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This two-part article series provides a generalized description of the scattering

geometry of Bragg coherent diffraction imaging (BCDI) experiments, the shear

distortion effects inherent in the 3D image obtained from presently used

methods and strategies to mitigate this distortion. Part I starts from fundamental

considerations to present the general real-space coordinate transformation

required to correct this shear, in a compact operator formulation that easily

lends itself to implementation with available software packages. Such a

transformation, applied as a final post-processing step following phase retrieval,

is crucial for arriving at an undistorted, correctly oriented and physically

meaningful image of the 3D crystalline scatterer. As the relevance of BCDI

grows in the field of materials characterization, the available sparse literature

that addresses the geometric theory of BCDI and the subsequent analysis

methods are generalized here. This geometrical aspect, specific to coherent

Bragg diffraction and absent in 2D transmission CDI experiments, gains

particular importance when it comes to spatially resolved characterization of 3D

crystalline materials in a reliable nondestructive manner. This series of articles

describes this theory, from the diffraction in Bragg geometry to the corrections

needed to obtain a properly rendered digital image of the 3D scatterer. Part I of

this series provides the experimental BCDI community with the general form of

the 3D real-space distortions in the phase-retrieved object, along with the

necessary post-retrieval correction method. Part II builds upon the geometric

theory developed in Part I with the formalism to correct the shear distortions

directly on an orthogonal grid within the phase-retrieval algorithm itself,

allowing more physically realistic constraints to be applied. Taken together,

Parts I and II provide the X-ray science community with a set of generalized

BCDI shear-correction techniques crucial to the final rendering of a 3D

crystalline scatterer and for the development of new BCDI methods and

experiments.

1. Introduction

Bragg coherent diffraction imaging (BCDI) is a lensless

imaging method by which the morphology and internal strain

state of compact crystalline objects may be visualized

nondestructively (Robinson et al., 2001; Robinson & Harder,

2009; Miao et al., 2015). A 3D rendering of an appropriately

oriented crystalline scatterer is obtained by coherently illu-

minating it with monochromatic X-rays and computationally

inverting the acquired 3D diffraction pattern using iterative
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phase-retrieval algorithms [Fig. 1(a)] (Fienup, 1982, 1987;

Marchesini et al., 2003; Marchesini, 2007). The 3D coherent

diffraction pattern is collected in the vicinity of a Bragg peak

using a pixelated area detector and by incrementally changing

the preferred orientation of the object in the X-ray beam. The

method has recently seen increased use at third-generation

synchrotron light sources for a variety of static, in situ and

operando studies of materials in environments difficult to

access with other characterization methods, e.g. elevated

temperatures or deeply embedded crystals (Cha et al., 2016;

Cherukara et al., 2018; Dupraz et al., 2015; Highland et al.,

2017; Hofmann, Tarleton et al., 2017; Ulvestad, Singer et al.,

2015; Ulvestad, Welland et al., 2015).

The goal of any coherent diffraction imaging measurement

is to numerically compute the complex-valued field of the

scattering object from the acquired diffraction pattern.

Different variants of coherent diffraction imaging interpret

this complex field in different ways. In particular, it represents

the local complex refractive index in the case of 2D trans-

mission CDI experiments and the local crystal lattice strain in

the case of 3D Bragg scattering geometry. In the specific case

of BCDI (which includes beam-scanning techniques like

Bragg ptychography; Hruszkewycz, Allain et al., 2017), a

single component of the six-parameter strain tensor field

within the scatterer bulk is encoded into the complex field of

the retrieved object (Robinson & Harder, 2009). Unlike the

refractive index which is a scalar invariant, lattice strain

components depend intimately on the frame of reference.

Thus, accurate representation of the crystalline scatterer in a

suitable real-space orthogonal frame is essential for the

meaningful interpretation of the object morphology and strain

state, and thereby the study of any physical process that may

depend on these factors.

In BCDI, this orthogonal rendering is complicated by the

fact that the diffraction signal, modeled as the squared

modulus of the Fourier transform of the complex field of the

scatterer (Goodman, 2005), is necessarily sampled along

non-orthogonal directions. This inevitably imposes a non-

orthogonal shear on the axes of the 3D object array obtained

from conventional phase retrieval, as we demonstrate in detail

in Section 3.3. The non-orthogonal sampling of the 3D space

of the scattered signal (hereafter referred to as Fourier space)

is intimately connected to experimental considerations such as

(i) the pixel size of the area detector, (ii) the object–detector

distance, (iii) the X-ray wavelength, (iv) the orientation of the

mounted scatterer and (v) the manner of rotation (‘rocking’)

of the scatterer in the X-ray beam. Through the wave-

propagation process (here, the Fourier transform), the discrete

sampling grid of the reconstructed real-space scatterer is also

tightly constrained by these factors and is non-orthogonal in

general. A naı̈ve 3D rendering of the phase-retrieval result

without accounting for this effect results in a sheared image

not truly representative of the physical scatterer. In this paper

we rigorously derive the relationship between the two shears

in real and Fourier space and provide a prescription to correct

the real-space distortion, enabling the correct 3D rendering of

the scatterer.

Although BCDI has been steadily gaining popularity within

the materials science community as a valuable nanoscale

characterization method, existing literature on the underlying

geometric theory is as yet sparse. Currently, the available

literature consists of general-purpose tools to map Fourier

space (Kriegner et al., 2013) and working-rule prescriptions

for the post-processing of the phase-retrieval output, tailored

for the highly specific experimental geometries of existing

BCDI beamline facilities (Pfeifer, 2005; Pateras, 2015; Pateras

et al., 2015). In this paper, the first of two parts, we fill this gap

in the literature by providing an analysis of the intricate

scattering geometry of a BCDI measurement, as well as

deriving the general way to correct the 3D distortion. We

achieve this by starting from basic considerations and build up

to the adaptation to discretely sampled fields, as in a real-

world BCDI experiment.

More specifically, Part I of this series describes a method

which takes as its input the geometric config-

uration of a BCDI experiment and returns a

basis of three sampling vectors in 3D real space

associated with the three independent axes of

the phase-retrieval solution array. This array

(representing non-orthogonal samples of the

scatterer), when combined with knowledge of

the sampling basis, is sufficient to render a

physically accurate (albeit shear-sampled)

image of the scatterer with one of many

available visualization tools such as MATLAB

(The MathWorks Inc., Natick, MA, USA),

Python or ParaView (https://www.paraview.

org/). Building on this foundation, Part II

describes a formal derivation of a modification

to the 3D Fourier transformation itself,

appropriate for phase retrieval, in which the

sheared Fourier-space sampling basis is directly

incorporated into the reconstruction of the

scatterer on an orthogonal grid.
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Figure 1
(a) Basic anatomy of a BCDI measurement of an isolated crystalline nanoparticle. Rotating
the scatterer in small increments (for instance about the � direction) causes the reciprocal
lattice point q0 of the scatterer’s crystal structure to sweep an incremental angle in Fourier
space. The ‘rocking’ of the crystal’s position about the Bragg condition effectively causes
the measurement plane of the area detector to interrogate parallel slices of the 3D coherent
diffraction pattern. (b) Effective shear in the relative Fourier-space positions of the
successive slices acquired by the area detector. The black lines indicate the position of the
measurement plane relative to the center of the diffraction pattern. This sampling geometry
is typical of crystal rocking about the � axis in (a). (c) Inferred shape of the diffraction
pattern if the collected detector images are naı̈vely assumed to be orthogonal to each other.



Part I is organized as follows: In Section 2 we describe the

dual nature of basis vectors in real and Fourier space, in the

continuous and discrete contexts. In Section 3 we provide a

generalized treatment of the scattering geometry generally

applicable to any BCDI configuration. We then cast the

physical quantities and transformation operators thus intro-

duced into orthonormal coordinate frames convenient for

realistic sample rendering, thereby demonstrating the ease of

implementation of the theory developed in Section 2 using

standard software packages. Section 4 describes a demon-

strative example of a reconstructed 3D image of a silicon

carbide (SiC) nano-particle from data collected at a BCDI

facility, in which the computed shear correction is applied to

the results of conventional phase retrieval. The image thus

obtained is corroborated by scanning electron microscopy

(SEM) images of identically fabricated nanoparticles. In

Section 5 we close with a summary of our formalism and the

shear-correction results.

2. Representation of real and Fourier space

In a BCDI measurement, the discretization of three-

dimensional Fourier space is achieved through (i) a pixelated

area detector and (ii) finite angular steps in the ‘rocking’

direction along which the scatterer is physically rotated. The

sampling directions are determined by geometric considera-

tions such as the placement of the detector (equivalently, the

Bragg reflection of interest) and the direction of rocking of the

scatterer. These considerations in turn have a direct bearing

on the subsequent discretization of the 3D reconstructed

object resulting from successful inversion from Fourier to real

space.

In this section we set up the mathematical preliminaries for

this two-part series. Before we begin, we describe the notation

in use. Scalar quantities (real or complex) are denoted by

lowercase, non-boldface Greek or Roman letters (r, q,  ), and

two- and three-dimensional vectors by lowercase boldface

letters (r, q). In addition, the Euclidean (‘2) norm of a vector r

is denoted by ||r|| and vectors of unit norm are denoted by

lowercase boldface letters with a caret (ŝs1, êe1, k̂k1). Matrices

representing either rank-2 tensors (such as rotation operators)

or three-dimensional basis sets are denoted by uppercase

Roman letters, either in boldface (B, P) or script font (R, D,

I). The determinant of a square matrix B is denoted by det B.

A representation v of a three-component physical vector

(whether in real or Fourier space) in orthonormal coordinates

is related to another (possibly non-orthogonal) representation

~vv through a linear transformation: v ¼ B~vv, where B represents

the change from the ‘tilded’ to the ‘untilded’ basis. Consider

vectors from two Fourier-conjugate spaces, represented in the

usual orthonormal reference frames by r and q. Let alternative

representations ~rr and ~qq of these vectors in their respective

spaces map to the original representations through the

operators Br and Bq, respectively, i.e. r ¼ Br~rr and q ¼ Bq ~qq.

The columns of Br and Bq represent triplets of unit-norm basis

vectors (directions) that span three-dimensional real and

Fourier space, respectively. The physical position vector r is a

weighted sum of the columns of Br, the weights being precisely

the components of ~rr. The dimensions of length are incorpo-

rated by our convention into the components of ~rr, with the

columns of Br merely serving as three independent directions

in 3D space. Similar reasoning follows for q, Bq and ~qq.

The mutually Fourier-conjugate relationship between r and

q necessitates the following relationship between these

matrices, whose columns are the basis vectors (see Appendix

A for a derivation):

Br ¼ B�T
q ; ð1Þ

where ‘ �T’ denotes the inverse of the transpose, or equiva-

lently the transpose of the inverse. We note that we follow the

crystallographers’ convention in which the dimensions of r and

q are strict reciprocals of each other (q � 1/r), as opposed to

the physicists’ convention which includes an extra multi-

plicative factor (q � 2�/r). The crystallographer’s convention

places r and q on an equal footing and expresses the complex

exponential expð�2�rTqÞ [where � = (�1)1/2] in the ‘symmetric’

form of the continuous Fourier transform (CFT) as a scalar

multiplier rTq applied to the angular quantity 2�, which has

units of radians.

The approach of equation (1) in BCDI analysis is motivated

by the fact that the signal-sampling directions in Fourier space

(i.e. the columns of Bq) are determined in a highly nontrivial

manner by the experimental geometry, and consequently, so

are the directions along which the reconstructed real-space

scatterer is sampled (the columns of Br).

Consider the case of equation (1) applicable to BCDI

measurements in which Fourier space is sampled in integer

multiples of step sizes (�q1, �q2, �q3) along directions specified

by the columns of Bq. Each position in Fourier space is

indexed by the position vector n � [i j k]T such that

q ¼ Bq

�q1

�q2

�q3

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
���q

i

j

k

2
4

3
5 ¼ BqKqn: ð2Þ

Here Kq is a diagonal matrix whose elements carry physical

dimensions of inverse length. For convenience, we write the

discretization as q ¼ Brecipn in terms of n and the individual

Fourier-space steps determined by the columns of the matrix

Brecip :¼ BqKq, which by convention have dimensions of

inverse length. Similarly, the discretization of real space is

parameterized by an integer vector m � ½l m n�T as

r ¼ Br

�r1

�r2

�r3

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
���r

l

m

n

2
4

3
5 ¼ BrKrm: ð3Þ

Here we similarly define Breal :¼ BrKr, whose columns denote

individual real-space steps. In this article we seek to derive the

matrix Brecip and subsequently Breal solely from fundamental

considerations of the BCDI experimental geometry.

With the definitions of Breal and Brecip above, we seek the

relation analogous to equation (1) that applies to a discrete
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Fourier transform (DFT) on a grid of size N1 � N2 � N3.

Provided the fringe intensity distribution is sufficiently

sampled and the experimental Fourier-space aperture is large

enough to avoid cyclic aliasing issues, the phase factors in

complex exponential kernels in the DFT and CFT are

equivalent, implying that

2�qTr ¼ 2�
il

N1

þ
jm

N2

þ
kn

N3

� �
¼) nTBT

recip

� �
Brealmð Þ

¼ nT

N�1
1

N�1
2

N�1
3

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

m 8m; n 2 Z3
ð4Þ

¼)B�T
recipDB�1

real ¼ I ; ð5Þ

where I is the 3 � 3 identity matrix. Equation (5) is the

discrete analog of equation (1). At this point we note its

equivalence to other documented prescriptions that relate

conjugate sampling bases of the general form

Breal � ½êe
0
1 êe02 êe03�Kr;

Brecip � ½k̂k
0
1 k̂k02 k̂k03�Kq:

(
ð6Þ

Here the primed quantities êe0i and k̂k0i denote unit-norm

sampling directions (not necessarily mutually orthogonal) in

real and Fourier space, respectively. The columns of

Breal ¼ B�T
recipD are given by

�r1êe01 ¼
1

N1

�q2k̂k02 � �q3k̂k03

�q1�q2�q3ð Þk̂k01 � k̂k
0
2 � k̂k03

¼
1

V123

N2�q2k̂k02 � N3�q3k̂k03;

ð7Þ

�r2êe02 ¼
1

V123

N3�q3k̂k03 � N1�q1k̂k01; ð8Þ

�r3êe03 ¼
1

V123

N1�q1k̂k01 � N2�q2k̂k02; ð9Þ

where ‘�’ and ‘�’ denote the dot product and cross product,

respectively, and V123 :¼ ðN1�q1ÞðN2�q2ÞðN3�q3Þk̂k
0
1 � k̂k

0
2 � k̂k03 ¼

detðBrecipD
�1
Þ is the total Fourier-space volume queried over

the entire BCDI scan. Up to the conventional multiplicative

factor of 2� mentioned earlier, equations (7), (8) and (9) are

identical to the several familiar prescriptions for coordinate

inversions found in the existing literature (Pfeifer, 2005;

Berenguer et al., 2013; Pateras, 2015; Yang et al., 2019).

In addition, they are reminiscent of the conversion between

the primitive vectors of an atomic crystal’s real-space and

reciprocal-space Bravais lattices, from solid-state physics

(Shmueli, 2001). Up to the effect of finite Fourier-space

volume (represented by the scaling factor of 1/Ni in each

direction), the relationship between Breal and Brecip mirrors the

relationship between the primitive vectors of these Bravais

lattices. This is because both relations have their origins in the

underlying concept of far-field coherent diffraction from an

array of regularly spaced point scatterers. In the context of

BCDI phase retrieval, these point scatterers represent digi-

tized samples of a numeric diffracting object, while in a crystal

lattice they represent actual atomic electron clouds.

We now briefly show that the use of equation (5) is unaf-

fected by the real-space and Fourier-space origin offsets

characteristic of BCDI measurements. Vartanyants &

Robinson (2001) describe an ab initio treatment of the various

phase effects in a BCDI diffracted wavefield as a result of

origin offsets. We consider a discrete sample point q in Fourier

space in the vicinity of a Bragg peak located at q0, in relation

to an (as yet unspecified) origin:

q ¼ q0 þ Brecipn: ð10Þ

Analogously in real space, the complex-valued scatterer is

sampled at points r given by

r ¼ r0 þ Brealm: ð11Þ

In this formulation, r0 and q0 are chosen as arbitrary constant

offsets in real and Fourier space, even though q0 is in fact

determined by the Bragg scattering geometry, as seen in

Section 3. The complex phase factor now becomes

qTr ¼ qT
0 r0 þ qT

0 Brealmþ nTBT
recipr0 þ nTBT

recipBrealm: ð12Þ

We see that the only relevant contribution to the measured

signal comes from the last term: nTBT
recipBrealm. The measured

diffraction intensity is not affected by the uniform phase offset

of the outgoing wavefield (qT
0 r0), or by the phase ramps

resulting from the absolute offset of the scatterer in real space

(nTBT
recipr0) or Fourier space (qT

0 Brealm). In practice, this last

term is explicitly set to zero by enforcing that the maximum of

the Bragg peak is centered in the numerical array.

We therefore see that, as far as the measured intensity

distribution is concerned, the constant real- and Fourier-space

offsets q0 and r0 characteristic of a BCDI measurement may be

set to zero without loss of generality. This allows us to apply

equation (5) directly to the BCDI sampling bases in real and

Fourier space.

We note that the method developed to compute Breal for use

in equation (11) merely seeks to associate a sheared sampling

basis with the three independent axes of the phase-retrieval

solution array. In other words, the coordinate transformation

m�!Brealm of discrete pixels to the correct points in real

space serves to inform the physically accurate rendering of the

scatterer. The rendering itself (albeit on the sheared sampling

grid) may be achieved with one of many available software

packages for 3D visualization. We have compared pre-

transformation (r = m) and post-transformation (r ¼ Brealm)

renderings of a phase-retrieved object from a real-world

BCDI measurement in Section 4.

One potential shortcoming of this rendering convention is

the subsequent computation of local lattice strain in the

crystalline scatterer, which requires evaluation of the spatial

gradient of the complex phase at these sheared grid points, in

non-orthogonal coordinates. Under these circumstances, the

complex phase in real space may first be approximated at the

nodes of a new orthogonal grid via interpolation, followed by

the usual computation of the gradient in orthogonal coordi-

nates (Newton et al., 2010; Hofmann, Phillips et al., 2017).
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Alternatively, one may do away with real-space interpolation

altogether and directly compute the correct strain component

at each non-orthogonal grid point. For the interested reader,

we derive this latter computation in Appendix B.

3. Quantitative aspects of BCDI

Having established the use of equation (5) for the purposes of

BCDI, we proceed to a general description of the geometry of

a BCDI measurement. In Section 3.1 we first provide a

symbolic frame-agnostic description of the relevant degrees of

freedom and vector quantities in a BCDI experiment. In

Section 3.2 we describe the relevant orthonormal coordinate

frames in which to analytically represent these quantities and

cast the subsequent discussion on BCDI geometry that is the

subject of this article. In Section 3.3 we finally derive the

analytical expressions of the relevant vector quantities and

rotation operators, with respect to the appropriate coordinate

frame. We refer to the schematic in Fig. 2.

3.1. Scattering preliminaries

3D BCDI datasets are obtained by illuminating an isolated

single-crystal scatterer with a coherent X-ray beam and

rotating it about a fixed axis in small steps. The face of the

detector is typically aligned perpendicular to the exit beam

and defines the Fourier-space measurement plane. Each

rotational step of the scatterer incrementally rotates the 3D

coherent diffraction pattern (centered at a reciprocal lattice

point) through the Fourier-space aperture in the detector

plane. The path traversed by the center of the Bragg peak

nominally lies on a circular arc along the Ewald sphere for the

family of Bragg reflections. Subsequently, the points at which

the detector samples the 3D intensity distribution are recti-

linear in the detector plane (owing to square pixels), but

strictly curvilinear in the rocking direction. For typical BCDI

measurements at hard X-ray wavelengths (� ’ 0.1 nm) and

with object–detector distances of �1 m, the object is rotated

through an angular interval of �0.3	 ’ 5 � 10�3 rad, which is

the angle subtended by the Ewald sphere arc at the Fourier-

space origin. For rotation increments within this interval

(typically 0.01	 to ensure fringe oversampling in this direc-

tion), the intermediate translation of the imaging plane when

viewed relative to the Bragg peak may be approximated as

rectilinear. In this manner, the diffraction pattern is measured

slice by slice within a rhomboidal volume of Fourier space,

resulting in a 3D data array with indices n = [i j k], where i and

j correspond to the pixel coordinates of the detector and k

corresponds to angular increments. A typical size for this data

array is �256 � 256 � 64 (Cha et al., 2016). Though parallel,

the measured slices are not sampled in an orthogonal manner,

as we shall see with the explicit derivation of the sampling

vectors qi, qj and qk.

An arbitrary point in Fourier space is determined on an

absolute scale by q = kf � ki, where ki and kf are the wave-

vectors of the incident and scattered X-rays, respectively, and

kkik ¼ kkfk ¼ 1=�, the reciprocal of the X-ray wavelength.

One such point q0 corresponds to the center of the Bragg

reflection, a location easily identified in BCDI data as the peak

of the intensity distribution. q0 sweeps through a small angle

�� between successive image acquisitions. In the Fig. 2

schematic, the crystal is rotated about the ŝs2 direction, as is

common practice at conventional BCDI facilities like the 34-

ID-C end station of the Advanced Photon Source. The

resulting displacement of the measurement plane with respect

to the diffraction pattern has a magnitude kq0k�� in Fourier

space. This quantity, equal to kqkk (i.e. the third Fourier-space

sampling vector) is derived explicitly in Section 3.3.

The discretized sampling of the relative Fourier-space

position q � q0 as a result of the pixel measurements and the

rotational positions of the scatterer can be written in a

consolidated manner: q� q0 ¼ Brecipn, where Brecip ¼

½qi qj qk� comes from equation (10). Furthermore, we note two

characteristics that hold for BCDI measurements:

(1) When the detector face is oriented along the measure-

ment plane, we have qi? qj but the Bragg scattering geometry

ensures that the two are never simultaneously perpendicular

to qk. This is proved rigorously in Section 3.3 and is the reason

for the sheared sense of Fourier-space sampling.

(2) The norms of these sampling vectors in Fourier space

are given by

kqik ¼ kqjk ¼ p=�D; ð13Þ

kqkk ¼ kq0k�� ¼ 2ð��Þ sin �B=�; ð14Þ

where p is the physical pixel size, � is the wavelength of illu-

mination, �B is the Bragg angle of scattering, D is the object–

detector distance and �� is the magnitude of the angle swept

by q0 as a result of the rotation of the crystal by a single

angular increment. The numerical value of �� is specific to a

given diffractometer setup.

3.2. Coordinate conventions

The vector and matrix quantities introduced thus far in

Section 3.1 are symbolic in nature without explicit repre-

sentation in a coordinate frame, and the relations between
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Figure 2
Basic geometry of a BCDI measurement. Also shown are the laboratory
frame Blab � ½ŝs1 ŝs2 ŝs3�, the detector frame Bdet � ½k̂k1 k̂k2 k̂k3�, and the
sampling basis for Fourier space imposed by the scattering and object-
rotation geometry Brecip � ½qi qj qk�. The � and � degrees of freedom are
specific to the 34-ID-C end station of the Advanced Photon Source.



them are true for any BCDI configuration. We now enumerate

the bases in which these quantities are most naturally

expressed in order to develop the numerical machinery for our

demonstrative examples. The frames we define are seen in

Fig. 2:

(1) We choose as a reference frame the synchrotron-based

orthonormal laboratory frame denoted by the matrix of

column vectors of unit norm Blab � ½ŝs1 ŝs2 ŝs3�, in which ŝs3

points along the incident beam (downstream) and ŝs2 points

vertically upward. This is the orthonormal frame chosen for

the display of the final BCDI reconstruction.

(2) A second frame, Bdet � ½k̂k1 k̂k2 k̂k3�, is attached to the

detector. This frame is instrumental in determining the first

two of the three sampling vectors (qi, qj, qk), as we shall

demonstrate presently. Two of the three mutually orthogonal

directions of this frame lie in the measurement plane, while

the third is perpendicular to it, in the direction of the

(nominal) exit beam. When the detector face is aligned with

the measurement plane (i.e. the detector is perpendicular to

the exit beam), the directions of qi and qj coincide with the

axes of this frame.

This second coordinate frame has been used in several

studies in BCDI and Bragg ptychography (Cha et al., 2016;

Hruszkewycz et al., 2012; Hruszkewycz, Allain et al., 2017;

Hruszkewycz, Cha et al., 2017). In transmission mode (i.e. the

direct beam is incident upon the detector), Bdet coincides

exactly with Blab in terms of orientation. At the 34-ID-C end

station of the Advanced Photon Source (dedicated to BCDI

measurements), the change in detector placement from

transmission mode to Bragg mode is achieved with two rota-

tional motors. This corresponds to a two-parameter transfor-

mation (i.e. corresponding to the � and � angular rotations

from Fig. 2) that takes the axes of the frame Blab to the

position Bdet. We derive the general expression for this

transformation in Section 3.3.

Central to the implementation of rotations in any diffract-

ometer configuration is a way to compute a generic rotation

operator. This is mathematically described as actively rotating

a vector v about a direction ûu by an angle 	 in a right-handed

sense, with the understanding that v and ûu are expressed in the

same frame of reference. Such a matrix is given by (Rodrigues,

1840)

Rð	; ûuÞ ¼ ðcos	ÞI þ ð1� cos 	ÞûuûuT þ ðsin 	ÞSûu; ð15Þ

where ûuûuT is the projector onto ûu and

Sûu ¼

0 �u3 u2

u3 0 �u1

�u2 u1 0

2
4

3
5 ð16Þ

is the skew-symmetric matrix constructed from the compo-

nents of ûu, or equivalently the linear-operator version of the

cross product Sûuv ¼ ûu� v.

3.3. Sampling geometry

In the laboratory frame, the axes of the laboratory frame

itself are trivially expressed as the columns of the identity

matrix:

Blab ¼ I : ð17Þ

Put another way, in the laboratory frame, ŝs1 ¼ ½1 0 0�T,

ŝs2 ¼ ½0 1 0�T and ŝs3 ¼ ½0 0 1�T. Then from Fig. 2 (the

arrangement at 34-ID-C), the orientation of the detector

frame Bdet is achieved by an active rotation of the laboratory

frame, which is composed of two rotations of the type denoted

in equation (15), acting upon each of the constituent basis

vectors:

Bdet ¼ Rð�; ŝs2ÞRð�;�ŝs1ÞBlab ¼ Rð�; ŝs2ÞRð�;�ŝs1Þ: ð18Þ

In the laboratory frame, the matrix expressions for these two

rotation operators are given by equation (15) with

ŝs1 ¼ ½1 0 0�T and ŝs2 ¼ ½0 1 0�T:

Rð�;�ŝs1Þ ¼

1 0 0

0 cos � sin �
0 � sin � cos �

2
4

3
5 ð19Þ

and

Rð�; ŝs2Þ ¼

cos � 0 sin �
0 1 0

� sin � 0 cos �

2
4

3
5; ð20Þ

leading to

Bdet ¼

cos � � sin � sin � cos � sin �
0 cos � sin �

� sin � � cos � sin � cos � cos �

2
4

3
5: ð21Þ

We note from Fig. 2 that the negative sign in the � rotation

above is necessary since the motor configuration at 34-ID-C

results in a clockwise rotation about the positive ŝs1 direction.

The columns of Bdet in equation (21) denote the unit-norm

axes k̂k1, k̂k2, k̂k3 of the detector frame, each expressed in the

laboratory frame. We note that the first two columns of Bdet

are also the directions of Fourier-space sampling vectors qi and

qj from Fig. 2.

We next derive the expression for the third sampling vector

qk. The location of the Bragg peak q0 in Fourier space is

computed analytically using ki and kf in the following manner

(where ŝs3 is the downstream direction):

ki ¼
1

�
ŝs3

kf ¼
1

�
Rð�; ŝs2ÞRð�;�ŝs1Þ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
composite rotation operator

ŝs3

¼) q0 ¼ kf � ki ¼
1

�
Rð�; ŝs2ÞRð�;�ŝs1Þ � I
� �

ŝs3:

ð22Þ

As mentioned earlier, the magnitude of qk is given by the

sweep step of the reciprocal lattice vector q0 due to the

incremental rotation of the scatterer. The rotation in question

is determined by the single angular step �� about the ŝs2 axis

according to Fig. 2 [we note that this is not always the case; for
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example, in the article by Cha et al. (2016), the object rotation

is about the ŝs1 axis]. The change in q0 is given by

�q0 :¼ Rð��; ŝs2Þq0 � q0 ¼ Rð��; ŝs2Þ � I
� �

q0 ð23Þ

¼
1

�
Rð��; ŝs2Þ � I
� �

Rð�; ŝs2ÞRð�;�ŝs1Þ � I
� �

ŝs3 ð24Þ

[using equation (22)]. We finally note that, regardless of how

q0 is rotated while rocking the scatterer, qk is the displacement

of the measurement plane relative to the center of the

coherent intensity distribution and therefore the negative of

�q0. Keeping in mind that the norms of qi and qj are both p /

�D from Section 3.1, we write down the simplified final

expressions for the sampling vectors in Fourier space, still

expressed in the laboratory frame:

qi :¼
p

�D
k̂k1 ¼

p

�D

cos �
0

� sin �

2
4

3
5; ð25Þ

qj :¼
p

�D
k̂k2 ¼

p

�D

� sin � sin �
cos �

� cos � sin �

2
4

3
5; ð26Þ

qk :¼ ��q0

¼ �
1

�

sin � cos � cos �� � 1ð Þ þ sin �� cos � cos � � 1ð Þ

cos � cos � � 1ð Þ cos �� � 1ð Þ � cos � sin � sin ��

	 

;

ð27Þ

¼
��

�

1� cos � cos �

0

cos � sin �

2
64

3
75þO ��2

� �
: ð28Þ

Equation (28) highlights the first-order dependence of qk on

the small rocking step ��, obtained through a Taylor series

expansion. The sampling basis matrix Brecip is obtained by

concatenating the numerically evaluated expressions for the

sampling vectors: Brecip ¼ ½qi qj qk�. The relations (25), (26)

and (27) explicitly demonstrate the highly intricate relation-

ship between the experimental considerations, such as the

scattering and sample rotation geometries, and the manner in

which Fourier space is discretely sampled. Specifically, in the

Bragg geometry, the projections qT
i qk and qT

j qk cannot

simultaneously be zero, implying that in BCDI the sampling

grid in Fourier space is inevitably non-orthogonal. The

computation of the discrete Fourier-space points spanned by

Brecip for a variety of standard goniometer geometries is in fact

the primary function of the software package xrayutilities

(Kriegner et al., 2013).

We now examine equations (25) and (27) in the pathological

case of � = 0 but � 6¼ 0, for which we show that it is impossible

to acquire a 3D BCDI signal. Under these conditions, the

incident and exit beams lie in the vertical ðŝs2; ŝs3Þ plane and

equations (25) and (27) become

qi ¼
p

�D

1

0

0

2
4

3
5; ð29Þ

qk ¼ �
1

�

cos � � 1ð Þ��
0

0

2
4

3
5þO ��2

� �
: ð30Þ

From equations (29) and (30), in the approximation of small

rocking steps �� about the ŝs2 direction, we deduce that two of

the three Fourier-space sampling vectors are parallel and

therefore not mutually linearly independent, rendering it

impossible to sample a nonzero Fourier-space volume for the

3D BCDI measurement. Such a scenario more generally

occurs when the rocking axis (in this case, ŝs2) is improperly

chosen to lie in the plane defined by ki and kf. For this reason,

this axis is ideally chosen to lie well outside this plane in any

BCDI measurement. A particularly favorable case is when the

rocking axis is perpendicular to this plane, a configuration

sometimes referred to as a symmetric �–2� geometry (Cha et

al., 2016; Hruszkewycz, Allain et al., 2017). In our special case

of � = 0 and � 6¼ 0, the symmetric �–2� geometry dictates a

rotational increment by the angular step �� about ŝs1 instead

of ŝs2. The rotation matrix Rð��; ŝs2Þ in equation (23) is thus

replaced with Rð��; ŝs1Þ in the analysis (a different sample

rotation motor is typically chosen to achieve this in practice).

This results in the following modified expressions for the

Fourier-space sampling vectors:

q
ð��2�Þ
i ¼

p

�D

1

0

0

2
4

3
5; ð31Þ

q
ð��2�Þ
j ¼

p

�D

0

cos �
� sin �

2
4

3
5; ð32Þ

q
ð��2�Þ
k ¼ �

1

�

0

cos �� � 1ð Þ sin � � cos � � 1ð Þ sin ��

cos � � 1ð Þ cos �� � 1ð Þ þ sin � sin ��

2
64

3
75

¼
��

�

0

cos � � 1

� sin �

2
64

3
75þO ��2

� �
: ð33Þ

We see from equations (31), (32) and (33) that, in the

symmetric �–2� geometry, the new sampling vectors are

indeed non-coplanar, allowing one to interrogate a finite 3D

Fourier-space volume. This configuration is adopted in Bragg

ptychography measurements and also in the main derivations

of Part II.

In our derivations so far, we have chosen for visual clarity to

express the experimental degrees of freedom and the eventual

reconstruction in the universal frame Blab. In a completely

equivalent treatment, the same analysis may also be devel-

oped entirely with respect to the detector frame Bdet instead of

Blab, provided the relevant vectors and rotation operators are

formulated correctly. This is in fact the natural frame of choice

in Bragg ptychography applications and has been adopted in

Part II, whose starting point is the theory developed so far. In

order to reconcile these two frames we now provide a

prescription to transform physical quantities seamlessly from
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one to the other. Any laboratory-frame vector v can be

converted into the corresponding detector-frame representa-

tion v0 by projection along the axes of Bdet:

v0 ¼ BT
detv: ð34Þ

The reverse transformation from the detector- to the labora-

tory-frame representation is also achieved in a straightforward

manner:

v ¼ B�T
det v

0
¼ Bdetv

0
ð35Þ

(since Bdet is orthogonal). Any rotation matrixR defined with

respect to the laboratory frame may be transformed to its

detector-frame representation R0 through the following simi-

larity transformation:

R
0
¼ BT

detRBdet: ð36Þ

It follows from equation (34) that the laboratory-frame

sampling basis Brecip ¼ ½qi qj qk� defined by equations (25),

(26) and (27) is transformed to the detector frame by

Brecip �!
to det:

frame
BT

detBrecip; ð37Þ

where Bdet is computed numerically from equation (21). In

either frame, the corresponding real-space sampling basis Breal

of the final BCDI reconstruction may be computed from Brecip

using equation (5).

In Section 4 we describe an example of a BCDI recon-

struction that implements the computational machinery that

has been developed in this section.

4. An example: BCDI on an isolated nanoparticle

With the theoretical and computational machinery developed

in Section 3, we are now in a position to demonstrate the effect

of sampling-induced shear in the reconstruction of a real-

world nanoparticle imaged at a BCDI facility. In our demon-

strative example, the coherent diffraction from a compact

isolated nanoparticle of silicon carbide (SiC) was collected at

the 34-ID-C end station of the Advanced Photon Source. This

nanoparticle was one of many nominally identical, tapered

pillars with flat tops and bottoms, drop-cast onto an Si

substrate after extraction from an etched SiC bulk single-

crystal substrate. A single such nanoparticle was chosen for

imaging purposes. The particulars of the experimental para-

meters during the BCDI measurement are given in Table 1.

Armed with this information, we may compute the

following quantities in the laboratory frame:

Bdet ¼

0:869435 �0:095149 0:484799

0 0:981279 0:19259

�0:494048 �0:167445 0:853158

2
4

3
5 ð38Þ

[from equation (21)],

Brecip ¼

173445:418 �18981:475 42763:895

0 195757:552 0

�98558:742 �33403:935 141174:943

2
4

3
5 m�1

ð39Þ

[from equations (25), (26) and (27)] and finally from

equation (5)
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Table 1
Experimental parameters of the SiC nanocrystal BCDI scan, measured at
Beamline 34-ID-C at the Advanced Photon Source.

Refer to Fig. 2 for the experimental geometry.

Parameter Value Description

E 9 keV Beam energy
� 1.378 Å Wavelength
�� 0.0023	 Angular increment
D 2.0 m Object–detector distance
� 11.104	 Detector alignment (elevation)
� 29.607	 Detector alignment (azimuth)
p 55 � 10�6 m Pixel size
(N1, N2, N3) (256, 256, 100) Pixel array dimensions

Figure 3
Isosurface plots of the reconstructed object (XY, YZ and XZ views), with the color scale depicting complex phase in radians. (Top row) Direct isosurface
plot of the scatterer from the phase-retrieval solution array, without the required shear correction. Axis units are in pixels. (Bottom row) Isosurface plots
after the shear correction has been applied (r ¼ Brealm). Axis dimensions are in nanometres and the X, Y and Z axes correspond to the laboratory-frame
directions ŝs1, ŝs2 and ŝs3, respectively.



Breal ¼ B�T
recip

256�1

256�1

100�1

2
64

3
75

¼

19:214 0 34:340

0:870 19:955 13:642

�5:820 0 60:432

2
64

3
75� 10�9 m: ð40Þ

The columns of Breal above are the sampling steps of the

reconstructed scatterer corresponding to the pixels in the

numerical reconstruction obtained from conventional phase

retrieval. We further note that the real-space image thus

rendered depicts the scatterer as it was oriented in the Bragg

condition while in the diffractometer. Fig. 3 finally shows the

effect of the shear correction on the rendered image of the

scatterer. A naı̈ve isosurface rendering from the numerical

array obtained from phase retrieval (top row) shows obvious

distortions along different views of the nanocrystal image and

the clear absence of top and bottom surfaces of the tapered

pillar, as compared to the shear-corrected object (bottom

row). Fig. 4 shows the shear-corrected view of the SiC nano-

particle, reoriented to match a SEM image of the batch of SiC

pillars prior to their release from the substrate. The essential

morphological features in the SEM image are seen to be

reproduced faithfully with the appropriate shear correction. In

particular, the flat base of the pillar is clearly visible in the

images in the bottom row.

5. Summary

In Part I of this work we have described in general terms the

scattering geometry of a BCDI experiment and its distortion

effects on the imaged morphology of a crystalline scatterer

obtained from phase retrieval. This real-space distortion is

demonstrated as an unavoidable effect of the non-orthogonal

sampling of Fourier space using a conventional pixelated area

detector and sample rocking arrangements. We have provided

a flexible numerical method to correct this image distortion,

which can be easily implemented using standard linear algebra

software packages and adapted to a variety of geometric

configurations possible in BCDI. We have done this by

examining the representations of real- and Fourier-space

points and their fundamental conjugate relation through the

Fourier transform.

We have also demonstrated the validity of this shear

correction with a BCDI reconstruction of a carefully fabri-

cated silicon carbide nanoparticle, corroborated with SEM

images. This work serves as a theoretical basis for the analysis

of BCDI diffraction geometry, as well as a general guideline

for developing software tools for three-dimensional recon-

struction.

The distortion correction formalism laid out in Part I unifies

various customized prescriptions currently found in the

literature and in regular use at BCDI and ptychography

facilities around the world. As presented, it permits the flex-

ible implementation of the BCDI shear-correction metho-

dology to the experimental configurations of new BCDI

beamlines, anticipating the wider adoption of BCDI at

upcoming fourth-generation synchrotron light sources. The

formalism presented is the basic foundation of the methods

developed in Part II, for direct reconstruction of the scatterer

image on an orthogonal grid within the phase-retrieval

process. This latter capability is demonstrated for the cases of

even as well as uneven signal sampling in Fourier space,

greatly increasing the scope of applicability of 3D phase

retrieval. An entirely new class of BCDI experiments poten-

tially stand to benefit from this enhanced reconstruction

capability, for instance measurements on dynamically varying

samples or BCDI in the presence of unstable or vibrating

components (Calvo-Almazán et al., 2019). As we shall see in

Part II, such reconstructions can be achieved with minimal

computational overhead through the modified 3D Fourier

transform.

APPENDIX A
Fundamental theory

A three-dimensional real-space vector v denoting position is

represented in a given ‘reference’ orthonormal frame as a
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Figure 4
Comparison of the shear-corrected BCDI rendering of the SiC nanoparticle with a SEM image. In contrast to Fig. 3, this BCDI rendering has been
artificially reoriented to match the view of the nanoparticles in the SEM image, shown here on the original etched SiC block. This view is no longer in the
synchrotron laboratory frame. Here, the inherent mathematical degeneracy in the phase-retrieval inverse problem [i.e. if  (r) is a real-space solution for
an observed BCDI diffraction pattern then so is  *(�r)] was resolved by choosing the solution that most closely reproduced the asymmetric
morphological features of the SiC particle in the SEM image, after application of the shear correction.



linear combination of an ordered set of basis vectors ½ŝs1 ŝs2 ŝs3�

of unit norm:

v :¼
P3

n¼1

rnŝsn: ð41Þ

In this convention, the coefficients rn 2 R carry dimensions of

length, while fŝsng
3
n¼1 merely denote a set of three orthogonal

directions with unit norms. If the components of each basis

vector ŝsn (expressed in the same frame) are concatenated as

the columns of a 3 � 3 matrix L, then equation (41) can be

written compactly as

v :¼ Lr; ð42Þ

where r � [r1 r2 r3]T. The same vector v can be expressed in

terms of another basis ~LL of non-coplanar unit vectors ½~̂ss~ss1 ~̂ss~ss2 ~̂ss~ss3�

with a different set of coefficients ~rr ¼ ½~rr1 ~rr2 ~rr3�
T:

v ¼ ~LL~rr: ð43Þ

From equations (42) and (43), the prescription for transfor-

mation between two representations of the vector v can be

derived:

r ¼ Br~rr: ð44Þ

where Br � L�1 ~LL denotes the linear transformation operator

from the ‘tilded’ to the ‘untilded’ basis. We now consider a

scalar field in real space, which is represented by two distinct

but equivalent scalar functions  : R3
! C and ~  : R3

! C

such that

 ðrÞ ¼ ~  ð~rrÞ: ð45Þ

Let the Fourier transforms of the functions  (r) and ~  ð~rrÞ,
respectively, be �(q) and ~��ð ~qqÞ. ~�� is the distorted repre-

sentation of the scattered 3D wavefield whose intensity

distribution is probed during the BCDI measurement,

whereas � is the undistorted representation of the field in its

orthogonal frame. Here, (r, q) and ð~rr; ~qqÞ are conjugate pairs of

vector coordinates as defined by the Fourier transform. Then

for �(q) and ~��ð ~qqÞ to represent the same physical scalar field in

Fourier space, the quantities q and ~qq should satisfy the

following conditions:

(1) They should be two distinct three-component repre-

sentations of the same physical Fourier-space point.

(2) They should be related by a linear transformation akin

to equation (44):

q � Bq ~qq: ð46Þ

As with real space, we adopt the convention that the

elements of the column matrix representation q carry physical

units of inverse length and the columns of Bq are dimen-

sionless directions in Fourier space. The linear operator Bq is

determined in terms of Br in the following manner:

~��ð ~qqÞ :¼
R
R

3

~  ð~rrÞ expð��2�~rrT ~qqÞ d~rr

¼
R
R

3

~  ð~rrÞ exp½��2�ðBr~rrÞ
TB�T

r ~qq� d~rr: ð47Þ

By changing the integration variable from ~rr to r according to

equation (44) we obtain

~��ð ~qqÞ ¼
1

detðBrÞ

Z
R

3

~  ðB�1
r rÞ expð��2�rTB�T

r ~qqÞ dr

¼
1

detðBrÞ

Z
R

3

 ðrÞ expð��2�rTB�T
r ~qqÞ dr

¼
1

detðBrÞ
�ðB�T

r ~qqÞ; ð48Þ

where the relation ~  ðB�1
r rÞ ¼  ðrÞ [derived from equations

(44) and (45)] was used in the second equality. A direct

consequence of equation (48) is that q and B�T
r ~qq are actually

the same physical point in the Fourier space: as a result, we

have q ¼ B�T
r ~qq, from which we deduce with equation (46)

Bq ¼ B�T
r : ð49Þ

By definition, representations of mutually conjugate spaces in

a Fourier sense obey equation (49). This relation was first

alluded to in the PhD thesis of Anastasios Pateras (2015). It

tells us that if the pair of variables ð~rr; ~qqÞ are Fourier conjugate

to each other then so are ðBr~rr;B�T
r ~qqÞ or equivalently

ðB�T
q ~rr;Bq ~qqÞ. Furthermore, if Br represents an orthonormal

frame, Br is an orthogonal matrix (i.e. B�1
r ¼ BT

r ) and equation

(49) reads Br = Bq, i.e. orthonormal bases defined in this

manner are self-conjugate.

APPENDIX B
Computing strain components on a sheared grid

The components of the rank-2 strain tensor E, when expressed

in a convenient orthonormal frame, are typically indexed by

two integers: 
ij. Here the indices range over the number of

dimensions (i, j = 1, 2, 3). In BCDI, the component of the

lattice strain field along the relevant reciprocal lattice vector

q0 [see Fig. 1(a)] at a point r in the crystal is given by


q0
ðrÞ ¼ q̂qT

0EðrÞq̂q0; ð50Þ

where we have denoted q̂q0 � ½q̂q0;1 q̂q0;2 q̂q0;3�
T as the unit-norm

vector in the direction of q0 (i.e. q0 ¼ kq0kq̂q0). If u(r) is the

lattice distortion at the point r, then equation (50) can also be

written as


q0
ðrÞ ¼ q̂qT

0r q̂qT
0 uðrÞ

� �
ð51Þ

¼
1

2�kq0k

� �
q̂qT

0r�ðrÞ; ð52Þ

where r is the gradient with respect to r and �ðrÞ � 2�qT
0 uðrÞ

is recognized as the complex phase field measured in a BCDI

experiment.

We now wish to compute r�(r) at each grid point

r ¼ Brealm, for use in equation (52). To do this, we first

compute the projections of r� along the three independent

sampling directions given by the columns of Breal. If these

directions are denoted by êe0i, where i = 1, 2, 3, and we define

the integer array m 2 Z3 as before, then these projections may
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be approximated by the finite differences of the discrete phase

field, evaluated at Brealm:

êe01ð Þ
T
r�m ¼ 2�

�mþ½1 0 0�T � �m

�x1

� �
þO �x1ð Þ; ð53Þ

êe02ð Þ
T
r�m ¼ 2�

�mþ½0 1 0�T � �m

�x2

� �
þO �x2ð Þ; ð54Þ

êe03ð Þ
T
r�m ¼ 2�

�mþ½0 0 1�T � �m

�x3

� �
þO �x3ð Þ; ð55Þ

where �xi are the norms of the columns of Breal and �m is

shorthand for �ðBrealmÞ. If we define Br � ½êe
0
1 êe02 êe03� and the

right-hand sides of equation (53), (54) and (55) are concate-

nated to form a column vector n then we have BT
r r�ðrÞ ¼ n,

and therefore equation (52) becomes


q0
ðrÞ ¼

1

2�kq0k

� �
q̂qT

0 B�T
r n ¼

1

2�kq0k

� �
B�1

r q̂q0

� �T
n: ð56Þ

Here n can be computed with relative ease owing to the

availability of numerous software tools for finite differencing.

Equation (56) is a prescription to directly compute the strain

component at each point Brealm of the discrete non-rectilinear

grid spanned by Breal without having to interpolate the

complex phase field on to a rectilinear grid in advance.

Funding information

The theoretical framework pertaining to the duality of

continuous real and Fourier space was developed with support

from the European Research Council (European Union’s

Horizon H2020 research and innovation program grant

agreement No. 724881). Adaptation of this theory to discrete

sampling and BCDI geometry and the accompanying X-ray

measurements were supported by the US Department of

Energy (DOE), Office of Science, Basic Energy Sciences,

Materials Science and Engineering Division. Sample

preparation and SEM characterization made use of the

Pritzker Nanofabrication Facility of the Institute for Mol-

ecular Engineering at the University of Chicago, which

receives support from Soft and Hybrid Nanotechnology

Experimental (SHyNE) Resource (NSF ECCS-1542205), a

node of the National Science Foundation’s National Nano-

technology Coordinated Infrastructure. This research uses the

resources of the Advanced Photon Source, a US DOE Office

of Science User Facility operated for the DOE Office of

Science by Argonne National Laboratory under contract No.

DE-AC02-06CH11357.

References

Berenguer, F., Godard, P., Allain, M., Belloir, J.-M., Talneau, A.,
Ravy, S. & Chamard, V. (2013). Phys. Rev. B, 88, 144101.

Calvo-Almazán, I., Allain, M., Maddali, S., Chamard, V. &
Hruszkewycz, S. O. (2019). Sci. Rep. 9, 6386.

Cha, W., Ulvestad, A., Allain, M., Chamard, V., Harder, R., Leake,
S. J., Maser, J., Fuoss, P. H. & Hruszkewycz, S. O. (2016). Phys. Rev.
Lett. 117, 225501.

Cherukara, M. J., Pokharel, R., O’Leary, T. S., Baldwin, J. K., Maxey,
E., Cha, W., Maser, J., Harder, R. J., Fensin, S. J. & Sandberg, R. L.
(2018). Nat. Commun. 9, 3776.

Dupraz, M., Beutier, G., Rodney, D., Mordehai, D. & Verdier, M.
(2015). J. Appl. Cryst. 48, 621–644.

Fienup, J. R. (1982). Appl. Opt. 21, 2758–2769.
Fienup, J. R. (1987). J. Opt. Soc. Am. A, 4, 118–123.
Goodman, J. (2005). Introduction to Fourier Optics, McGraw-Hill

Physical and Quantum Electronics Series. W. H. Freeman.
Highland, M. J., Hruszkewycz, S. O., Fong, D. D., Thompson, C.,

Fuoss, P. H., Calvo-Almazan, I., Maddali, S., Ulvestad, A.,
Nazaretski, E., Huang, X., Yan, H., Chu, Y. S., Zhou, H., Baldo,
P. M. & Eastman, J. A. (2017). Appl. Phys. Lett. 111, 161602.

Hofmann, F., Phillips, N. W., Harder, R. J., Liu, W., Clark, J. N.,
Robinson, I. K. & Abbey, B. (2017). J. Synchrotron Rad. 24, 1048–
1055.

Hofmann, F., Tarleton, E., Harder, R. J., Phillips, N. W., Ma, P.-W.,
Clark, J. N., Robinson, I. K., Abbey, B., Liu, W. & Beck, C. E.
(2017). Sci. Rep. 7, 45993.

Hruszkewycz, S. O., Allain, M., Holt, M. V., Murray, C. E., Holt, J. R.,
Fuoss, P. H. & Chamard, V. (2017). Nat. Mater. 16, 244–251.

Hruszkewycz, S. O., Cha, W., Andrich, P., Anderson, C. P., Ulvestad,
A., Harder, R., Fuoss, P. H., Awschalom, D. D. & Heremans, F. J.
(2017). APL Mat. 5, 026105.

Hruszkewycz, S., Holt, M., Murray, C., Bruley, J., Holt, J., Tripathi, A.,
Shpyrko, O., McNulty, I., Highland, M. & Fuoss, P. (2012). Nano
Lett. 12, 5148–5154.

Kriegner, D., Wintersberger, E. & Stangl, J. (2013). J. Appl. Cryst. 46,
1162–1170.

Marchesini, S. (2007). Rev. Sci. Instrum. 78, 011301.
Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A.,

Howells, M. R., Weierstall, U. & Spence, J. C. H. (2003). Phys. Rev.
B, 68, 140101.

Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. (2015).
Science, 348, 530–535.

Newton, M. C., Leake, S. J., Harder, R. & Robinson, I. K. (2010). Nat.
Mater. 9, 120–124.

Pateras, A. (2015). PhD thesis, Aix Marseille University, France.
Pateras, A. I., Allain, M., Godard, P., Largeau, L., Patriarche, G.,

Talneau, A., Pantzas, K., Burghammer, M., Minkevich, A. A. &
Chamard, V. (2015). Phys. Rev. B, 92, 205305.

Pfeifer, M. (2005). PhD thesis, University of Illinois at Urbana-
Champaign, USA.

Robinson, I. & Harder, R. (2009). Nat. Mater. 8, 291–298.
Robinson, I. K., Vartanyants, I. A., Williams, G. J., Pfeifer, M. A. &

Pitney, J. A. (2001). Phys. Rev. Lett. 87, 195505.
Rodrigues, O. (1840). J. Math. Pures Appl. 1re Sér. 5, 380–440.
Shmueli, U. (2001). Reciprocal Space in Crystallography, pp. 2–9.

Dordrecht: Springer Netherlands.
Ulvestad, A., Singer, A., Clark, J., Cho, J., Kim, J. W., Harder, R.,

Maser, J., Meng, S. & Shpyrko, O. (2015). Science, 348, 1344–1347.
Ulvestad, A., Welland, M. J., Collins, S. S. E., Harder, R., Maxey, E.,

Wingert, J., Singer, A., Hy, S., Mulvaney, P., Zapol, P. & Shpyrko,
O. G. (2015). Nat. Commun. 6, 10092.

Vartanyants, I. & Robinson, I. (2001). J. Phys. Condens. Matter, 13,
10593–10611.

Yang, D., Phillips, N. W. & Hofmann, F. (2019). J. Synchrotron Rad.
26, 2055–2063.

research papers

J. Appl. Cryst. (2020). 53, 393–403 S. Maddali et al. � Shear-correcting coordinate transformations in BCDI. Part I 403

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=to5203&bbid=BB30

