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Abstract
The shallow Caroline Seamount is located in the tropical western Pacific Ocean. Its 
summit is 57 m below the surface and penetrates the euphotic zone. Therefore, it is 
ideal for the study of the influence of seamount on plankton distribution. Here, vi-
rioplankton abundance and distribution were investigated by flow cytometry (FCM) 
in the Caroline Seamount in August and September 2017. The total abundance of 
virus-like particles (VLP) was in the range of 0.64 × 106–18.77 × 106 particles/ml and 
the average was 5.37 ± 3.75 × 106 particles/ml. Three to four distinct viral subclus-
ters with similar side scatter but different green fluorescence intensities were identi-
fied. Above the deep chlorophyll maximum (DCM), two medium fluorescence virus 
(MFV) subclusters were discriminated. Between the DCM and the deeper layers, 
only one MFV subcluster was resolved. In general, low fluorescence viruses (LFV) 
comprised the most abundant subclusters. In the 75–150 m water column, however, 
the MFV abundance was higher than the LFV abundance. High fluorescence viruses 
(HFV) constituted the least abundant subcluster throughout the entire water col-
umn. Virioplankton abundance was significantly enhanced at the seamount stations. 
Environmental factors including water temperature and nitrate concentration were 
the most correlated with the variation in virioplankton abundance at the seamount 
stations. Interactions between shallow seamounts and local currents can support 
large virus standing stocks, causing a so-called indirect “seamount effect” on the 
virioplankton.
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1  | INTRODUC TION

Viruses are the most abundant entities in marine ecosystems. 
Their mean abundance is in the range of 104–108  particles/ml 
(Wommack & Colwell, 2000). Virioplankton are key ecological 
drivers in marine biogeochemical processes (Jiao et al., 2010; 
Suttle, 2007; Suttle, 2016; Weitz & Wilhelm, 2012), and one of 
the most important top-down controlling agents of prokaryote 
communities. They account for a significant proportion of bac-
terial mortality. On a daily basis, they remove 20%–40% of the 
standing prokaryote stock at the ocean surface (Suttle, 1994) and 
mitigate up to 80% of prokaryotic production in deep marine en-
vironments (Danovaro et al., 2008). By virus-mediated cell lysis, 
particulate organic matter is transformed into dissolved organic 
matter, shunting the availability of organic material to higher tro-
phic levels (Suttle, 2007). Viral decay releases carbon, nitrogen, 
phosphorus, and other nutrients into the surrounding waters, 
affecting the global marine biogeochemical cycles (Jover, Effler, 
Buchan, Wilhelm, & Weitz, 2014; Zhang, Wei, & Cai, 2014).

Analyses of viral abundance and distribution help elucidate the 
roles of these microorganisms in marine biogeochemistry. After high 
viral abundances were discovered in aquatic environments (Bergh, 
Børsheim, Bratbak, & Heldal, 1989; Børsheim, Bratbak, & Heldal, 
1990), efforts have been made on investigating the abundance and 
influencing factors of the virus in various marine environments. In 
general, viruses have relatively lower abundances in oligotrophic re-
gions and the deep sea (De Corte, Sintes, Yokokawa, Reinthaler, & 
Herndl, 2012; Liang et al., 2017; Winter, Kerros, & Weinbauer, 2009). 
In contrast, viral abundances are higher in the comparatively more 
productive coastal areas (Wommack & Colwell, 2000). On average, 
viruses outnumber their microbial hosts by ~10 times at the surface 
and up to 16 in the deep ocean (Wigington et al., 2016). Changes in 
water temperature, salinity, light, nutrient levels, and turbidity may 
alter viral dynamics and microbial host–virus interactions in marine 
environments (Mojica & Brussaard, 2014). However, there is rela-
tively little information on virioplankton abundance and distribution 
in certain marine zones such as seamount ecosystems.

Seamounts are geographically isolated topographic structures 
that rise >1,000 m from the seafloor (Yesson, Clark, Taylor, & Rogers, 
2011). Seamounts are obstacles to ocean circulation and influence 
hydrological processes by generating internal waves, enhancing 
internal tides and vertical mixing, forming Taylor columns and ed-
dies, and deflecting isotherms (Read & Pollard, 2017; Roden, 1987; 
Rogers, 2018; White, Bashmachnikov, Arístegui, & Martins, 2007). 
These hydrological processes can affect the pelagic communities, 
causing the so-called “seamount effect” (Dower & Mackas, 1996). 
This mechanism is reflected in elevated primary production and 
chlorophyll concentrations over the summits (Boehlert & Genin, 
1987; Dower, Freeland, & Juniper, 1992; Genin & Boehlert, 1985). 
Therefore, seamounts have been hypothesized to be “hotspots” for 
pelagic biodiversity and productivity (Genin & Dower, 2007).

There are ~30,000 seamounts in the world's oceans (Yesson 
et al., 2011). However, only ~250–280 of them have been subjected 

to an extensive biological investigation (Rogers et al., 2015). 
Seamount topographic structures and summit heights and locations 
induce various hydrological effects whose relative strength and per-
sistence present with substantial spatiotemporal variation (White 
et al., 2007). Thus, it is difficult to establish the overall impact of sea-
mounts on biomes. To date, there are very few studies on the pelagic 
communities in deep-sea seamounts. Moreover, those focused pri-
marily on phytoplankton and zooplankton (Cordeiro, Brandini, Rosa, 
& Sassi, 2013; Dower & Mackas, 1996; Genin, 2004; Montserrat 
et al., 2019; Sampaio de Souza, Guimarães da Luz, Macedo, Montes, 
& Mafalda, 2013; Sonnekus, Bornman, & Campbell, 2017). Further, 
virioplankton have received the least attention of all members of 
this microbial community. To the best of our knowledge, only the 
spatial virioplankton abundance for the Bajo O'Higgins 1 seamount 
(32°54′S, 73°53′W) has been reported (Chiang & Quiñones, 2007). 
Viral abundance and production have been explored in the deep-
sea sediments around two seamounts at 3,000-m depth in the 
Tyrrhenian Sea (Danovaro et al., 2009). These limitations of informa-
tion have rendered it difficult to determine the effects of seamounts 
on virioplankton distribution. Here, we examined the abundances of 
virioplankton and their picoplankton hosts in the Caroline Seamount 
of the tropical western Pacific Ocean. The aim of this study was 
to assess the influence of this seamount on the distribution of 
virioplankton.

2  | MATERIAL S AND METHODS

2.1 | Study site and sampling strategy

The Caroline Seamount (10.3–10.9°N, 139.9–140.4°E) is located in 
the tropical western Pacific Ocean. With a summit depth of 57 m, 
it is a typical shallow seamount. Its summit has a “basin” with a 
depth of ~100 m. Seawater samples were collected at the Caroline 
Seamount on the WPOS-M4 cruise conducted from August 7–
September 5, 2017, aboard the R/V “Kexue.” Twenty-two stations 
were sampled along Transects A and B crossing at Stn. 0 (Figure 1 
and Table A2). To evaluate the influences of the seamount on virio-
plankton distribution, sampling stations were divided into two cat-
egories: stations with depths <2,000 m (except for Stn. 4, remote 
from the seamount) were designated as seamount stations (Stns. 
0–3, 5–6, 11–12, and 17–18); while others located at >2,000 m 
(Stns. 7–10, 13–16, and 19–21; Stn. 4 (1,521 m)) were designated 
as far-field stations outside the Caroline Seamount. Stations 0, 1, 
and 5 were at the summit of the seamount. At each station, seawa-
ter samples were collected in 10-L Niskin bottles from the surface 
to the benthic-boundary layer at 4–13 different depths (Table A1). 
At the seamount summit, samples were also taken at the benthic-
boundary layer ~5–16  m above the sediments. Conductivity-
derived salinity, temperature, and pressure (sampling depth) 
were measured with the SBE 9 conductivity–temperature–depth 
profiler (Sea-Bird). In situ chlorophyll a (Chl a) fluorescence was 
measured with a fluorometer and turbidity sensor (FLNTU; WET 
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Labs, Inc.) mounted on the sampling rosette frame. The accuracies 
of the conductivity, temperature, and pressure are 0.0003  S/m, 
0.001°C, and 0.015% FS, respectively.

2.2 | Sample analysis

For virioplankton and picoplankton enumeration, 4-ml seawater 
samples were fixed immediately after collection with 1% (v/v) par-
aformaldehyde for 30 min in the dark at room temperature, flash-
frozen in liquid nitrogen, and stored at −80°C until analysis in the 
onshore laboratory (Marie, Brussaard, Thyrhaug, Bratbak, & Vaulot, 
1999; Marie, Partensky, Vaulot, & Brussaard, 1999).

Virioplankton were carried out as described by Brussaard, 
Payet, Winter, and Weinbauer (2010) with some modifications. 
Fixed samples were thawed in the dark at room temperature and 
filtered through a 100-µm mesh to remove large particles. The fil-
tered samples were 10-fold diluted in 0.22-μm filtered, autoclaved 
TE buffer (Tris-EDTA, 100 mM Tris-Cl, 10 mM EDTA, pH 8.0; Sigma). 
SYBR Green I commercial stock (10,000×) was 100-fold diluted into 
distilled water to prepare a working solution. The samples were 
stained with the SYBR Green I working solution at a final 5 × 10−5 
commercial stock dilution, incubated for 10 min in the dark at 80°C, 
and cooled for 5 min before analysis. VLP were determined with 
a CytoFLEX flow cytometer (Beckman Coulter) fitted with violet 
(405 nm), blue (488 nm), and red (638 nm) lasers. The trigger was 
set to green fluorescence. Several VLP subclusters were identified 
on the basis of the violet side scatter versus the SYBR Green I green 
fluorescence intensities. The total VLP was the sum of all viral sub-
cluster abundances.

Picoplanktonic constituents such as the photosynthetic 
Synechococcus (SYN), Prochlorococcus (PRO), picoeukaryotes 
(PEUK), and heterotrophic prokaryotes (HP) were determined with 
a FACSJazz flow cytometer (Becton Dickinson). The protocols were 
adapted from Marie, Simon, Guillou, Partensky, and Vaulot (2000). 
Fluorescent polystyrene beads (2 µm; Polysciences) were used as 
the internal standard. Autotrophic picoplankton (SYN, PRO, and 
PEUK) were distinguished according to their scatter and autofluo-
rescence induced by chlorophyll a and/or phycoerythrin. For HP, the 
samples were diluted 6 folds with TE buffer and stained with SYBR 
Green I at a final concentration of 10−4 of the commercial stock for 
20 min in the dark at room temperature. The HP were then resolved 
according to their fluorescence indicated on the green fluorescence 
versus side scatter cytogram.

Aliquots of 250-ml seawater were passed through 0.7-μm GF/F 
glass fiber filters (Whatman) to determine nutrient concentrations. 
The filtrates were fixed with trichloromethane (chloroform; CHCl3) 
(2 × 103, v/v) and stored in high-density polyethylene (HDPE) bottles 
at −20°C until analysis. The NH4

+, NO2
−, NO3

−, and PO4
3− concentra-

tions were photometrically determined in a continuous flow analyzer 
(QuAAtro, Bran-Luebbe Inc.).

2.3 | Data and statistical analyses

Virioplankton data were collected and analyzed in CytExpert v. 
2.3.0.84 (Beckman Coulter). Picoplankton data were collected 
with BD FACS™ Software v. 1.2.0.87 (Becton Dickinson) and an-
alyzed with the Summit v. 4.3 (Dako Colorado, Inc.). The depth-
averaged integrated virioplankton and picoplankton abundances in 

F I G U R E  1  Sampling stations in the Caroline Seamount. Stations inside the red rectangle are seamount stations. Others are far-field 
stations. Contours are depths in meters. Figures created with Golden Software Surfer v. 13 https://www.golde​nsoft​ware.com/produ​cts/
surfer

https://www.goldensoftware.com/products/surfer
https://www.goldensoftware.com/products/surfer
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the epipelagic layers (0–200 m) were calculated by the trapezoidal 
method. Contour plots were generated with Surfer v. 13 (Golden 
Software). Independent t test and ANOVA were conducted in SPSS 
v. 17 (SPSS Inc.) to compare the picoplankton and virioplankton 
abundances between the seamount and far-field stations in the 
upper 75 m water column and the virioplankton/prokaryote ratios 
(VPR) at various depths, respectively. To elucidate the relationships 
among the virioplankton, picoplankton, and environmental fac-
tors, a redundancy analysis (RDA) was performed in CANOCO for 
Windows v. 4.5 (Microcomputer Power). A distance-based multi-
variate analysis for a linear model using forward selection (DISTLM 
forward) was run in Primer v. 6 with the PERMANOVA + package 
(Primer-E; Plymouth, UK) to evaluate the relative influences of fac-
tors potentially controlling virioplankton abundance (temperature, 
salinity, depth, in situ Chl a fluorescence, nutrient levels, and other 
picoplankton components). Where necessary, the data were loga-
rithmically (base 10) transformed to achieve variance homogeneity 
and meet the normality assumptions for the regression and redun-
dancy analyses.

3  | RESULTS

3.1 | Hydrological and biological variables

In the epipelagic layers of most Caroline Seamount stations, the cur-
rent flowed from east to west at an average velocity of ~200 mm/s 
(J. Ma & X. Li, unpublished data). The seawater temperature ranged 
from 1.62°C (Stn. 16; 2,730 m depth) to 31.00°C (Stn. 5; 3 m depth). 
The average surface temperature was 30.48  ±  0.23°C (n  =  22). 
Temperature decreased with depth and there was a thermocline at 
100–200 m (Figure 2c,d). The salinity range was 33.00–35.13, and a 
halocline was observed at 100–200 m (Figure 2g,h). The isotherms 
and isohalines decreased over the summit (Figure 2c,d,g).

There were no obvious NO2
− and NH4

+ distribution trends 
throughout the water column. However, the higher NH4

+ concentra-
tions were observed on the east (Figure 2i,k) and north (Figure 2j,l) 
sides of the Caroline Seamount. Higher NO2

− concentrations were 
found on the east side of the Caroline Seamount (Figure  2m,o). 
The NO3

− and PO4
3− distribution patterns were similar. Their con-

centrations were lower in the epipelagic than the mesopelagic 
(200–1,000 m) and bathypelagic (1,000–3,000 m) layers (Figure 2q–
x). Clear NO3

− and PO4
3− uplifts were observed near the summit 

(Figure 2s,w).
The in situ Chl a fluorescence was comparatively higher in the 

75–200 m water column. A deep chlorophyll maximum (DCM) was 
located at around 100–150  m depth (Figure  3c,d). Picoplankton 
were distributed mainly in the epipelagic layers but decreased 
sharply in the mesopelagic and bathypelagic layers. PRO domi-
nated the autotrophic picoplankton with an average abundance 
of 20.35  ±  31.40  ×  103  cells/ml, which was about two orders of 
magnitude higher than SYN (0.61 ± 0.38 × 103 cells/ml) and PEUK 
(0.82 ±  0.51 ×  103  cells/ml) (Table  1). HP was the most abundant 

picoplankton with an average abundance of 4.97 ± 1.79 × 105 cells/
ml. Vertical distribution patterns of picoplankton were different. 
PRO and PEUK showed similar patterns with high abundance around 
the DCM layer but the maximum depth for PEUK (100–150 m) was 
slightly deeper than that of PRO (75–150 m). The abundance of SYN 
showed a maximum at 0–100 m which was above the DCM layer. 
High HP abundance was detected in the epipelagic layers and its 
maximum occurred above the DCM (Figure 3s,t).

3.2 | Viral subclusters

Several distinct viral subclusters could be distinguished on the cyto-
grams of violet side scatter against SYBR Green I green fluorescence 
intensities (Figure A1). In the samples collected from 0 to 75 m water 
column, there were four distinct subclusters classified as low fluo-
rescence viruses (LFV), medium fluorescence viruses a and b (MFV-a 
and MFV-b), and high fluorescence viruses (HFV) (Figure A1a,b). In 
the DCM deep layer samples, only a single medium fluorescence 
(MFV) subcluster was resolved (Figure A1c,d).

Low fluorescence viruses was the most abundant (0.25–
11.86  ×  106  particles/ml; average 2.45  ±  1.62  ×  106  particles/
ml) followed by MFV (0.15–8.10  ×  106  particles/ml; aver-
age 2.36  ±  1.90  ×  106  particles/ml) (Table  1; Figure  A1e). 
HFV was least abundant subcluster (Table  1; Figure  A1e). Its 
range was 0.01–2.14  ×  106  particles/ml, and its average was 
0.56 ± 0.54 × 106 particles/ml.

3.3 | Virioplankton distribution

3.3.1 | Virioplankton abundance

The total VLP abundance in the Caroline Seamount was in the 
range of 0.64  ×  106–18.77  ×  106  particles/ml with an average 
of 5.37 ± 3.75 × 106 particles/ml (Table 1). Similar to the various 
picoplankton clusters, VLP was also relatively more abundant in 
the epipelagic layers. Its maximum abundance was measured in 
50–150 m at most stations (Figure  4c,d). The average total VLP 
abundance decreased from 7.23 ± 3.21 × 106 particles/ml in the 
epipelagic layers to 1.30 ± 0.49 × 106  particles/ml in the bathy-
pelagic layers. We identified uplifted VLP abundance isolines 
over the summit, especially on the south side (Figure 4d). In the 
mesopelagic and bathypelagic layers, the total VLP abundance 
was higher on the east side than the west side of the Caroline 
Seamount (Figure 4a).

Low fluorescence viruses abundance peaked in the upper 150 m 
water column. This pattern roughly corresponded to those for the 
SYN and HP maxima (Figure 4g,h). Comparatively higher LFV abun-
dance was observed on the east side of the Caroline Seamount 
(Figure 4e,g). Both MFV and HFV presented with maximum abun-
dances at 50–150 m depth. This trend aligned with the observed 
PRO and PEUK distribution patterns (Figure 4k,l,o,p). All three viral 
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subclusters had uplifted isolines over the summit. LFV contributed 
the most to the total VLP especially in the mesopelagic and bathy-
pelagic layers (Figures A1f and 4e,f). In the 75–150 m water column, 
however, the abundance of MFV surpassed that of LFV (Figures A1f 
and 4k,l). HFV was the least abundant subcluster and comprised only 
1.39%–13.13% of the total VLP (Figure A1f).

In the Caroline Seamount, the range of VPR was 4.41–83.16 
throughout the water column and its average was 21.71  ±  13.64 
(n  =  218; Table  1). VPR significantly increased with depth 
(15.88 ± 6.61 in the epipelagic layers, 25.99 ± 10.92 in the meso-
pelagic layers, and 45.49 ± 15.32 in the bathypelagic layers) at all 
sampling stations (one-way ANOVA; p < .01).

F I G U R E  2  Vertical distributions of environmental factors along Transects A and B in 0–3,000 m (1st and 2nd columns) and 0–300 m (3rd 
and 4th columns) water columns in the Caroline Seamount. T (a-d): temperature, °C; S (e-h): salinity; NH4

+ (i-l), NO2
– (m-p), NO3

– (q-t), PO4
3– 

(u-x): μmol/L. E, east; N, north; S, south; W, west. Figures created in Golden Software Surfer v. 13, https://www.golde​nsoft​ware.com/produ​
cts/surfer

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

F I G U R E  3  Vertical distributions of in situ Chl a fluorescence and picoplankton abundance along Transects A and B in 0–3,000 m (1st and 
2nd columns) and 0–300 m (3rd and 4th columns) water columns in the Caroline Seamount. Chl a (a-d): in situ Chl a fluorescence; SYN (e-h): 
Synechococcus , ×103 cells/ml; PRO (i-l): Prochlorococcus , ×103 cells/ml; PEUK (m-p): picoeukaryotes, ×103 cells/ml; HP (q-t): heterotrophic 
prokaryotes, ×105 cells/ml. E, east; N, north; S, south; W, west. Figures created in Golden Software Surfer v. 13 https://www.golde​nsoft​
ware.com/produ​cts/surfer

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)
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3.3.2 | Virioplankton in the seamount and far-
field stations

The vertical and horizontal distribution patterns of the virioplank-
ton differed between the seamount and far-field stations. At the 
seamount stations, the total VLP and all three viral subclusters pre-
sented with subsurface maxima at 75 m depth (Figure A2a,c,e,g). At 
the far-field stations, the total VLP, MFV, and HFV showed DCM 
maxima at 100 m. LFV had a DCM peak at 125 m. However, there 
were no observable vertical differences in picoplankton distribution 
between the seamount and far-field stations (Figure A2i–p).

The total VLP and all three viral subclusters had similar hor-
izontal distribution patterns in the Caroline Seamount based on 
the depth-averaged integrated abundance in the epipelagic layers 
(Figure 5). Maximum VLP, LFV, MFV, and HFV abundances were mea-
sured around the seamount summit. The abundances decreased from 
the seamount stations to the far-field stations (Figures  5 and A3). 
Significantly higher VLP, LFV, and HFV abundances were noted at the 
seamount stations than the far-field stations in the upper 75 m water 
column (n = 88; independent t test; p < .01, p < .01, and p < .05, re-
spectively) (Table 2). The MFV abundance was also higher at the sea-
mount stations than the far-field stations but the difference was not 

 
Epipelagic 
(0–200 m)

Mesopelagic 
(200–1,000 m)

Bathypelagic 
(1,000–3,000 m)

Water column 
(0–3,000 m)

Temperature (°C) 27.01 ± 4.93 9.77 ± 4.12 3.33 ± 1.33 20.07 ± 10.77

Salinity 34.25 ± 0.48 34.54 ± 0.10 34.60 ± 0.05 34.35 ± 0.41

In situ Chl a fluorescence 0.13 ± 0.16 0.10 ± 0.05 0.12 ± 0.04 0.12 ± 0.13

NO2
− (µmol/L) 0.07 ± 0.05 0.08 ± 0.05 0.10 ± 0.06 0.07 ± 0.05

NO3
− (µmol/L) 0.50 ± 0.94 6.70 ± 2.76 9.71 ± 0.55 3.19 ± 3.97

NH4
+ (µmol/L) 4.22 ± 1.80 4.52 ± 1.58 4.42 ± 1.48 4.33 ± 1.73

PO4
3− (µmol/L) 0.09 ± 0.14 0.95 ± 0.38 1.34 ± 0.08 0.46 ± 0.54

SYN (×103 cells/ml) 0.61 ± 0.38 0.04 ± 0.04 0.04 ± 0.03 0.42 ± 0.41

PRO (×103 cells/ml) 20.35 ± 31.40 0.78 ± 1.64 0.16 ± 0.08 13.62 ± 27.32

PEUK (×103 cells/ml) 0.82 ± 0.51 0.04 ± 0.08 0.01 ± 0.01 0.55 ± 0.57

HP (×105 cells/ml) 4.97 ± 1.79 0.86 ± 0.36 0.29 ± 0.07 3.50 ± 2.54

VLP (×106 particles/ml) 7.23 ± 3.21 2.06 ± 0.98 1.30 ± 0.49 5.37 ± 3.75

LFV (×106 particles/ml) 3.12 ± 1.56 1.24 ± 0.63 1.02 ± 0.48 2.45 ± 1.62

MFV (×106 particles/ml) 3.29 ± 1.64 0.73 ± 0.42 0.26 ± 0.06 2.36 ± 1.90

HFV (×106 particles/ml) 0.81 ± 0.50 0.10 ± 0.08 0.03 ± 0.01 0.56 ± 0.54

VPR 15.88 ± 6.61 25.99 ± 10.92 45.49 ± 15.32 21.71 ± 13.64

Abbreviations: HFV, high fluorescence viruses; HP, heterotrophic prokaryotes; LFV, low 
fluorescence viruses; MFV, medium fluorescence viruses; PEUK, picoeukaryotes; PRO, 
Prochlorococcus; SYN, Synechococcus; VLP, virus-like particles; VPR, virioplankton/prokaryote ratio.

TA B L E  1  Environmental factors 
and picoplankton and virioplankton 
abundances in the Caroline Seamount

F I G U R E  4  Vertical virioplankton abundance distributions along Transects A and B in 0–3,000 m (1st and 2nd columns) and 0–300 m 
(3rd and 4th columns) water columns in the Caroline Seamount. VLP (a-d): virus-like particles, ×106 particles/ml; LFV (e-h): low-fluorescence 
viruses, ×106 particles/ml; MFV (i-l): medium-fluorescence viruses, ×106 particles/ml; HFV (m-p): high-fluorescence viruses, ×106 particles/
ml. E, east; N, north; S, south; W, west. Figures created in Golden Software Surfer v. 13 https://www.golde​nsoft​ware.com/produ​cts/surfer

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

https://www.goldensoftware.com/products/surfer
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significant (p > .05). The VPR was significantly higher at the seamount 
stations than the far-field stations (p < .01; Table 2). The SYN and HP 
abundances exhibited horizontal trends similar to those for the virio-
plankton with higher abundance at seamount stations, while PRO and 
PEUK abundances displayed no clear horizontal pattern (Figure 5). No 
significant difference in picoplankton abundance was identified be-
tween the seamount and far-field stations (p > .05; Table 2).

3.4 | Factors influencing virioplankton

A redundancy analysis (RDA) was performed to assess the relation-
ships among the virioplankton, picoplankton, and environmental 
factors (Figure 6). The first two axes explained 78.4% of the total 
inertia in the virioplankton abundance and 96.1% of the cumulative 
variance of virioplankton, picoplankton, and environmental factor 

F I G U R E  5  Horizontal distributions of depth-averaged integrated virioplankton and picoplankton abundances in the epipelagic layers. 
Black dotted lines indicate the location of Caroline Seamount summit. Seamount stations are inside the red rectangle. Others are far-field 
stations. VLP (a): virus-like particles, ×106 particles/ml; LFV (b): low-fluorescence viruses, ×106 particles/ml; MFV (c): medium-fluorescence 
viruses, ×106 particles/ml; HFV (d): highfluorescence viruses, ×106 particles/ml. SYN (e): Synechococcus , ×103 cells/ml; PRO ( f ) : 
Prochlorococcus , ×103 cells/ml; PEUK (g): picoeukaryotes, ×103 cells/ml; HP (h): heterotrophic prokaryotes, ×105 cells/ml. Figures created in 
Golden Software Surfer v. 13 https://www.golde​nsoft​ware.com/produ​cts/surfer

(a) (b) (c) (d)

(e) (f) (g) (h)

 
Seamount stations 
(n = 41)

Far-field stations 
(n = 47)

t test 
significance

VLP (×106 particles/ml) 8.31 ± 2.87 6.50 ± 2.68 **

LFV (×106 particles/ml) 3.82 ± 1.41 2.87 ± 1.29 **

MFV (×106 particles/ml) 3.57 ± 1.64 2.90 ± 1.42 NS

HFV (×106 particles/ml) 0.92 ± 0.48 0.72 ± 0.42 *

SYN (×103 cells/ml) 0.83 ± 0.18 0.85 ± 0.23 NS

PRO (×103 cells/ml) 7.36 ± 13.72 6.34 ± 14.68 NS

PEUK (×103 cells/ml) 0.73 ± 0.13 0.73 ± 0.09 NS

HP (×105 cells/ml) 5.88 ± 0.48 5.89 ± 0.58 NS

VPR 14.17 ± 4.88 11.08 ± 4.61 **

Note: t test; NS, not significant.
Abbreviations: HFV, high fluorescence viruses; HP, heterotrophic prokaryotes; LFV, low 
fluorescence viruses; MFV, medium fluorescence viruses; PEUK, picoeukaryotes; PRO, 
Prochlorococcus; SYN, Synechococcus; VLP, virus-like particles; VPR, virioplankton/prokaryote ratio.
*p < .05. 
**p < .01. 

TA B L E  2  Virioplankton and 
picoplankton abundances in seamount 
and far-field stations in the upper 75 m 
water column

https://www.goldensoftware.com/products/surfer
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relationships in the epipelagic layers (Figure 6a). The total VLP had 
a positive relationship with PEUK abundance, and a negative rela-
tionship with nutrients especially NO3

− and PO4
3−. The RDA dis-

closed a very strong positive relationship between LFV and HP as 
well as PEUK. MFV and HFV were also positively correlated with 
PEUK but only moderately positively correlated with PRO and 
SYN. All viral groups were weakly positively correlated with in situ 
Chl a fluorescence and particulate organic carbon (POC) (Ma et al., 
unpublished data). The correlations for the entire water column 
resembled those for the epipelagic layers (Figure 6b).

A distance-based multivariate analysis for a linear model using 
forward selection (DISTLM forward) was performed as an attempt 
to explain the variation of virioplankton abundance between sea-
mount stations and far-field stations (Table 3). At the far-field sta-
tions, the abundance of potential hosts, especially PRO and HP, 
as well as temperature and nitrate were main variables that ex-
plained the variation of virioplankton. For the seamount stations, 
however, environmental factors such as water temperature and 
nitrate concentration rather than host abundance were the factors 
that most significantly influenced virioplankton distribution there 
(Table 3).

4  | DISCUSSION

The present study elaborated virioplankton distribution in 
the Caroline Seamount of the tropical western Pacific Ocean. 
Virioplankton abundance in the water column was comparable with 
those reported for previous studies conducted in the Pacific Ocean 
(Brum, 2005; Hwang & Cho, 2010; Li et al., 2014; Liang et al., 2017; 
Rowe et al., 2012; Yang, Motegi, Yokokawa, & Nagata, 2010; Yang, 
Yokokawa, Motegi, & Nagata, 2014) and other pelagic oceans (De 
Corte et al., 2010, 2012; Evans, Pearce, & Brussaard, 2009; Lara 
et al., 2017).

4.1 | Viral subclusters

Using flow cytometry, the viral community could be divided into 
several subclusters with different green fluorescence intensities and 
side scatter signature (Brussaard et al., 2010). In natural samples, 
two to five viral subclusters were identified from distinct aquatic 
ecosystems (Baudoux, Veldhuis, Noordeloos, Noort, & Brussaard, 
2008; Brussaard, Timmermans, Uitz, & Veldhuis, 2008; Liang et al., 
2014; Mojica, Huisman, Wilhelm, & Brussaard, 2016). However, most 
studies found only two or three viral subclusters (Table 4). Here, we 
identified three to four subclusters with similar side scatter but dif-
ferent green fluorescence intensities.

Although no significant linear correlation between genome size 
and SYBR Green I fluorescence intensities of viral subclusters was 
found, different fluorescence intensities may partially reflect ge-
nome size variations (Brussaard et al., 2010). Phages infecting het-
erotrophic prokaryotes usually have small genomes size and low 
nucleic acid green fluorescence in FCM analysis (Brussaard, Marie, 
& Bratbak, 2000; Larsen et al., 2001). LFV consist mainly of small 
phages infecting heterotrophic prokaryotes (Larsen et al., 2004; 
Marie, Brussaard, et al., 1999). In natural samples, LFV abundance 
often covaries with that of HP (Mojica et al., 2016; Payet, McMinds, 
Burkepile, & Vega Thurber, 2014). Our redundancy analysis also cor-
roborated this pattern. Mojica et al. (2016) described correlations 
between MFV and PEUK and between HFV and picocyanobacte-
ria across the north Atlantic Ocean. Yang et al. (2010) reported a 
correlation between HFV and picophytoplankton (including SYN, 
PRO, and PEUK) in the Pacific Ocean. Our results showed that in 
the tropical western Pacific Ocean, the abundances of MFV and 
HFV were strongly positively correlated with PEUK and, to a lesser 
extent, with SYN and PRO (Figure 6), indicating that the MFV and 
HFV subclusters contain cyanophages and algal viruses. Pulsed-field 
gel electrophoresis (PFGE) and sorting-combined sequencing iden-
tified cyanophage and eukaryotic algal viral sequences in the MFV 

F I G U R E  6  Redundancy analysis (RDA) of virioplankton and picoplankton abundances and environmental factors in the epipelagic 
layers (a) and entire water column (b). Blue arrows: virioplankton; black arrows: picoplankton; red arrows: environmental factors. Orange 
dots: seamount stations; pink dots: far-field stations. Chl a, in situ Chl a fluorescence; HFV, high fluorescence viruses; HP, heterotrophic 
prokaryotes; LFV, low fluorescence viruses; MFV, medium fluorescence viruses; PEUK, picoeukaryotes; POC, particulate organic carbon; 
PRO, Prochlorococcus; S, salinity; SYN, Synechococcus; T, temperature; VLP, virus-like particles. Figures created in Microcomputer Power 
CANOCO for Windows v. 4.5 http://www.micro​compu​terpo​wer.com/

http://www.microcomputerpower.com/
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and HFV subclusters (Larsen, Larsen, Thyrhaug, Bratbak, & Sandaa, 
2008; Martínez, Swan, & Wilson, 2014).

Here, we discovered that the dominant viral subcluster varied 
with depths. LFV dominated in the mesopelagic and bathypelagic 
layers whereas MFV exceeded LFV to be the most abundant sub-
cluster in the midepipelagic layer (75–150 m). In contrast, previous 
studies reported no variation of the dominant viral subclusters. HFV 
was least abundant subcluster and its abundance decreased with 
depth. Similar results were reported for studies conducted in the 

South Atlantic Ocean (De Corte, Sintes, Yokokawa, Lekunberri, & 
Herndl, 2016). Most studies demonstrated a clear LFV dominance 
throughout the water column (Wei, Zhang, Peng, Liang, & Jiao, 2018; 
Winter et al., 2009; Yang et al., 2010). Magiopoulos and Pitta (2012) 
indicated that in the Eastern Mediterranean Sea, LFV were the dom-
inant viral group, but the dominance was lower in the mesopelagic 
layer compared to the epipelagic and bathypelagic layers. However, 
De Corte et al. found the most abundant viral subcluster was MFV 
throughout the water column in the Atlantic Ocean (De Corte et al., 
2010, 2012). Viruses cannot replicate without host cells. Thus, viral 
abundance is closely associated with the abundance of their (mostly) 
microbial hosts. Large-scale analyses of the global tropical and sub-
tropical oceans proved that potential host abundance is to some 
extent a significant influencing factor of virioplankton (Lara et al., 
2017). Picophytoplankton abundance was high in the vicinity of the 
DCM layer but sharply decreased below it. In the mesopelagic and 
bathypelagic layers, the abundance of HP was much higher than that 
of picophytoplankton (Figure  3). Therefore, the variation of host 
cells (picophytoplankton and HP) abundance in different depths 
might account for the discrepancies we observed among the layers 
in terms of their dominant viral subclusters.

We also noticed that viral subclusters varied with depth. 
The MFV-a and MFV-b subclusters were identified above DCM 
(0–75  m). Below DCM, however, only a single MFV subcluster 
was identified. In the tropical western Pacific Ocean, the cyano-
bacteria SYN and PRO are the major picophytoplankton contrib-
utors (Figure  3). Therefore, they are potential MFV hosts. MFV 
subcluster variation cooccurred with depth niche partitioning of 
SYN and PRO. SYN is usually restricted to the upper well-lit lay-
ers in oligotrophic areas (Partensky, Blanchot, & Vaulot, 1999). At 
0–75 m where subclusters MFV-a and MFV-b were detected, SYN 
accounts for a significant portion of cyanobacteria abundance and 
the abundance of PRO was low (Figure 3). PRO can colonize in the 
subsurface water even with only 0.1% of the surface irradiance 
(Partensky et al., 1999). As the water depth increases, PRO be-
comes the dominant cyanobacteria, and the portion of SYN be-
come negligible (Figure  3). Meanwhile, a single MFV subcluster 
takes the place. These variations in the MFV subcluster probably 
reflected the relative differences in the dominant cyanobacterial 
hosts at various depths. A similar phenomenon was also found 
in the Eastern Indian Ocean (Yuan Zhao, unpublished data). This 
was in contrast to previous studies in Pacific (Liang et al., 2017; 
Yang et al., 2010) or other pelagic ocean regions (De Corte et al., 
2012, 2016; Liang et al., 2014; Magiopoulos & Pitta, 2012; Mojica 
et al., 2016), which found no viral subclusters variation in different 
depths.

4.2 | Influence of seamount

Interactions between seamounts and ocean currents might in-
fluence plankton community compositions and distributions. 
Mendonça et al. (2012) found that, in some cases, a “seamount 

TA B L E  3  Multivariate regression analyses with forward 
selection (DISTLM forward) explaining variabilities in virioplankton 
and picoplankton abundances and environmental factors in the 
epipelagic layers of Caroline Seamount

 
Selected 
variables Pseudo-F P r2 Cumulative

Seamount stations (n = 63)

VLP NO3
− 54.69 0.001 0.47 0.47

S 19.01 0.001 0.10 0.57

PRO 6.85 0.011 0.05 0.62

HP 6.45 0.011 0.05 0.67

LFV T 56.87 0.001 0.48 0.48

NO3
− 9.04 0.009 0.07 0.55

MFV NO3
− 37.50 0.001 0.38 0.38

HP 56.35 0.001 0.23 0.61

S 17.20 0.001 0.14 0.75

PRO 10.79 0.006 0.04 0.79

HFV NO3
− 40.40 0.001 0.40 0.40

S 77.28 0.001 0.24 0.64

PRO 12.52 0.001 0.10 0.74

HP 10.16 0.003 0.07 0.81

Far-field stations (n = 83)

VLP T 64.73 0.001 0.32 0.32

S 30.92 0.001 0.28 0.60

LFV HP 20.31 0.001 0.20 0.20

S 22.24 0.001 0.17 0.37

NO2
− 8.22 0.005 0.06 0.43

MFV PRO 42.03 0.001 0.34 0.34

NO3
− 30.91 0.001 0.18 0.52

T 54.34 0.001 0.14 0.66

Depth 28.96 0.001 0.13 0.79

HFV NO3
− 50.99 0.001 0.39 0.39

Depth 41.28 0.001 0.21 0.60

T 57.20 0.001 0.17 0.77

HP 13.51 0.001 0.03 0.80

Note: The response variable was log-transformed and resulting data 
converted into Euclidian distance similarity matrices. Pseudo-F and P 
values obtained by permutation (n = 999).
Abbreviations: HFV, high fluorescence viruses; HP, heterotrophic 
prokaryotes; LFV, low fluorescence viruses; MFV, medium fluorescence 
viruses; PRO, Prochlorococcus; S, salinity; T, temperature; VLP, virus-like 
particles.
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effect” on the microbial community structure and biomass was 
observed on Seine and Sedlo seamounts. The large autotrophic 
microbial communities at the summit and seamount stations of 
Seine were enhanced in the spring. In addition, maximum pico-
plankton biomass was measured at the summit station and near 
the seamount station of Sedlo in the summer. The dominance of 
heterotrophs is presumably related to the trapping effect of or-
ganic matter by seamounts (Mendonça et al., 2012). Sime-Ngando, 
Juniper, and Vézina (1992) reported that ciliate biomass was sub-
stantially higher over the seamounts than the oceanic regions 
of the Cobb Seamount in the eastern subarctic Pacific Ocean. 
However, previous studies showed that this “seamount effect” 
on the plankton community did not persist (Comeau, Vézina, 
Bourgeois, & Juniper, 1995; Genin & Boehlert, 1985; Mouriño 
et al., 2005; Rowden, Dower, Schlacher, Consalvey, & Clark, 2010). 
Not all plankton groups were affected by seamounts. The influ-
ence of seamounts on the plankton community varied with season. 
The data reported for different surveys on the same seamount 
are inconsistent. Three surveys were conducted on the Minami-
Kasuga seamount but only the first detected and reported cold 
dome, chlorophyll increase, and high zooplankton biomass above 
the seamount (Genin & Boehlert, 1985).

At present, little is known about the influences of seamounts on 
virioplankton. In the only known study on virioplankton distribu-
tions in seamounts, Chiang and Quiñones (2007) stated that com-
paratively elevated viral and HP abundances were detected in the 
benthic-boundary layer over the Bajo O'Higgins 1 seamount summit. 
However, taking the depth differences between summit (376 m) and 
other stations (437–841 m) into account, the higher VLP abundance 
might not be completely attributed to the influence of seamount. 
Another study investigated viral abundance and production in the 

seamount and far-field sediments (3,000 m) of the Tyrrhenian Sea 
(Danovaro et al., 2009). Seamount sediments had a significantly 
higher virus and HP abundance than the far-field sediments. Benthic 
viral production in the seamount sediments was about twice that 
in the far-field sediments. These results suggest that seamounts 
significantly altered prokaryote–virus interactions in the sediments 
(Danovaro et al., 2009). However, the influence of seamounts on the 
viral abundance in the water column remains obscure.

Previous studies on the tropical western Pacific Ocean investi-
gated the influence of seamounts on phytoplankton and microbial 
food web components. However, Chl a concentration, primary pro-
ductivity, and microbial food web component abundances were not 
substantially enhanced over the summits of the Y3 and M2 seamounts 
of the western Pacific Ocean (Dai, Sun, Liang, Tian, & Liu, 2017; Zhang, 
Sun, Chen, Li, & Du, 2016; Zhao et al., 2017). To the best of our knowl-
edge, then, there is no prior information about the influence of sea-
mounts on the virioplankton of the western Pacific Ocean.

The Caroline Seamount is located in the tropical Western Pacific. 
It is mainly influenced by the westwards North Equatorial Current 
(NEC) in the upper water column (0–200 m) (Hu et al., 2015; Toole, 
Zou, & Millard, 1988). Deflection of isotherms and isohalines, as well 
as uplifts of NO3

− and PO4
3−, was observed, indicating localized dis-

turbances caused by the seamount structure. Muck et al. (2014) re-
vealed turbulent mixing of deep water masses impacts not only the 
physicochemical parameters of the mixing zone but also the activity 
of viruses. Relatively higher virioplankton abundance and shallower 
virioplankton subsurface peaks were noted at the seamount sta-
tions. These phenomena were shaped primarily by localized distur-
bances created by the seamount structure.

Changes in environmental conditions such as temperature, salin-
ity, and nutrients can strongly affect viral production and lysogeny 

TA B L E  4  Comparison of virioplankton abundance and subclusters and VPR from relevant studies

Study areas
Abundance 
(×106 particles/ml) Subclusters VPR References

Tropical Western Pacific Ocean 1.30 ± 0.49–7.23 ± 3.21 3–4 15.88 ± 6.61–45.49 ± 15.32 Present study

Western Pacific Ocean 0.8 ± 0.3–6.9 ± 3.2 2 14.6 ± 5.6–21.2 ± 9.0 Liang et al. (2017)

Western Pacific Ocean 0.68 ± 0.36–5.82 ± 2.05   10.08 ± 2.41–14.68 ± 6.71 Li et al. (2014)

Central Pacific Ocean and the Pacific 
sector of the Southern Ocean

1.5–32 3 8.6 ± 2.4–22.2 ± 14.4 Yang et al. (2010)

Global cruise (South China Sea, Indian 
Ocean, Atlantic Ocean, Pacific Ocean)

1.11 ± 0.78–8.94 ± 4.69 2 16.2 ± 7.9–19.0 ± 8.2 Liang et al. (2014)

North Atlantic Ocean   5   Mojica et al. (2016)

North Atlantic latitudinal transect 0.58 ± 0.23–4.48 ± 2.38 3 19.2 ± 8.3–59.1 ± 18.7 De Corte et al. (2012)

(Sub)tropical Atlantic Ocean 0.43 ± 0.08–2.54 ± 1.09 3 9.51 ± 2.63–25.18 ± 4.48 De Corte et al. (2010)

South Atlantic Ocean 0.61 ± 0.31–4.66 ± 4.06 3 15.0 ± 15.7–32.9 ± 25.1 De Corte et al. (2016)

Eastern Mediterranean Sea 0.12–27 3 3.9–44.2 Magiopoulos and Pitta (2012)

Northwestern Mediterranean Sea 0.9 ± 0.3–17.4 ± 19.6 3 13.9 ± 4.0–22.2 ± 15.3 Winter et al. (2009)

North Sea 5–70 4   Baudoux et al. (2008)

East China Sea 0.34–2.3 2   Yang and Jiao (2002)

Norwegian coastal waters   3 4.3 ± 2.4 Bratbak et al. (2011)

Abbreviation: VPR, virioplankton/prokaryote ratio.
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dynamics (Bettarel et al., 2011; Chiaki & Toshi, 2007; Li et al., 2014; 
Lymer & Vrede, 2006; Maurice, Bouvier, Wit, & Bouvier, 2013; 
Williamson & Paul, 2004). Viral abundance may increase with nutri-
ent availability (Danovaro, Armeni, Corinaldesi, & Mei, 2003; Hewson, 
O'Neil, Fuhrman, & Dennison, 2001; Williamson, Houchin, McDaniel, 
& Paul, 2002). Turbulent mixing is conducive to higher viral produc-
tion and abundance and virus-induced mortality in coastal waters 
(Paterson, Nayar, Mitchell, & Seuront, 2012; Wilhelm, Brigden, & 
Suttle, 2002) and deep waters (Muck et al., 2014; Winter et al., 2018). 
In the tropical western Pacific Ocean, warm surface layers above com-
paratively cooler and denser subsurface layers create and maintain a 
permanent thermocline that inhibits nutrient-rich upwells and results 
in surface waters with low primary productivity (Longhurst, 2007). 
Interactions between shallow seamounts and local currents vertically 
displace isotherms and isohalines above the seamounts. Nutrients 
such as NO3

− and PO4
3− are transported into the nutrient-limited eu-

photic zone. This process stimulates both viral and prokaryote pro-
duction and increases viral abundance in Caroline Seamount. On the 
other hand, it is not understood why prokaryote and phytoplankton 
abundances do not rise concomitantly in the Caroline Seamount. 
Further studies are needed to elucidate the underlying mechanism 
of this phenomenon since multiple factors influence viral abundances 
in seamounts. The elevated viral abundance in the seamount may 
also be explained by the resuspension of viruses from the seamount 
floor. Sedimentary viral density was reported to be higher than that 
in the water column (Danovaro & Serresi, 2000). Viruses may read-
ily detach from the sediment and enter the water column (Hassard 
et al., 2016). Dupuy et al. (2014) reported that free viruses were re-
suspended by weak flow through the sediment at friction velocities 
<2 cm/s. However, as previous studies on plankton communities have 
already proposed, the so-called “seamount effect” for virioplankton is 
probably not persistent. Thus, more systematic research is necessary.

5  | CONCLUSIONS

The present study in the tropical western Pacific Ocean showed 
three to four viral subclusters exhibited differences related to depth. 
Shallower subsurface peaks and significant virioplankton abun-
dance enhancements were detected at the summit and seamount 
stations. Interactions between the shallow Caroline Seamount and 
the local current can support higher virioplankton standing stocks. 
To the best of our knowledge, this is the first report of the so-called 
“seamount effect” on virioplankton. However, detailed studies on 
viral abundance, production, and genomics around the seamount at 
high spatiotemporal resolutions are required to clarify and elabo-
rate on the influences of seamounts on virioplankton dynamics.
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APPENDIX 

TA B L E  A 1  Sampling stations and sample depths

  Station Latitude (°N) Longitude (°E) Depth (m) Sampled depths (m)

Seamount stations 0 10.4769 140.1347 110 3, 15, 30, 50, 75, 101

1 10.4335 140.1483 57 3, 15, 30, 50

2 10.4081 140.1569 1,140 3, 30, 50, 75, 118, 150, 200, 300, 500, 1,130

3 10.3706 140.1684 1,465 3, 30, 50, 75, 128, 150, 200, 300, 500, 1,000, 1,450

5 10.5233 140.1194 92 3, 15, 30, 50, 87

6 10.5601 140.1179 932 3, 30, 50, 75, 115, 150, 200, 300, 500, 920

11 10.4762 140.1118 615 3, 30, 50, 75, 100, 133, 200, 300, 610

12 10.4754 140.0921 1,555 3, 30, 50, 75, 119, 150, 200, 300, 500, 1,000, 1,540

17 10.4807 140.1575 506 3, 30, 50, 75, 100, 126, 200, 300, 500

18 10.4886 140.1898 1,716 3, 30, 50, 75, 120, 150, 200, 300, 500, 1,000, 1,700

Far-field stations 4 10.3040 140.1898 1,521 3, 30, 50, 75, 120, 150, 200, 300, 500, 1,000, 1,506

7 10.6199 140.1192 2,368 3, 30, 50, 75, 100, 136, 200, 300, 500, 1,000, 2,340

8 10.6628 140.1218 3,508 3, 30, 50, 75, 100, 128, 200, 300, 500, 1,000, 2,000, 3,490

9 10.7213 140.1205 4,512 3, 30, 50, 75, 100, 138, 200, 300, 500, 1,000, 2,000, 4,501

10 10.9138 140.0889 5,999 3, 30, 50, 75, 100, 138, 200, 300, 500, 1,000, 2,000, 4,000, 
5,950

13 10.4738 140.0629 2,211 3, 30, 50, 75, 112, 150, 200, 300, 500, 1,000, 2,190

14 10.4717 140.0029 2,297 3, 30, 50, 75, 119, 150, 200, 300, 500, 1,000, 2,271,

15 10.4696 139.9285 2,778 3, 30, 50, 75, 100, 150, 200, 300, 500, 1,000, 2,763

16 10.4688 139.8599 2,760 3, 30, 50, 75, 100, 136, 200, 300, 500, 1,000, 2,000, 2,730

19 10.4973 140.2264 2,500 3, 30, 50, 75, 100, 132, 200, 300, 500, 1,000, 2,000, 2,470

20 10.5117 140.2862 2,731 3, 30, 50, 75, 100, 131, 200, 300, 500, 1,000, 2,000, 2,700

21 10.5329 140.3765 2,477 3, 30, 50, 75, 100, 131, 200, 300, 500, 1,000, 2,000, 2,448
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TA B L E  A 2  Sampling stations and sample depths for seamount and far-field stations in upper 75 m water column

  Station Latitude (°N) Longitude (°E) Sampled depths (m)

Seamount stations 0 10.4769 140.1347 3, 15, 30, 50, 75

1 10.4335 140.1483 3, 15, 30, 50

2 10.4081 140.1569 3, 30, 50, 75

3 10.3706 140.1684 3, 30, 50, 75

5 10.5233 140.1194 3, 15, 30, 50

6 10.5601 140.1179 3, 30, 50, 75

11 10.4762 140.1118 3, 30, 50, 75

12 10.4754 140.0921 3, 30, 50, 75

17 10.4807 140.1575 3, 30, 50, 75

18 10.4886 140.1898 3, 30, 50, 75

Far-field stations 4 10.3040 140.1898 3, 30, 50, 75

7 10.6199 140.1192 3, 30, 50, 75

8 10.6628 140.1218 3, 30, 50, 75

9 10.7213 140.1205 3, 30, 50, 75

10 10.9138 140.0889 3, 30, 50, 75

13 10.4738 140.0629 3, 30, 50, 75

14 10.4717 140.0029 3, 30, 50, 75

15 10.4696 139.9285 3, 30, 50, 75

16 10.4688 139.8599 3, 30, 50, 75

19 10.4973 140.2264 3, 30, 50, 75

20 10.5117 140.2862 3, 30, 50, 75

21 10.5329 140.3765 3, 30, 50, 75
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F I G U R E  A 1  Viral subcluster cytograms (a–d), vertical abundance profile for various subclusters (e), and their contributions to total viral 
abundance (f). (a, b) Sample cytograms of four viral subclusters in upper 75 m layers; (c, d) sample cytograms of three viral subclusters in 
100 m and deeper layers. HFV, high fluorescence viruses; LFV, low fluorescence viruses; MFV, medium fluorescence viruses, MFV classified 
as subclusters MFV-a and MFV-b in upper 75 m layers. Indicated abundances are averages for all stations. Figures a-d created in Beckman 
Coulter CytExpert, v. 2.3.0.84 https://www.beckm​an.com/flow-cytom​etry/instr​ument​s/cytof​lex/software. Figures e and f created in 
OriginLab Origin v. 8.5 https://www.origi​nlab.com/

F I G U R E  A 2  Vertical virioplankton and picoplankton distributions in seamount and far-field stations. F.S., far-field stations; S.S., 
seamount stations. Colored dots show virioplankton and picoplankton abundances. Black lines show average virioplankton and picoplankton 
abundances in seamount and far-field stations. Red and blue dotted lines show maximum abundance depths in seamount and far-field 
stations, respectively. HFV, high fluorescence viruses, ×106 particles/ml; HP, heterotrophic prokaryotes, ×105 cells/ml; LFV, low fluorescence 
viruses, ×106 particles/ml; MFV, medium fluorescence viruses, ×106 particles/ml; PEUK, picoeukaryotes, ×103 cells/ml; PRO, Prochlorococcus, 
×103 cells/ml; SYN, Synechococcus, ×103 cells/ml; VLP, virus-like particles, ×106 particles/ml. Figures created in Golden Software Grapher v. 
8.5 https://www.golde​nsoft​ware.com/produ​cts/grapher

https://www.beckman.com/flow-cytometry/instruments/cytoflex/software
https://www.originlab.com/
https://www.goldensoftware.com/products/grapher
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F I G U R E  A 3  Horizontal virioplankton abundance distributions in the upper 75 m water column. Dotted black lines indicate the location 
of Caroline Seamount summit. Seamount stations are inside the red rectangle. Others are far-field stations. HFV, high fluorescence viruses, 
×106 particles/ml; LFV, low fluorescence viruses, ×106 particles/ml; MFV, medium fluorescence viruses, ×106 particles/ml, MFV classified as 
subclusters MFV-a and MFV-b in upper 75 m layers; VLP, virus-like particles, ×106 particles/ml. Figures created in Golden Software Surfer v. 
13 https://www.golde​nsoft​ware.com/produ​cts/surfer

https://www.goldensoftware.com/products/surfer

