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Structure of the hydraulic jump in
convergent radial flows

K. A. Ivanova1 and S. L. Gavrilyuk1,†
1Aix Marseille Univ, CNRS, IUSTI, 13453 Marseille cedex 13, France

We are interested in the modelling of multi-dimensional turbulent hydraulic jumps 
in convergent radial flow. T o d escribe t he f ormation o f i ntensive e ddies ( rollers) at 
the front of the hydraulic jump, a new model of shear shallow water flows i s used. 
The governing equations form a non-conservative hyperbolic system with dissipative 
source terms. The structure of equations is reminiscent of generic Reynolds-averaged 
Euler equations for barotropic compressible turbulent flows. Two t ypes o f dissipative 
term are studied. The first o ne c orresponds t o a  C hézy-like d issipation r ate, a nd the 
second one to a standard energy dissipation rate commonly used in compressible 
turbulence. Both of them guarantee the positive definiteness o f t he R eynolds stress 
tensor. The equations are rewritten in polar coordinates and numerically solved by 
using an original splitting procedure. Numerical results for both types of dissipation 
are presented and qualitatively compared with the experimental works. The results 
show both experimentally observed phenomena (cusp formation at the front of the 
hydraulic jump) as well as new flow p atterns ( the s hape o f t he h ydraulic jump 
becomes a rotating square).

Key words: pattern formation, shallow water flows, shear waves

1. Introduction

Much work has been done on the study of hydraulic jumps in a divergent radial flow
(Liu & Lienhard 1993; Bush & Aristoff 2003; Ray & Bhattacharjee 2007; Kasimov
2008; Andersen, Bohr & Schnipper 2010; Teymourtash, Khavari & Passandideh-Fard
2010; Eyo, Joshua & Udoh 2011; Martens, Watanabe & Bohr 2012; Labousse & Bush
2013; Rojas, Argentina & Tirapegui 2013). Such a flow can easily be created by the
vertical impact of a jet of water on a solid flat surface. After the impact, the flow
spreads radially outwards and at some distance from the point of impingement an
abrupt depth transition occurs (a hydraulic jump appears). Despite the radial symmetry
of the initial flow and corresponding boundary conditions, the hydraulic jump is not
necessarily circular: its shape can even have a polygonal structure with sharp corners
(see Ellegaard et al. (1998, 1999), Bush, Aristoff & Hosoi (2006)).

An interesting experimental study for convergent radial flows was recently
performed by Foglizzo et al. (2012, 2015). A radial symmetry breaking was also

† Email address for correspondence: sergey.gavrilyuk@univ-amu.fr

http://orcid.org/0000-0003-4915-4126
http://orcid.org/0000-0003-4605-8104
mailto:sergey.gavrilyuk@univ-amu.fr
https://doi.org/10.1017/jfm.2018.901
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


observed: under some flow conditions a rotating singular point (a cusp) appears at
the front of the hydraulic jump.

A reliable mathematical model which is capable of capturing this complex
phenomenon of symmetry breaking is still lacking. The aim of this article is to model
such a phenomenon by using the model of shear shallow water flows (Teshukov
2007; Richard & Gavrilyuk 2012, 2013). Shear effects are necessary to describe
surface rollers of the hydraulic jump. In the one-dimensional (1D) case, such a
model complemented by friction terms was used for the study of travelling waves
down inclined planes (roll waves) and turbulent hydraulic jumps. A strong physical
adequacy of the model with the experimental observations was found (Richard &
Gavrilyuk 2012, 2013; Richard 2013; Ivanova et al. 2017). The classical Saint-Venant
equations are not able to predict these phenomena, because they do not take into
account vorticity effects. The new model was able to form rollers in the hydraulic
jumps through the Rankine–Hugoniot relations for the corresponding hyperbolic and
conservative equations. In particular, the model was able to describe the hydraulic
jump shape as well as jump toe oscillations appearing when the Froude number is
larger than approximately 1.5. A natural step would be to apply this model for the
description of multi-dimensional turbulent hydraulic jumps, and, in particular, to see
if the model of shear shallow water flows is able to describe the breaking of radial
symmetry in hydraulic jumps observed experimentally.

The governing equations are obtained by depth averaging of the multi-dimensional
Euler equations (Teshukov 2007; Richard & Gavrilyuk 2012, 2013). The hypothesis of
weakly sheared flows allows us to keep the second-order depth-averaged correlations
in the governing equations but neglect the third-order correlations, and thus to close
the governing system in the dissipationless limit.

The corresponding multi-dimensional model of shear shallow water flows is a
hyperbolic system of equations which is reminiscent of generic Reynolds-averaged
Euler equations for barotropic turbulent flows. The model has three families of
characteristics, corresponding to the propagation of surface waves, shear waves and
average flow. The main difficulty is the non-conservativity of the governing equations:
for six unknowns (the fluid depth, two components of the depth-averaged horizontal
velocity, and three independent components of the symmetric Reynolds stress tensor)
one has only five conservation laws: conservation of mass, momentum, energy and
mathematical ‘entropy’. The last one determines the evolution of the determinant
of the Reynolds stress tensor. The non-conservative nature of the multi-dimensional
equations represents an enormous difficulty from the mathematical and numerical
point of view. The definition and computation of discontinuous solutions for
non-conservative hyperbolic equations is a challenging problem. Recently, a new
numerical method based on Cartesian meshes was developed for this non-conservative
system (Gavrilyuk, Ivanova & Favrie 2018a). In the present work we extend this
technique to polar coordinates.

Another difficulty is to introduce the dissipative terms into a model that still
remains an empirical procedure. In particular, in Gavrilyuk et al. (2018a) we
introduced dissipative terms which ensure the positive definiteness of the Reynolds
stress tensor. Also, in the 1D limit we recovered the dissipation law developed in
Richard & Gavrilyuk (2013). In particular, this dissipation law allowed us to describe
the ‘fingering’ phenomenon (i.e. the formation of transverse waves on the front of
roll waves). We will also test here another type of dissipation law used earlier in
Gavrilyuk, Liapidevskii & Chesnokov (2016) to study surface wave propagation in
shear flows.
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Different dissipation laws give us different flow patterns. The first type of
dissipation law gives us hydraulic jumps with the formation of a rotating cusp
at the front of the hydraulic jump, as in the experiments by Foglizzo et al. (2012).
The second type of dissipation law gives us an unusual square-like hydraulic jump.
This square-like jump has no sharp corners and rotates at a constant velocity. This
is different from the sharp corner structures of hydraulic jumps obtained in divergent
radial flows (Ellegaard et al. 1998, 1999).

The structure of the article is organized as follows. In § 2 the ‘shear shallow
water’ equations are presented. Two types of dissipative source term are proposed
in § 3. Experimental works are briefly discussed in § 4. The governing equations of
shear flows rewritten in polar coordinates, and the corresponding initial and boundary
conditions are presented in §§ 5, 6. The numerical results are discussed in § 7. In
appendix A, the numerical scheme for the non-conservative equations is written in
polar coordinates.

2. Two-dimensional (2D) shear shallow water flows
The system describing multi-dimensional shear shallow water flows over a flat

bottom without friction effects can be written in the form (Teshukov 2007; Gavrilyuk
& Gouin 2012; Richard & Gavrilyuk 2012, 2013)

∂h
∂t
+ div (hU)= 0,

∂ (hU)
∂t
+ div

(
hU ⊗U +

gh2

2
I + hP

)
= 0,

DP

Dt
+
∂U
∂x

P + P

(
∂U
∂x

)T

= 0.


(2.1)

The system is obtained by averaging the incompressible Euler equations over the fluid
depth and using the hypothesis of smallness of the horizontal vorticity (weakly sheared
flows). Here t is the time, x= (x, y)T are the Cartesian coordinates, h is the fluid depth,
g is the gravity, U = (U, V)T is the depth-averaged horizontal velocity, D/Dt means
the material derivative with respect to the mean motion

D
Dt
=
∂

∂t
+UT

∇, (2.2)

P = PT is the symmetric stress tensor which measures the distortion of the
instantaneous horizontal velocity profile Ũ(t, x, y, z), which depends a priori on
the vertical coordinate z. The definitions of U and P are as follows:

U =
1
h

∫ h

0
Ũ(t, x, y, z) dz, P =

1
h

∫ h

0
(Ũ −U)⊗ (Ũ −U) dz. (2.3a,b)

The tensor P is positive definite. The positive definiteness of P is a consequence of
the Cauchy–Schwarz inequality. The sign ⊗ means the tensor product and I is the
identity tensor. Equations (2.1) admit the energy conservation law

∂

∂t

{
h
(

1
2
|U|2 + ei + eT

)}
+ div

{
hU
(

1
2
|U|2 + ei + eT

)
+

(
gh2

2
I + hP

)
U
}
= 0,

(2.4)
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with
ei =

1
2 gh, eT =

1
2 tr(P), (2.5a,b)

and an additional conservation law

∂hΨ
∂t
+ div (hUΨ )= 0, Ψ =

det (P)
h2

. (2.6a,b)

The variable Ψ will be referred to as ‘entropy’ (mathematical) because this quantity
is transported along the mean flow in the same way as the true entropy for the
Euler equations of compressible fluids. Also, we will see that this quantity will
increase across the shocks in analogy with the conventional entropy. The 1D system
also admits an analogue of Ψ having a clear physical meaning. This quantity was
associated with the enstrophy (squared vorticity). The enstrophy increase corresponds
to vorticity creation: a roller appears at the forward slope of the hydraulic jump
(Richard & Gavrilyuk 2012, 2013; Ivanova et al. 2017). The system (2.1) is
composed of the equations of mass balance, horizontal momentum and the evolution
equation for the stress tensor. The governing equations are hyperbolic, if P is positive
definite, but not in conservative form (for proof, see Gavrilyuk et al. (2018a)). For
discontinuous solutions, the Rankine–Hugoniot relations come only from the mass,
momentum and energy equations. For six unknowns (the fluid depth, two components
of the depth-averaged horizontal velocity, and three independent components of the
symmetric Reynolds stress tensor) one has only five conservation laws (conservation
of mass, momentum, energy and mathematical ‘entropy’). For 1D flows the system
of Rankine–Hugoniot relations is closed.

3. Dissipative terms compatible with the positive definiteness of the Reynolds
stress tensor

Now we add dissipative terms into the model. Even if this process is always
empirical, some constraints should be respected. For example, the dissipation law
should always be compatible with the energy decrease and guarantee the positive
definiteness of the Reynolds stress tensor.

Let us add the dissipative terms in the following form:

ht + div(hU)= 0,

(hU)t + div
(

hU ⊗U +
gh2

2
I + hP

)
=−Cf |U|U,

DP

Dt
+
∂U
∂x

P + P

(
∂U
∂x

)T

= D, D = DT.


(3.1)

In particular, the equations for P imply

h2 D
Dt

(
det(P)

h2

)
= tr(P)tr(D)− tr(PD). (3.2)

The friction force in the momentum equation is a classical expression, where Cf

is the Chézy coefficient. The dissipative tensor D should somehow be defined. The
equations (3.1) should satisfy the energy conservation law

https://doi.org/10.1017/jfm.2018.901
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


∂

∂t

(
h

1
2
|U|2 + ei + eT + div hU

1
2
|U|2 + ei + eT +

gh2

2
I + hP

)
U
)

=−Cf |U|3 −Q, (3.3)

where the dissipative source term Q should be positive. The positivity of Q is the
analogue of the second law of thermodynamics. The compatibility of (3.1) and (3.3)
implies the expression for Q in terms of D:

tr (D)=−
2
h

Q. (3.4)

By analogy with the Stokes hypotheses for the Navier–Stokes equations, we assume
that the dissipation tensor D is an isotropic tensor function of P. Then, for the 2D
case, D is linear in P:

D = aP + bI, (3.5)

where a and b are functions of invariants of P. Consider the simplest case where b=0.
This choice allows us to obtain a natural reduction to the Saint-Venant equations in
the limit P = 0, and to interpret the parameter −a−1 > 0 as a characteristic relaxation
time. Two types of dissipation law will be tested below.

3.1. First type of dissipation law
The first type of dissipation is

D = aP, a=−
2α
h
|U|3, (3.6a,b)

where α has the units s2 m−2. The multiplier −2|U|3/h is for convenience only. In
particular, this choice implies the equation for the ‘entropy’ in the form

h2 D
Dt

(
det (P)

h2

)
=−

4α
h
|U|3det (P) . (3.7)

Equations (3.4) and (3.6) imply the following relation between Q and α:

Q= αtr (P) |U|3. (3.8)

We will introduce now a new dimensionless parameter κ =αtr (P). To recover the 1D
case studied previously (Richard & Gavrilyuk 2012, 2013), we will finally choose

κ =max

0,Cr

tr (P)
h2
− ϕ

tr (P)
h2

> 0. (3.9)

Here ϕ and Cr are the model constants: ϕ is associated with the enstrophy of
small vortexes near the bottom, and Cr is the coefficient associated with the roller
dissipation. We will search for these parameters to have qualitative agreement with
experiments. As it follows from (3.7) and (3.9), ‘entropy’ Ψ is decreasing on
continuous solutions, but always stays positive. This means that the dissipation
law also guarantees the positive definiteness of P.
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3.2. Second type of dissipation law
Another type of dissipation tensor D can be considered:

D = aP, a=−
2
h
κtr(P)1/2. (3.10a,b)

As a consequence of (3.8), one has

Q= κtr(P)3/2 > 0. (3.11)

This type of dissipation was used, in particular, to study solitary wave breaking
(Gavrilyuk et al. 2016). Moreover, (3.11) corresponds to the classical energy
dissipation rate with the dissipation rate scale h (Townsend 1956). Such a choice
also guarantees that P is positive definite for any time, if initially it was positive
definite.

4. Experiments on hydraulic jumps in a radial flow
Circular hydraulic jumps are commonly observed in a kitchen sink when a vertically

falling tap water jet strikes a horizontal plate and then spreads radially outwards (Liu
& Lienhard 1993; Bush & Aristoff 2003; Bush et al. 2006; Ray & Bhattacharjee
2007; Andersen et al. 2010; Eyo et al. 2011; Martens et al. 2012; Labousse & Bush
2013). Using a more viscous liquid, Ellegaard et al. (1998, 1999) and Bush et al.
(2006) observed breaking of radial symmetry of the hydraulic jump front. More
exactly, Ellegaard et al. (1998, 1999) obtained polygonal shapes of hydraulic jumps
in divergent radial flow with sharp corners: ‘the sharp corners of the polygons carry a
large radial flux, while the sides generate resistance to the stream’. Bush et al. (2006)
also noted that: ‘some polygonal . . . forms were subject to weak time-dependent
fluctuations, typically characterized by a net rotational motion of the entire jump
structure, or the propagation of wave-like disturbances towards a single point on the
jump’.

Our numerical study will concern the hydraulic jump in a convergent rather than
a divergent radial flow. Such experiments recently performed by Foglizzo et al.
(2012, 2015). In these experiments, the fluid is radially injected inwards and strikes
a hollow cylinder placed in the centre, through which the water is evacuated. As
a consequence, a hydraulic jump is formed separating convergent supercritical flow
from a deeper subcritical one. The hydraulic jump also exhibits the appearance
of radial asymmetries: after formation of the hydraulic jump, it starts to oscillate
randomly, then the amplitude of oscillations grows and, finally, the flow becomes
very asymmetric and develops a singularity of the jump front that starts to rotate at
a constant angular velocity.

We want to understand if model (2.1) is able to reproduce, at least qualitatively, the
last experiments. Also, it would be interesting to study the influence of different types
of dissipation on the solution properties.

5. Governing equations in polar coordinates
To model the hydraulic jumps in radial flow, we rewrite the system (2.1) in polar

coordinates (see appendix A). In the dissipationless case over a flat bottom the system
(2.1) becomes

∂(hr)
∂t
+
∂(rhUr)

∂r
+
∂(hUθ)

∂θ
= 0, (5.1)
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∂(rhUr)

∂t
+
∂

∂r

{
r
(

hU2
r +

gh2

2
+ hPrr

)}
+
∂

∂θ
(hUrUθ + hPrθ)

= h(U2
θ + Pθθ)+

gh2

2
, (5.2)

∂ (rhUθ)

∂t
+
∂

∂r
{rh (UrUθ + Prθ)} +

∂

∂θ

(
hU2

θ +
gh2

2
+ hPθθ

)
=−h (UrUθ + Prθ) , (5.3)

DPrr

Dt
− 4

Uθ

r
Prθ + 2

(
∂Ur

∂r
Prr +

Prθ

r
∂Ur

∂θ

)
= 0, (5.4)

DPrθ

Dt
+

Uθ

r
(Prr − 2Pθθ)+

Pθθ
r
∂Ur

∂θ
+ Prr

∂Uθ

∂r
+

Prθ

r

{
∂Uθ

∂θ
+
∂(rUr)

∂r

}
= 0, (5.5)

DPθθ
Dt
+ 2

Uθ

r
Prθ + 2

{
∂Uθ

∂r
Prθ +

Pθθ
r

(
∂Uθ

∂θ
+Ur

)}
= 0, (5.6)

∂

∂t

{
hr
(

1
2
|U|2 + E

)}
+
∂

∂r

{
r
[

hUr

(
1
2
|U|2 + E

)
+

gh2

2
Ur + h(PrrUr + PrθUθ)

]}
+
∂

∂θ

{
hUθ

(
1
2
|U|2 + E

)
+

gh2

2
Uθ + h(PrθUr + PθθUθ)

}
= 0, (5.7)

with
D
Dt
=
∂

∂t
+Ur

∂

∂r
+

Uθ

r
∂

∂θ
. (5.8)

The system (5.1)–(5.7) admits the ‘entropy’ conservation law

D
Dt

(
det(P)

h2

)
= 0. (5.9)

We have now to add into the model the dissipative terms and bottom topography. The
bottom will consist of an inclined plane of a mild slope superposed with a bump
modelling the hollow cylinder (see figure 1). Analytically, the expression of the bottom
function is given by

b(r)=

 A

[
(r− R− − L1)

2
− L2

1

]2

L4
1

, if 0< r− R− < 2L1,

(r− R− − 2L1) tan β, if 2L1 + R− < r< R+.
(5.10)

Here β is a small inclination angle, A is the bump amplitude, 2L1 is the radial bump
width, R− is the internal boundary radius and R+ is the external boundary radius. The
formula (5.10) is used to model the ‘physical’ cylinder of height A which is placed
at r= R− + L1.

6. Initial and boundary conditions
Now, we need to impose boundary conditions on the cylinder. Formally, the

number of boundary conditions should be equal to the number of characteristics
entering the flow domain. For stationary flows it is natural to impose the criticality
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Fr > 1

Fr > 1

Fr < 1

ı

r = R- r = R+
L1

FIGURE 1. (Colour online) The bottom topography used in numerical simulations.

condition (Froude number is equal to one) on the top of the cylinder. When the
flow is non-stationary and transcritical, the problem of boundary conditions is an
open question even for the Saint-Venant equations (cf. Shiue et al. (2011)). Indeed,
at a given time we do not know whether the flow is subcritical or supercritical. In
particular, if the flow is subcritical, the perturbations can propagate inside the flow
domain and change the solution. We thus need a remedy to impose mathematically
relevant boundary conditions. For this, we will compute the solution in a larger
domain by introducing a bump allowing us to accelerate the downslope flow and
transform it from subcritical to supercritical flow. Thus, the flow will be supercritical
at both boundaries r=R− and r=R+. In particular, at r=R− there is no characteristic
entering the flow domain, so we can use Neumann boundary conditions. At r = R+
we impose all unknowns. Such an approach allowing us to control the fluid flow at
the downstream crest was also used by Winters (2016).

We numerically solved the equations (5.7) where, additionally, the dissipative terms
and bottom topography are added (see appendix A) in the computational domain:

R− 6 r 6 R+, 0 6 θ 6 2π. (6.1a,b)

The initial conditions are

h(r, θ, t= 0)=
{

1.5h0 [m], if r− R− 6 0.3(R+ − R−),
h0 [m], else (6.2)

Ur(r, θ, t= 0)=−q0/(rh), Uθ(r, θ, t= 0)= 0, (6.3a,b)

Prr(r, θ, t= 0)= ϕh2, Prθ(r, θ, t= 0)= 0, Pθθ(r, θ, t= 0)= εϕh2, ε = 10−8.

(6.4a−d)
Here h0 is a flow depth at r=R+, q0> 0 is a flow discharge. The values of parameters
are given in table 1. Obviously, we respect the inequality 2L1 < 0.3(R+ − R−). We
have to underline that the initial conditions are unimportant, because for large time
the solution is defined only by the boundary conditions.

This initial radial flow is perturbed at the boundary r= R+:

h=h0, Ur=−q0(1+0.01 sin(nθ))/(R+h0), Uθ =0, Prr=Pθθ =0.5ϕh2
0, Prθ =0.

(6.5a−e)
We added a small perturbation of the radial velocity in the θ -direction, with n being
any natural number. We took n = 16, which corresponds to the number of injecting
pumps used, in particular, in experiments by Foglizzo et al. (2012). The periodic
boundary condition is used in the θ -direction. We control that at the inner boundary
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h0 [m] β [rad] Cr Cf ϕ [s−2
] q0 [m3 s−1

] R+ [m] R− [m] A [m] L1 [m]

0.003 0.07 0.3–1.0 0.0036 2–20 1.2× 10−3 1.0 0.08 0.005 0.006

TABLE 1. Parameters for numerical tests.

0.44 0.54 0.66
exp(-‖◊h‖/‖◊h‖max)

0.810.3679

(a)

1.00

0.368 1.000

Time: 200 s 

0.44 0.54 0.66 0.81

0.368 1.000

Time: 200 s 

exp(-‖◊h‖/‖◊h‖max)
0.3679 1.00

(b)

FIGURE 2. (Colour online) Schlieren images of the fluid depth for the Saint-Venant
equations are shown (a) with quadratic friction (F = −Cf |U|U, Cf = 0.0036, β =
0.05 [rad]), and (b) with linear friction (F = −(ν/h)U, β = 0.05 [rad], with kinematic
viscosity ν=10−6

[m2 s−2
]). The white boundaries inside the domain correspond to strong

gradients of h. The central white part corresponds to the hole. The ‘schlieren’ function was
used in a standard form: exp(−‖∇h‖/‖∇h‖max), where ‖ · ‖ means the Euclidean norm.
The same ‘schlieren’ function was used for all computations. The first-order Godunov
method with the HLLC Riemann solver was used with 300 × 300 mesh cells. In both
cases, the hydraulic jump was stationary. The hydraulic jump radius with the quadratic
friction is a little bit larger than that with the linear friction.

r= R− in the radial direction the corresponding generalized Froude number is larger
than one to guarantee the condition of supercritical flow: Fg =Ur/

√
gh+ 3Prr > 1.

The numerical scheme is based on the splitting technique developed in Gavrilyuk
et al. (2018a). The first-order Godunov scheme with the HLLC Riemann solver
has been used (for details, see appendix A). A mesh convergence study has been
performed in order to guarantee a convergent solution. The code has been parallelized
using the Message Passing Interface (MPI).

7. Numerical results
7.1. Saint-Venant equations

The numerical resolution of the classical shallow water equations (Saint-Venant
equations) with quadratic and linear friction gives us only stationary hydraulic jumps
without any oscillations or formation of rotating patterns (see figure 2). The hydraulic
jump radius for the quadratic friction is a little bit larger than that corresponding to
the linear friction. The same type of discharge perturbation was used as in (6.5) with
the same bottom topography (5.10).
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ϕ = 2 s−2 ϕ = 5 s−2 ϕ = 10 s−2 ϕ = 20 s−2

Cr = 1 + + ± –
Cr = 0.5 + + ± –
Cr = 0.3 + + ± –

TABLE 2. In this table, ‘+’ means that for corresponding values of ϕ and Cr, the rotating
cusp is formed, ‘–’ means that the cusp is absent. ‘±’ means the limit behaviour.

0.44 0.54 0.66 0.81

Time: 25 s Time: 25 s

-0.4
-0.2
0
0.2
0.4

-0.5269

0.5986

-0.527

35
70
105
140

1.408 ÷ 10-13

159.2

1.41 ÷ 10-13

159

det(P)/h2

Uœ (m s-1)
0.599

exp(-‖◊h‖/‖◊h‖max)

0.3679 1.00

0.368 1.000

Time: 25 s

FIGURE 3. (Colour online) The schlieren images of h, Uθ and Ψ = det(P)/h2 are shown.
The first-order Godunov method with the HLLC Riemann solver is used with 500× 500
mesh cells, Cr = 1, ϕ = 2 s−2. The central white part corresponds to the hole. The white
line in the internal area corresponds to the hydraulic jump position.

7.2. Shear shallow water model with the first type of dissipation
We present now the numerical results for the first type of dissipation given by (3.6).
The scenario of the hydraulic jump formation in convergent radial flow consists of
the following three different stages. First, almost radially symmetric hydraulic jump
is formed at a time instant of approximately 25 s (see figure 3). One can see only
small-amplitude non-stationary transverse perturbations on the front of the hydraulic
jump. This is clearly visible in figure 3 showing, in particular, the distribution of
Ψ = det(P)/h2 and almost vanishing tangential velocity. Then, the hydraulic jump
is destabilized into a pattern exhibiting sloshing-type oscillations at a time instant
of approximately 50 s. The oscillation period is approximately 4 s. In figure 4 the
schlieren images are shown at time instants 50 s and 52 s (after the half-period of
oscillations). Remarkably, in a certain domain of parameters, as the amplitude of the
oscillations grows, a new free-surface pattern appears. More exactly, a singular point
(cusp) at the free surface of the hydraulic jump appears which starts to rotate at a
constant velocity. In figure 5, the cusp rotating in the positive direction is denoted
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by S. As usual, we define the positive direction as a counterclockwise rotation, and
negative as a clockwise rotation. The sense of rotation can easily be understood from
figure 5. Indeed, ahead of the cusp the front is smooth, and behind the cusp the
front is rough: transverse ‘triangular’ structures appear. The formation of ‘triangles’
behind the moving cusp was also experimentally observed (Foglizzo et al. 2012).
The sense of rotation can be changed by a small initial perturbation. If the initial
condition for the tangential velocity is taken in the form Uθ = ±µr (µ is a small
positive parameter), the sense of rotation will be determined by the sign of Uθ . The
radius of the hydraulic jump increases with time. One can also see the emergence
of double jump structures appearing at time instant 150 s, where the free surface
changes abruptly (figure 5). The double jump structures were also observed in the
case of divergent circular hydraulic jumps in Bush et al. (2006).

The cusp with a rotation period of approximately 6 s appears only in a certain
region of parameters ϕ and Cr (see table 2). The rotation period is insensitive to the
variation of ϕ and Cr, when they vary in the intervals [2, 20] [s−2

], and [0.3, 1],
respectively. It has been experimentally proven in Foglizzo et al. (2012) (see their
figure 3) that the period of rotation of the cusp is proportional to the ‘hydraulic jump
radius’, which is the distance between the origin and the cusp’s position. In this sense
we are in a good agreement with experimental data, because the period of rotation of
our cusp is 6 s for the hydraulic jump radius of approximately 35 cm.

Interestingly enough, when one plots the time evolution of the velocity (both radial
and tangential components) at a given point behind (but not too far) the hydraulic
jump, it also shows an oscillatory behaviour with the same period of oscillations
of approximately 6 s (see figure 6). Figure 6(a) proves the fact that the generalized
Froude number is always smaller than one, i.e. at this point the non-stationary flow
is always subcritical. Analogous plots for the computations with the Saint-Venant
equations with a linear friction show negligible time variations of the flow velocity
(figure 7).

In the experiments of Foglizzo et al. (2012) the period was approximately 3 s, but
the geometry was different; as a consequence the radius of the hydraulic jump and
its period of rotation were different. The main reason why we did not use the same
geometry was that we could not guarantee supercritical flow at the outlet (at r =
R−), which was necessary to assure the correct boundary conditions for the governing
equations.

When ϕ vanishes, we do not obtain any transverse structures: the circular hydraulic
jump only is formed. Recall that ϕ is associated with the enstrophy of small vortexes
near the bottom Richard & Gavrilyuk (2012, 2013).

In table 2 we studied how enstrophy ϕ and the parameter Cr influence the flow
behaviour. Numerical tests showed that the solution is more sensitive to the variation
of ϕ than of Cr. For ϕ larger than 10 s−2 the cusp disappears, but a singular point is
still visible (see figure 8).

A numerical ‘cusp’ solution was also obtained in Foglizzo et al. (2012) by using
the Saint-Venant equations with linear friction, but for a different bottom topography.
They used the criticality condition at the top of the cylinder, which corresponds to the
hypothesis of the steady flow assumption.

A surprising fact also mentioned in the experiments is that the sense of rotation of
the cusp and the tangential fluid velocity near the hole is opposite. This fact is also
described by our model.

Our mathematical model of shear shallow water flows and the corresponding
numerical method are thus capable of simulating new flow patterns appearing in
radial fluid flows.
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FIGURE 4. (Colour online) The schlieren images of h, Uθ and Ψ = det(P)/h2 are shown.
The first-order Godunov method with the HLLC Riemann solver is used with 500× 500
mesh cells, Cr = 1, ϕ = 2 s−2 The hydraulic jump is destabilized into a pattern which
corresponds to ‘sloshing’-type oscillations.

7.3. Shear shallow water model with the second type of dissipation

Using the second type of dissipative terms (3.10), one can see the formation of a new
flow pattern: a rotating square-like hydraulic jump appears (see figure 9). The ‘corners’
of the ‘square’ are rather smooth and the shape between ‘corners’ is convex, while the
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FIGURE 5. (Colour online) The schlieren images of h, Uθ and Ψ = det(P)/h2 are shown.
The first-order Godunov method with the HLLC Riemann solver is used with 500× 500
mesh cells, Cr=1, ϕ=2 s−2. The cusp (a singular point) denoted by S appears at the front.
It rotates in the positive direction (counterclockwise direction) shown by an arrow. Ahead
of the cusp, the front is smooth, while behind the cusp the front is rough: transverse
triangular structures follow the cusp.

corners were sharp and the shape between corners was concave in the experiments on
divergent hydraulic jumps Ellegaard et al. (1998). This is the main difference between
convergent and divergent radial flows. This type of result is not yet experimentally
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√

gh+ 3Prr (a) and velocity
behaviour (b,c) are shown at the point r= 0.5(R+−R−), θ = 0 as functions of time. After
approximately 70 s, when the cusp is formed, this point is always in the subcritical region
(behind the hydraulic jump). As previously, Cr = 1, ϕ= 2 s−2. The oscillations are almost
periodic with a period of approximately 6 s that corresponds to the cusp rotation period.
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FIGURE 7. The radial and tangential velocity time behaviour at a given point r=0.5(R+−
R−), θ =0 are shown after 70 s for the classical Saint-Venant equations with linear friction.
This point is always in the subcritical region. The hydraulic jump is an almost stationary
one (the variation of Uθ is of the order of 10−4 m s−1). The quadratic friction force gives
the same results.

confirmed. Probably, as in the case of divergent hydraulic jumps, such a ‘rotating
square-like structure’ can be obtained by changing the viscosity of the liquids used
in the experiments.

8. Conclusion

Numerical modelling of multi-dimensional turbulent hydraulic jumps formed in
convergent radial flow is performed and qualitatively compared to the experimental
observations. Two types of ‘well posed’ dissipation laws are proposed and studied.
For the first type of dissipation, in some region of parameters ϕ and Cr, the formation
of a rotating cusp (angular point) on the hydraulic jump front was found. For the
second type of dissipation, rotating square-like hydraulic jumps were found.

The numerical validations show the capability of the model and numerical method
to reproduce the multi-dimensional hydraulic jump dynamics.
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FIGURE 8. (Colour online) Schlieren images of the hydraulic jump corresponding to ϕ=
2 s−2 (a), ϕ=5 s−2 (b), ϕ=10 s−2 (c) and ϕ=20 s−2 (d) are shown with 500×500 mesh
cells at the time instant 290 s. The value of Cr is taken as 0.5 in each case. The cusp is
formed only for ϕ= 2 s−2 and ϕ= 5 s−2. In the cases ϕ= 10 s−2 and ϕ= 20 s−2 the cusp
degenerates into a moving singular point through which we have always the transition
from the ‘smooth’ to the ‘rough’ region. The corresponding singular point (denoted by
S) rotates in a negative sense (clockwise direction) for all cases, excepting the case ϕ =
20 s−2 where the sense of rotation is positive (counterclockwise direction). The sense of
rotation can easily be understood, because ahead of the singular point the front is smooth,
while behind the singular point the front is rough.

Further development of this multi-dimensional model would be to add dispersive
effects to describe the multi-dimensional wave propagation and breaking as was
performed in the 1D case in Gavrilyuk et al. (2016) and Gavrilyuk, Liapidevskii &
Chesnokov (2018b).
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FIGURE 9. (Colour online) The second type of dissipative term is used here. The schlieren
images of h, Uθ and Ψ = det(P)/h2 are shown at time instants 196 s and 200 s. The
first-order Godunov method with the HLLC Riemann solver was used with 300 × 300
mesh cells, Cr = 10, ϕ = 100 [s−2

], q = 10−3
[m3 s−1

]. One can see the appearance of
square-like structures with ‘smoothed’ edges which rotate in the clockwise direction.
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Appendix A
A.1. Governing equations in polar coordinates

We will rewrite now the system of governing equations (2.1) in polar coordinates
(r, θ). We introduce the corresponding basis vectors:

er = (cos θ, sin θ)T, eθ = (−sinθ, cos θ)T. (A 1a,b)

One has
∂er

∂r
= 0,

∂eθ
∂r
= 0,

∂eθ
∂θ
=−er,

∂er

∂θ
= eθ . (A 2a−d)

One can then use the decomposition

U =Urer +Uθeθ ,
∂U
∂x
=
∂U
∂r
⊗ er +

1
r
∂U
∂θ
⊗ eθ . (A 3a,b)

Using (A 2), (A 3), we obtain

∂U
∂x
=
∂Ur

∂r
er ⊗ er +

∂Uθ

∂r
eθ ⊗ er +

(
1
r
∂Ur

∂θ
−

Uθ

r

)
er ⊗ eθ +

1
r

(
Ur +

∂Uθ

∂θ

)
eθ ⊗ eθ .

(A 4)
Equation (A 4) implies

div U =
1
r
∂Uθ

∂θ
+

1
r
∂

∂r
(rUr) . (A 5)

Also, one has

P = Prrer ⊗ er + Prθer ⊗ eθ + Pθreθ ⊗ er + Pθθeθ ⊗ eθ , Prθ = Pθr. (A 6)

Then,
div(hP)= (div(P))h+ P∇h, (A 7)

where

div(P)=
(
∂Prr

∂r
+

1
r
∂Prθ

∂θ
+

1
r
(Prr − Pθθ),

∂Prθ

∂r
+

1
r
∂Pθθ
∂θ
+

2
r

Prθ

)
. (A 8)

Also, the material derivative defined by (2.2) is transformed to

D
Dt
=
∂

∂t
+Ur

∂

∂r
+

Uθ

r
∂

∂θ
. (A 9)

Using (A 2), one obtains

∂P

∂r
=


∂Prr

∂r
∂Prθ

∂r
∂Prθ

∂r
∂Pθθ
∂r

 , ∂P

∂θ
=


∂Prr

∂θ
− 2Prθ

∂Prθ

∂θ
+ Prr − Pθθ

∂Prθ

∂θ
+ Prr − Pθθ

∂Pθθ
∂θ
+ 2Prθ

 .
(A 10a,b)
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One can finally obtain the system (2.1) in polar coordinates:

∂(hr)
∂t
+
∂(rhUr)

∂r
+
∂(hUθ)

∂θ
= 0, (A 11a)

∂(rhUr)

∂t
+
∂

∂r

{
r
(

hU2
r +

gh2

2
+ hPrr

)}
+
∂

∂θ
(hUrUθ + hPrθ)

= h(U2
θ + Pθθ)+

gh2

2
, (A 11b)

∂ (rhUθ)

∂t
+
∂

∂r
{rh (UrUθ + Prθ)} +

∂

∂θ

(
hU2

θ +
gh2

2
+ hPθθ

)
=−h (UrUθ + Prθ) , (A 11c)
DPrr

Dt
− 4

Uθ

r
Prθ + 2

(
∂Ur

∂r
Prr +

Prθ

r
∂Ur

∂θ

)
= 0, (A 11d)

DPrθ

Dt
+

Uθ

r
(Prr − 2Pθθ)+

Pθθ
r
∂Ur

∂θ
+ Prr

∂Uθ

∂r
+

Prθ

r

{
∂Uθ

∂θ
+
∂(rUr)

∂r

}
= 0,

(A 11e)
DPθθ

Dt
+ 2

Uθ

r
Prθ + 2

{
∂Uθ

∂r
Prθ +

Pθθ
r

(
∂Uθ

∂θ
+Ur

)}
= 0, (A 11f )

∂

∂t

{
hr
(

1
2
|U|2 + E

)}
+
∂

∂r

{
r
[

hUr

(
1
2
|U|2 + E

)
+

gh2

2
Ur + h(PrrUr + PrθUθ)

]}
+
∂

∂θ

{
hUθ

(
1
2
|U|2 + E

)
+

gh2

2
Uθ + h(PrθUr + PθθUθ)

}
= 0. (A 11g)

A.2. Numerical splitting technique in polar coordinates
The method follows the splitting technique proposed in Gavrilyuk et al. (2018a) in
Cartesian coordinates. We adapt this approach to polar coordinates. For this, we solve
first the model in the r-direction, then in the θ -direction. For each direction, the two
subsystems, proposed below, are solved separately. Each subsystem is hyperbolic and
admits the energy conservation law.

A.2.1. Subsystem 1 in the r-direction
The first subsystem in the r-direction is

∂(rh)
∂t
+
∂(rhUr)

∂r
= 0, (A 12a)

∂(rhUr)

∂t
+
∂

∂r

(
r
(

hU2
r +

gh2

2
+ hPrr

))
= h(U2

θ + Pθθ)+
gh2

2
, (A 12b)

∂ (rhUθ)

∂t
+
∂

∂r
(rhUrUθ)=−h (UrUθ + Prθ) , (A 12c)

∂(rhPrr)

∂t
+
∂(rhUrPrr)

∂r
+ 2rhPrr

∂Ur

∂r
= 4hPrθUθ , (A 12d)

∂(rPrθ)

∂t
+
∂(rUrPrθ)

∂r
=Uθ (2Pθθ − Prr) , (A 12e)

∂(hrPθθ)
∂t

+
∂(rhUrPθθ)

∂r
=−2h(PrθUθ + PθθUr), (A 12f )
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The subsystem (A 12) admits the energy conservation law

∂

∂t

{
rh
(

1
2
|U|2 + E

)}
+
∂

∂r

{
r
[

hUr

(
1
2
|U|2 + E

)
+

gh2

2
Ur + hPrrUr

]}
= 0, (A 13)

where E= (gh+ Prr + Pθθ)/2.
The system is hyperbolic with the eigenvalues given by

λ1,2,3,4 =Ur, λ5,6 =Ur ±
√

gh+ 3Prr. (A 14a,b)

The equation (A 12d) is not conservative. The jump relation for this equation is
not well defined. The value of Prr will be corrected using the energy equation (A 13).
Numerically, we solve first the system (A 12) where the equation (A 12d) is replaced
by

∂(rhPrr)

∂t
+
∂(rhUrPrr)

∂r
= 0. (A 15)

We update then rhPrr by using (A 13).

Godunov-type method and correction of the non-conservative term rhPrr

Subsystem 1 can be rewritten in the following form:

∂W
∂t
+
∂(rF)
∂r
= Sr, (A 16)

where the vector of ‘conservative’ variables W , the vector of fluxes F(W) and the
geometric source term vector Sr(W) are

W = (rh, rhUr, rhUθ , rhPrr, rPrθ , rhPθθ , rh(E+ 1
2 |U|

2))T, (A 17)

F(W)= (hUr, hU2
r + p, hUrUθ , hUrPrr,UrPrθ , hUrPθθ , hUr(

1
2 |U| + E)+ pUr)

T,

(A 18)

Sr
=

(
0, h

(
U2
θ + Pθθ

)
+

gh2

2
,−h (UrUθ + Prθ) ,

4hPrθUθ ,Uθ (2Pθθ − Prr)− PrθUr,−2h (PrθUθ + PθθUr) , 0
)T

, (A 19)

with
p= gh2/2+ hPrr, E= (gh+ Prr + Pθθ)/2. (A 20a,b)

Let us consider now a fixed grid of size 1r = ri+1/2 − ri−1/2, the time increment
is defined as 1t = tn+1

− tn which must respect the Courant–Friedrichs–Lewy (CFL)
condition. The discrete values of the vector function W at (ri, tn) will be denoted by
Wn

i . Integrating the conservation laws (A 16) on [ri−1/2, ri+1/2] × [tn, tn+1
], one obtains

the conservative finite volume Godunov scheme on a fixed grid:

Wn+1
i =Wn

i −
1t
1r
(ri+1/2(F∗,ni+1/2 − Sr,n

i )− ri−1/2(F∗,ni−1/2 − Sr,n
i )), (A 21)
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where F∗,ni+1/2 and F∗,ni−1/2 are the numerical fluxes. They are constant across interfaces
between cells during the time step. For computing the fluxes F∗,ni+1/2= F∗,ni+1/2(Wn

i ,Wn
i+1)

and F∗,ni−1/2= F∗,ni−1/2(Wn
i−1,Wn

i ), we use approximate solution of the Riemann problem
between cells i, i+ 1 and i− 1, i, respectively.

Using the energy conservative law, the non-conservative term rhPrr is updated in
the following way:

(rhPrr)= 2(rhE)−
g(rh)2

r
− (rhPθθ). (A 22)

The ‘mathematical’ entropy Ψ corresponding to the vorticity formation is increasing
through the shock at this step (for proof see Gavrilyuk et al. (2018a)).

A.2.2. Subsystem 2 in the r-direction
The subsystem 2 in the r-direction is

∂(rh)
∂t
= 0, (A 23a)

∂(rhUr)

∂t
= 0, (A 23b)

∂ (rhUθ)

∂t
+
∂

∂r
(rhPrθ)= 0, (A 23c)

∂ (rhPrr)

∂t
= 0, (A 23d)

∂ (rPrθ)

∂t
+ rPrr

∂Uθ

∂r
= 0, (A 23e)

∂ (rhPθθ)
∂t

+ 2rhPrθ
∂Uθ

∂r
= 0. (A 23f )

It admits the energy conservation law

∂

∂t

{
rh
(
|U|2

2
+ E

)}
+
∂

∂r
(rhUθPrθ)= 0. (A 24)

The system is hyperbolic with the eigenvalues given by

λ1,2,3,4 = 0, λ5,6 =±
√

Prr. (A 25a,b)

Again, system (A 23)–(A 24) is overdetermined. One can note that there are two non-
conservative equations. The product (rPrr(∂Uθ/∂r)) in (A 23e) is well defined. It is not
the case for the term (2rhPrθ(∂Uθ/∂r)) in (A 23f ). In the following, this equation will
be replaced by ∂(rhPθθ)/∂t= 0 at the first step, and then the energy conservation law
will be used to update the value of Pθθ .

In particular, the estimation of Prθ at time instant (t+1t) is given by

(rPrθ) (r, t+1t)= (rPrθ) (r, t)+ (rPrr)(r, t)
(
U∗θ,i−1/2(t)−U∗θ,i+1/2(t)

) 1t
1r
. (A 26)
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Here U∗θ it is speed at the contact discontinuity. The non-conservative equation for Prθ
was discretized in the following way:

Prθ(r, t+1t)= Prθ(r, t)+ Prr(r, t)
(
U∗θ,i−1/2(t)−U∗θ,i+1/2(t)

) 1t
1r
. (A 27)

Here U∗θ is the speed of the contact discontinuity. The equation for (rhPθθ) is also
non-conservative. This equation is solved numerically first with zero flux, and then
the energy conservation law is used to update the value of rhPθθ :

(rhPθθ)= 2(rhE)−
g(rh)2

r
− (rhPrr). (A 28)

The ‘mathematical’ entropy Ψ is conserved at this step.
We will give now a shorter explication of splitting in the θ -direction, because it is

completely analogous to that in the r-direction.

A.2.3. Subsystem 1 in the θ -direction
The first subsystem in the θ -direction is

∂(rh)
∂t
+
∂(hUθ)

∂θ
= 0, (A 29a)

∂(rhUr)

∂t
+
∂

∂θ
(hUrUθ)= 0, (A 29b)

∂ (rhUθ)

∂t
+
∂

∂θ

(
hU2

θ +
gh2

2
+ hPθθ

)
= 0, (A 29c)

∂ (rhPrr)

∂t
+
∂ (hUθPrr)

∂θ
= 0, (A 29d)

∂(rPrθ)

∂t
+
∂(UθPrθ)

∂θ
= 0, (A 29e)

∂(rhPθθ)
∂t

+
∂(hUθPθθ)

∂θ
+ 2hPθθ

∂Uθ

∂θ
= 0. (A 29f )

The subsystem (A 29) admits the energy conservation law

∂

∂t

{
rh
(

1
2
|U|2 + E

)}
+
∂

∂θ

{
hUθ

(
1
2
|U|2 + E

)
+

gh2

2
Uθ + hPθθUθ

}
= 0. (A 30)

The system is hyperbolic, with the eigenvalues given by

λ1,2,3,4 =
Uθ

r
, λ5,6 =

Uθ ±
√

gh+ 3Pθθ
r

. (A 31a,b)

The ‘mathematical’ entropy Ψ is increasing through the shock at this step.

A.2.4. Subsystem 2 in the θ -direction
The subsystem 2 in the θ -direction is

∂(rh)
∂t
= 0, (A 32a)
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∂(rhUr)

∂t
+
∂

∂θ
(hPrθ)= 0, (A 32b)

∂(rhUθ)

∂t
= 0, (A 32c)

∂(rhPrr)

∂t
+ 2hPrθ

∂Ur

∂θ
= 0, (A 32d)

∂(rPrθ)

∂t
+ Pθθ

∂Ur

∂θ
= 0, (A 32e)

∂(rhPθθ)
∂t

= 0. (A 32f )

The system is hyperbolic with the eigenvalues given by

λ1,2,3,4 = 0, λ5,6 =±

√
Pθθ
r

. (A 33a,b)

The subsystem (A 32) admits the energy conservation law

∂

∂t

(
rh
(

1
2
|U|2 + E

))
+
∂

∂θ
(hPrθUr)= 0. (A 34)

The mathematical ‘entropy’ Ψ is conserved at this step.

A.2.5. Integration of source terms
The last step is to integrate the system of ordinary differential equations:

dW
dt
= S(W), (A 35)

with unknown vector

W =
(

rh, rhUr, rhUθ , rhPrr, rPrθ , rhPθθ , rh
(

E+
1
2
|U|2

))T

. (A 36)

The vector of source terms is

S(W) =

(
0,−grh

∂b
∂r
−Cf r

√
U2

r +U2
θUr,−rCf

√
U2

r +U2
θUθ , rhDrr, rDrθ , rhDθθ ,

− grh
∂b
∂r

Ur − rCf

(√
U2

r +U2
θ

)3

− rQ

)T

. (A 37)

The initial condition W|t=0 is obtained from the previous hyperbolic step after
solving the previous four subsystems. The first-order Euler method is used for such
an integration.
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