated with lipid
rafts, are involved in the trafficking and topographical organization of
membrane proteins. The galactolipids, which are not enriched at
paranodes, might be required for the proper targeting or clustering of
Neurofascin-155. Neurofascin-155 which is a palmitoylated protein
[79] becomes partitioned to the low-density Triton X-100-insoluble
fraction, as an indication it is associated with the lipid rafts, only from
the second postnatal week in the sciatic nerve, at a developmental stage
corresponding to the formation of paranodal junctions [80]. The axonal
ligands of Neurofascin-155, the GPI-anchored Contactin and Caspr are
also associated with the lipid rafts [35] indicating that the partitioning
of the paranodal CAMs into the raft microdomains may favor their as-
sembly and stabilization at the axo-glial junctions. The raft-association
of Neurofascin-155 is reduced in the CGT mutant mice as an indication
that the galactolipids may favor the assembly of paranodal CAMs within
lipid microdomains [80].

Complex gangliosides are widespread in both neuronal and glial
membrane and their biosynthesis requires β-1,4-N-acetyl galactosa-
minyl-transferase 1 (GalNac-T) enzyme activity. In particular, the GM1
ganglioside is present at paranodes. As observed for the CGT and CST
null mutants, mice deficient for the GalNac-T enzyme show alterations

of paranodes with everted myelin loops, absence of transverse bands
and mis-distribution of ion channels at the nodes of Ranvier [81]. Se-
lective reintroduction of complex ganglioside expression in neuronal
but not in glial membranes rescue the paranodal phenotype [82]. The
neuronal gangliosides GT1b and GD1a are trans-receptor for MAG
stably associated with sulfatide expressed at the glial membrane
[83,84]. Using a combination of mice mutant for CST and GalNac-T, the
study from [85] establishes that glial sulfatide and axonal gangliosides
play interdependent roles in the tethering of Neurofascin-155 and MAG
to maintain the integrity of axo-glial paranodal junctions [86].

9. The paranodal junctions are targeted in autoimmune
demyelinating diseases

The question of whether the paranodal junctions could be a vul-
nerable site for autoantibody attack in demyelinating inflammatory
diseases of the CNS and PNS has been tackled (Table 2). Nodal or
paranodal antigens have been identified as autoimmune targets in
multiple sclerosis (MS) although in a minor subgroup of patients
[87–89]. Autoantibodies that recognize both Neurofascin-186 and -155
have been characterized in MS patients. Passive transfer experiments in
a rat model of the disease, the experimental allergic encephalomyelitis
(EAE), indicate that these anti-Neurofascin autoantibodies may be pa-
thogenic by selectively targeting the nodes of Ranvier, mediating
complement deposition, axonal injury and disease exacerbation [88].
Also, the nodal and paranodal domains are vulnerable in an environ-
ment of microglial inflammation as observed in MS normal-appearing
white matter and EAE [90,91]. Therefore, the disruption of paranodal
junctions in inflamed CNS would impinge on normal saltatory con-
duction and contribute to the disease.

In peripheral autoimmune diseases such as the Guillain-Barré syn-
drome, myelin breakdown is seen in motor and sensory nerves, and
retraction of myelin is observed at nodes of Ranvier leading to focal
demyelination. The acute inflammatory demyelinating polyneuropathy
(AIDP) is the most common form of Guillain-Barré syndrome in Europe
and North America. The axonal variant of Guillain-Barré syndrome,
which is the acute motor axonal neuropathy (AMAN), is more com-
monly found in Asia and has been shown to result from infection with
Campylobacter jejuni associated with diarrheal illness. Carbohydrate
mimicry between human ganglioside GM1 and Campylobacter jejuni
lipo-oligosaccharides could contribute to the disease [92]. In animal
models, passive transfer of anti-galactocerebroside antibodies causes
focal paranodal disruption and subsequent demyelination. The immune
attack directed against gangliosides (GM1, GQ1b and GD1a) may lead
to axonal degeneration and paralysis. Anti-GM1 and anti-GQ1b anti-
bodies bind to peripheral nerves and neuromuscular junctions and anti-
GD1a antibodies bind to the node of Ranvier, paranodal myelin and
neuromuscular junctions. Upon binding, the antibodies activate the
complement cascade, resulting in the formation of the membrane attack
complex, disruption of the nodal architecture and dispersion of sodium
channel clusters [93]. The relationship between anti-ganglioside anti-
bodies and AMAN is well established, whether less evidence indicates
an association with AIDP.

Recently, it has been reported that up to one-third of patients with
peripheral diseases, either Guillain-Barré syndrome or chronic

Table 2
Neurological disorders associated with the molecular components of paranodal junctions.

Gene Autoimmune neuropathy References Genetic disease References

Caspr CIDP, Guillain-Barré syndrome [98,100] Congenital hypomyelinating neuropathy [113,114]
Arthrogryposis multiplex congenita [112]

Contactin CIDP, Guillain-Barré syndrome [94,98] Lethal congenital myopathy [116]
Neurofascin-155 CIDP

MS
[102–104]
[88,89]

Congenital severe hypotonia, amimia and areflexia [110]

4.1B/DAL-1 Tumor suppressor in cancer including meningiomas [117]
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inflammatory demyelinating polyneuropathy (CIDP) show IgG re-
activity against the nodes of Ranvier as tested using preparations of
teased mouse sciatic nerves [94]. The field of CIDP has undergone a
major advance with the identification of autoantibodies against nodal
or paranodal proteins in a subset of patients with specific disease
phenotypes [95]. CIDP is a very heterogeneous disorder with sensor-
imotor alterations, predominantly proximal weakness and relapsing or
progressive disease. Autoantibodies of the IgG4 subtype directed
against Contactin, Caspr or Neurofascin-155 were identified in patients
with severe subtypes of CIDP and poor response to intravenous im-
munoglobulin [96].

9.1. Pathogenic autoantibodies against Contactin

Two independent studies first reported anti-Contactin auto-
immunity in Guillain-Barré syndrome and CIDP patients using different
strategies, either candidate approach or unbiased mass-spectrometry
analysis. In the first study, IgG from a Japanese cohort were analyzed
using binding assay on HEK cells transfected with nodal or paranodal
CAMs and 12–16% reacted against Contactin [97]. In the second study
of Spanish patients, CIDP IgG bound on cultured hippocampal neurons
were immunoprecipitated to identify target antigens revealing 4 pa-
tients (6%) with antibodies against Contactin mainly of the IgG4 sub-
type [98]. Passive transfer of anti-Contactin IgG4 purified from these
patients is pathogenic in a rat model of autoimmune neuropathy, the
experimental allergic neuritis, and induces the selective loss of para-
nodal markers without demyelination, strong nerve activity loss, pro-
gressive clinical deterioration and gait ataxia [99]. After intraneural
injection, IgG4 (and not IgG1) access the paranode borders near the
nodal gap and fill the paranodal junctions after 3 days (Fig. 3A). The
mechanisms by which anti-Contactin IgG4 cause paranode dismantling
have been analyzed in vitro in myelinating culture of sensory neurons
[40]. Cell aggregation assays indicate that anti-Contactin auto-
antibodies are function-blocking and prevent the trans-interaction of
Neurofascin-155 together with Caspr/Contactin expressed in hetero-
logous cells (Fig. 3C). By preventing assembly of the ternary complex,

autoantibodies may, in turn, provoke the lateral dispersion of paranodal
CAMs along the axon and disruption of septate-like junctions. Finally,
epitope mapping of autoantibodies combined with mutagenesis of the
N-glycosylation sites of Contactin pointed to the critical role of N-linked
carbohydrates in CAM interaction. The IgG of one CIDP patient were
selectively directed against Contactin bearing mannose-rich N-glycans.
Strikingly, it was previously shown that oligomannose type sugars of
Contactin promote its association with its glial partner Neurofascin-155
[37]. Next, a cluster of 3 N-glycosylation sites (N467, N473, N494) has
been mapped on the Ig5 domain of Contactin, which is implicated in
Neurofascin-155 binding [40]. Interestingly, the reactivity of IgG from
another CIDP patient was precisely dependent on this cluster of N-
glycans. Worth noting, the anti-Contactin IgG4 may be pathogenic by
interfering with the assemblage of the axo-glial junctional complex.
Autoantibodies targeting Caspr at paranodes were also described in
CIDP and Guillain-Barré syndrome associated with severe pain
[98,100].

9.2. Pathogenic autoantibodies against Neurofascin-155

Antibodies against Neurofascin-155 are also implicated in the pa-
thogenesis of CIDP. Autoantibodies to Neurofascin155, predominantly
of the IgG4 subtype, have been identified in CIDP patients (7% of all
patients with CIDP) with an aggressive onset. These patients share
specific clinical features including predominant distal weaknesses,
tremor and ataxia with cerebellar features [101–104]. Sural nerve
biopsies show paranodal demyelination in the absence of inflammation
and loss of the transverse bands between the paranodal loops and ax-
olemma [105] (Fig. 3B). The pathogenic effects of patient-derived anti-
Neurofascin-155 IgG4 have been examined using chronic intrathecal
infusion in the rat [106]. Severe clinical deficits are observed with
complete tail paralysis and paraparesis associated with slowing nerve
conduction in the ventral spinal roots. Paranodal alterations are ob-
served in animals treated with anti-Neurofascin-155 IgG4 without
nodal defects or demyelination. However, the pathogenic mechanisms
of anti-Neurofascin-155 antibodies are still elusive. They do not

Fig. 3. The paranodal CAMs are targeted by auto-
antibodies in chronic inflammatory demyelinating
polyneuropathy (CIDP).
(A) Anti-contactin IgG4 from CIDP patients (green)
progressively invade (arrows) the paranodes of the
sciatic nerve after intraneural injection in rats.
Teased sciatic nerves 1 or 3 days after injection were
immunostained for contactin (red) and panNav
(blue) as markers for paranodal and nodal regions,
respectively. Bar: 10 μm.
(B) Ultrastructure of sural nerve biopsy from CIDP
patients. A selective loss of paranodal transverse
bands (yellow arrows) is observed in patients with
anti-Neurofascin155 antibodies. Bar: 200 nm.
(C) Anti-contactin IgG4 from CIDP patients display
function blocking activity in cell aggregation assays.
N2a cells transfected with either Neurofascin-155-
mCherry or Contactin/Caspr-GFP were incubated
with control or anti-contactin IgGs. Bar: 40 μm.
Adapted from Manso et al. [99] (A), Vallat et al.
[105] (B) and Labasque et al. [40] (C).
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penetrate the paranodal barrier after intraneural injection of rat sciatic
nerves in contrast to anti-Contactin IgG4. Instead, anti-Neurofascin-155
IgG4 are deposited on Schwann cell surfaces and microvilli around the
nodes of Ranvier [106]. The autoantibodies to Neurofascin-155 do not
perturb the interaction of Neurofascin-155 with its axonal partners
Contactin and Caspr, as tested in cell aggregation assays [106]. These
autoantibodies are directed against the third fibronectin domain of
Neurofascin-155, which is specific for the glial splicing variant. This
domain is not implicated in interaction with Contactin since this is the
Ig-like domains 5 and 6 which are required for Contactin binding and
paranodal assembly [39]. Interestingly, the third fibronectin domain of
Neurofascin-155 contains a thrombin cleavage site [107] and is also
subject to proteolytic processing by metalloproteases that regulates its
adhesive function [108]. Hence, it could be possible that anti-Neuro-
fascin-155 IgG4 may favor Neurofascin-155 shedding by affecting the
fibronectin domain structure thus preventing axo-glial interaction with
Contactin. Therefore, autoantibodies to Contactin and Neurofascin-155
induce paranodopathies through subtle perturbing molecular mechan-
isms. These autoantibodies to paranodal proteins, especially IgG4 sub-
class, are associated with unique features and treatment strategy be-
cause often refractory to conventional immunotherapies. IgG4 do not
mediate complement attack, or internalization of the target antigens
but can interfere with protein-protein interaction [109]. Thus, the
primary role of IgG4 anti-paranodal protein antibodies may be the
blockade of paranodal assembly -with intact internodes in the absence
of inflammation- leading to conduction failure.

10. Genetic disorders associated with paranodal disruption

Recent reports indicate that inherited neuropathies affecting per-
ipheral nerves and neuromuscular junctions are associated with bi-al-
lelic mutations in genes coding for paranodal CAMs (Table 2). Recently
a recessive mutation of the Neurofascin gene (NFASC) was identified in
a proband creating a stop codon in the third fibronectin domain so that
it is predicted to selectively affect glial Neurofascin-155 leaving the
neuronal isoforms intact. This was confirmed by an immuno-
fluorescence study of skin biopsies showing the absence of glial Neu-
rofascin-155 at paranodes and concomitant loss of axonal Caspr. The
child suffered from severe congenital hypotonia, contractures of fingers
and toes and no reaction to touch or pain [110]. These pathological
features resemble the phenotypic alterations observed in mice with
conditional deletion of glial Neurofascin. The lack of paranodal Neu-
rofascin-155 in mice causes a reduction of conduction velocities in
peripheral nerves associated with severe defects of motor coordination
[43,111].

Loss-of-function mutations in CNTNAP1 coding for Caspr were
identified in patients with a rare neonatal syndrome responsible for
hypotonia, weakness and sometimes arthrogryposis. In these patients,
abnormal axon myelination is associated with severe abnormalities of
the nodes of Ranvier, absence of transverse bands at paranodes and
marked reduction of motor nerve conduction velocity [112–114].
Heterozygous mutations in CNTNAP1 were also identified in a patient
with a Charcot Marie Tooth disease, presenting abnormal nerve con-
duction consistent with focal motor/sensory demyelinating neuropathy
[115]. Finally, a mutation in CNTN1 coding for Contactin was reported
in a familial form of lethal congenital myopathy. The underlying cause
of muscle weakness could be neuropathic also implicating Contactin at
the neuromuscular junctions [116]. Therefore, possible overlapping
molecular mechanisms of paranodal damage at peripheral nerves may
be involved in both the immune-mediated and the genetic diseases.

11. Concluding remarks

Recent advances in the study of pathogenic mechanisms of in-
flammatory demyelinating neuropathy with the identification of auto-
antibodies directed against paranodal CAMs have clinical implications

from diagnosis to personalized therapeutic approaches. Besides, these
pathogenic autoantibodies appeared to be useful as functional tools to
evaluate the molecular basis of CAM interactions at septate-like junc-
tions, i.e. underlining the importance of selective N-glycosylation. In
the future, the discovery of novel antigenic reactivity in CIDP may re-
veal new partners implicated in the assembly of paranodal junctions
and highlight their mode of interaction. Molecular structural analyses
of Contactin and Caspr family members have unveiled the possibility of
a horizontal orientation for the cell-cell adhesive complex allowing it to
fit into the reduced intermembrane width at paranodes. Along with
nanoscale imaging of the nodes of Ranvier, further studies are needed
for the comprehensive understanding of the role of the Caspr/
Contactin/Neurofascin-155 complex in the assembly of the ladder-like
structure of paranodal junctions.
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