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Membrane transporters and receptors are responsible for balanc-
ing nutrient and metabolite levels to aid body homeostasis. Here,
we report that proximal tubule cells in kidneys sense elevated
endogenous, gut microbiome-derived, metabolite levels through
EGF receptors and downstream signaling to induce their secretion
by up-regulating the organic anion transporter-1 (OAT1). Remote
metabolite sensing and signaling was observed in kidneys from
healthy volunteers and rats in vivo, leading to induced OAT1
expression and increased removal of indoxyl sulfate, a prototyp-
ical microbiome-derived metabolite and uremic toxin. Using 2D
and 3D human proximal tubule cell models, we show that indoxyl
sulfate induces OAT1 via AhR and EGFR signaling, controlled by
miR-223. Concomitantly produced reactive oxygen species (ROS)
control OAT1 activity and are balanced by the glutathione
pathway, as confirmed by cellular metabolomic profiling. Collec-
tively, we demonstrate remote metabolite sensing and signaling
as an effective OAT1 regulation mechanism to maintain plasma
metabolite levels by controlling their secretion.

kidney proximal tubule | organic anion transporter 1 | remote sensing
and signaling | indoxyl sulfate

The human gut provides habitat for a complex indigenous
microbial ecosystem, governed by an astonishing number of

microbial genes (1). This genetic capital, often referred to as the
microbiome, codes for an intricate web of metabolic capacities
that supplements our mammalian metabolism (2). The ensuing
metabolic symbiosis allows exploitation of nutrient sources that are
otherwise inaccessible by human metabolism (3). There is signifi-
cant cross-talk between the gut microbial metabolism and the hu-
man metabolism. Metabolites unique to microbial metabolism
enrich the human metabolome, thereby providing energy, vitamins,
and trophic signals (2). From an evolutionary viewpoint, the human
gut microbial ecosystem symbiosis provides mutualistic metabolic
benefits, thus contributing toward organismal fitness (4).
This does not necessarily imply that each and every microbial

metabolite is beneficial. On the contrary, most microbial me-
tabolites undergo intense phase II metabolism, and numerous
metabolites are actively excreted from the body (5, 6). The
kidneys perhaps are the most important excretory route, and
significant amounts of microbial metabolites can be found in the
urine. This has fueled the hypothesis that the kidney excretory
capacity is an essential part of the human microbial symbiosis. It

allows for intestinal absorption of a wide array of mostly bene-
ficial microbial metabolites, while the kidneys remove the frac-
tion of metabolites that is useless and potentially deleterious.
This interorgan communication via small molecules has been
postulated as remote sensing and signaling (7). Ample evidence
in patients with chronic kidney disease (CKD) provides strong
support for the role of the kidneys in human microbial symbiosis
(8, 9). A number of microbiota-derived metabolites, including
indoxyl sulfate (IS), p-cresyl sulfate, and trimethylamine oxide,
were found to accumulate in the blood parallel to the loss of
kidney function, and proven to be associated with clinical out-
comes in patients with CKD (10, 11). This paradigm has been
coined the gut−kidney axis.
Remote metabolite sensing and signaling is a mechanism to

minimize perturbations of body homeostasis due to environ-
mental metabolic challenges (7, 12, 13). Coordinated adjustment
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of transporter networks with overlapping substrate preferences
have been described for glucose, amino acids, and lipids in the
liver, the intestines, and the brain (14–16). Membrane trans-
porters have been postulated to be involved in metabolite sens-
ing and are widely expressed in epithelial barriers, including the
kidney proximal tubule segment (17). The ability of the organic
anion transporters (OAT), member of the renal solute carrier 22
family, to transport a wide spectrum of waste solutes including
those derived from digested food and endogenous metabolic
processes, but also environmental compounds and drugs, make
them plausible candidates for remote sensing (12, 14, 18–20).
We investigated whether kidney proximal tubules can regulate

body homeostasis by sensing elevated endogenous gut microbiome-
derived metabolites levels and can respond by stimulating secre-
tory mechanisms through OAT1 (SLC22A6), for which we studied
IS as prototypical toxin. We demonstrate the existence of a me-
tabolite sensing and signaling mechanism in the kidney governed
by epidermal growth factor receptor (EGFR) and OAT1 as IS
sensors, and the interplay of the aryl-hydrocarbon receptor
(AhR)−ARNT complex and downstream EGFR MAPK−ERK
pathways, accompanied by miR-223 and reactive oxygen species
(ROS) signaling. We here describe the ability of the kidney tubule
to sense elevated metabolite levels and respond by activating a
pathway that boosts metabolite secretion. The ability for remote
sensing and signaling of gut microbiota-derived metabolites by the
kidney further supports the gut−kidney axis in symbiosis.

Results
Kidneys Sense and Signal Elevated Gut-Derived Metabolite Levels and
Induce Renal Secretion. We previously studied the impact of high-
protein diet on tryptophan and phenolic metabolites (21). Hu-
man volunteers subjected to a high-protein diet for 14 d (Fig. 1A)
had elevated plasma levels of IS (21), accompanied by an average
increased urinary IS excretion of 45 ± 14% (Fig. 1B, P < 0.01).
Concentration-dependent augmentation of transporter-mediated

urinary excretion is not uncommon as long as serum concentra-
tions are below transport maximum. However, we questioned
whether the excretory route for IS can be sensed and regulated
to balance serum concentrations. In this exploratory study, we
observed a 70% increase of OAT1 messenger RNA (mRNA)
expression in renal proximal tubule epithelial cells isolated from
urine, although this increase was not significant (Fig. 1C). As re-
cently shown by our group and others, urinary epithelial cells are
viable cells showing proximal tubule characteristics similar to renal
epithelial cells isolated from human kidney tissue (22, 23), em-
phasizing that urine is an ideal source for studying OAT1 ex-
pression in our cohort. To further explore whether the excretory
route for IS can be sensed and regulated, we analyzed data from a
second human intervention study (n = 36) subjected to protein
concentrates extracted from corn, whey, and bovine plasma (Fig.
1D). Tryptophan and tyrosine, precursors of IS and p-cresyl sul-
fate, are expected to be most abundantly present in animal-derived
diets (24). Indeed, urinary IS and p-cresyl sulfate excretion were
increased following bovine-derived protein intake compared with
corn- and whey-derived proteins (Fig. 1 E and F), although
p-cresyl sulfate increased to a lesser extent compared with IS.
To test whether IS itself regulates OAT1 expression, we used

an adenine CKD rat model gavaged with IS (Fig. 1G and SI
Appendix, Table S1). Compared with the vehicle group, renal IS
clearance was increased 7 wk after IS treatment (4.4 ± 0.7 mL
min−1 vs. control 0.1 ± 0.02 mL min−1; Fig. 1H), and OAT1
mRNA expression isolated from urinary kidney epithelial cells
was 2.7 ± 0.6-fold induced (Fig. 1I, P < 0.05). Similarly, CKD
rats were gavaged with p-cresyl sulfate to test metabolite sensing
and signaling specificity. Clearance of both metabolites, p-cresyl
sulfate and IS, was deteriorated after 5 wk of p-cresyl sulfate
administration compared with week 1 treatment (SI Appendix,
Fig. S1 A and B). The OAT1 protein expression was over 40%
reduced in the p-cresyl sulfate group, whereas expression levels
were maintained in the IS group (SI Appendix, Fig. S1C). To-
gether, the IS-mediated induction of the OAT1 secretion path-
way suggests the involvement of an active and specific metabolite
sensing and signaling mechanism.

IS Induces OAT1 Expression and Function via the AhR and EGFR Axis.
To determine the mechanism of IS-mediated OAT1 induction,
we explored the involvement of the AhR−ARNT complex, the
EGFR pathway, and associated molecules. It has been shown
that IS induces the AhR, a ligand-dependent transcription factor
(25, 26). In turn, AhR induces the expression of membrane
transporters belonging to the ATP binding cassette family. In-
deed, we observed that dietary protein-derived metabolites ac-
tivated AhR, and that IS appeared to be the most potent ligand
(SI Appendix, Fig. S2 and Table S2). Exposure of human primary
kidney epithelial cells or mature immortalized human proximal
tubule epithelial cells (ciPTEC) (27) to a clinically relevant IS
concentration (Fig. 2A) resulted in a robust increase of OAT1
expression that could be inhibited by AhR antagonists (Fig. 2 B–
D). In addition to activating the AhR transcription factor, IS
binds to the extracellular domain of the EGFR (28), a receptor
previously implicated in OAT1 regulation as well (29). Indeed,
inhibition of EGFR by cetuximab, a blocking monoclonal anti-
body, attenuated the IS-mediated induction of OAT1, thereby
confirming its role in sensing and signaling (Fig. 2D). In addition,
IS-induced OAT1 transport activity was inhibited by AhR- or
EGFR-selective antagonists (Fig. 2E), sensitive to blocking
transporter-mediated intracellular accumulation of IS (SI Ap-
pendix, Fig. S3), and the presence of EGF is essential to stimu-
late IS-induced OAT1 transport activity (Fig. 2F). Together, our
data demonstrate that IS activates OAT1 expression and trans-
port via the EGFR sensor and AhR signaling.
EGFR stimulation leads to activation of downstream MAPK

and NF-κB signaling pathways, as shown on mRNA (Fig. 2G and

Fig. 1. Human (h) and rat (r) kidneys sense and signal elevated gut-derived
metabolite plasma levels and induce their secretion. (A) Schematic diagram
of the human study design. (B) IS excretion before and after high-protein
diet intervention. (C) Relative mRNA hOAT1 expression before and after
high-protein diet intervention in human kidney cells. (D) Schematic diagram
of the second human study (n = 36 volunteers) using protein concentrates
extracted from corn, whey, and bovine plasma in a randomized manner. (E)
IS and (F) p-cresyl sulfate excretion following corn, whey, and bovine plasma
protein concentrate intervention. (G) Schematic diagram of the animal study
design. (H) IS clearance over time in vehicle (triangle) and IS (square)-treated
CKD rats. (I) Relative mRNA rOAT1 expression in vehicle (triangle) and IS (IS,
square)-treated rat kidney cells. Data are presented as mean ± SEM. *P <
0.05, **P < 0.01, and ***P < 0.001.
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SI Appendix, Table S3) and functional transport level using
MAPK and NF-κB inhibitors (Fig. 2 H and I). When EGFR
signaling is inhibited by cetuximab, the nuclear expression of
ARNT, the counter complex of AhR to which intracellular IS
binds after uptake, is diminished (Fig. 2 J and K). This confirms
the cross-talk between EGFR and AhR in IS sensing and sig-
naling. Furthermore, microRNA-223 (miR-223) was reported to
regulate genes associated with both AhR and EGFR signaling
and might play a pivotal role in the kidney sensing and signal-
ing hypothesis (30, 31). The cross-talk is indeed coregulated by
miR-223, as its pharmacological inhibition reduced OAT1 ac-
tivity (Fig. 2L) and deteriorated ARNT nuclear expression (Fig.
2M and SI Appendix, Fig. S4). Concomitantly, miR-223 expres-
sion itself was not altered in treated cells, and scavenging miR-
223 did not influence MAPK1, BRAF (EGF signaling), or AhR
and AhR repressor gene expressions (SI Appendix, Fig. S5). These
data show that the interrelation between multiple signaling path-
ways is key in OAT1 regulation during the metabolite sensing and
signaling adaptation.
A 3D physiological kidney model that we recently established

allows polarization of the renal epithelial cell layer by seeding
the cells onto a hollow-fiber scaffold (Fig. 3A and refs. 32 and 33).
Using this model, we were able to demonstrate that transepithelial
IS secretion is enhanced after IS treatment (35% ± 13; Fig. 3B).
This is the net effect of induced OAT1 function (Fig. 2E), which
was accompanied by an enhanced expression of the efflux trans-
porters breast cancer resistance protein and multidrug resistance
protein 4 (SI Appendix, Fig. S6); both are involved in luminal
secretion of IS (34) and regulated by EGFR signaling (29).

Reactive Oxygen Species Are Driving Forces in Remote Sensing and
Signaling and Are Efficiently Detoxified by Glutathione Metabolism.
AhR activation and its nuclear translocation have been associ-
ated with cellular stress and the production of ROS (35, 36). We
confirmed that ROS levels were induced by IS (Fig. 4A). Further,
we show that ROS serve as important messengers to stimulate
OAT1 function, as ROS quenching by antioxidants, using trolox
or acetyl cysteine, counteracted the IS-induced transport effect
(Fig. 4B). Metabolomic profiling to further explore intracellular
metabolic changes upon IS stimulation on renal epithelial cells
revealed changes in glutathione and beta-alanine metabolism
(Fig. 5 and SI Appendix, Table S4). Glutathione is an important
antioxidant, critical for protecting cells from oxidative stress. The
ratio of reduced glutathione to oxidized glutathione is a good

Fig. 2. IS induces OAT1 expression and function in vitro via the AhR and EGFR axis under the control of miR-223. (A) Schematic diagram of the experimental
in vitro design using renal proximal tubule cells. (B) Relative mRNA hOAT1 gene expression in control and IS treated ciPTEC cells in the presence or absence of
alpha-naphtoflavone (aNF) and (C) in primary kidney cells. (D) Relative OAT1 protein expression corrected for loading control using Na,K-ATPase and nor-
malized to control. Control and treated cells in the presence or absence of CH-223191 (CH) and cetuximab (CTX) are shown. (E) OAT1 activity monitored using
fluorescein transport in control and treated cells in the presence or absence of CH and CTX and normalized to control. (F) Fluorescein transport in control and
treated cells in the presence or absence of EGF. (G) Relative mRNA expression EGF signaling in IS-treated cells compared with control. White boxes are not
measured. For complete result list of genes tested, see SI Appendix, Table S3. (H) Fluorescein transport in control and treated cells in the presence or absence
of bisindolylmaleimide (BIM; protein kinase C inhibitor), MEK (U-0126; MEK inhibitor), and LY-294002 (LY; phosphoinositide 3-kinase inhibitor) and normalized to
control. (I) Fluorescein transport in control and treated cells in the presence or absence of SN50 trifluoroacetate salt (SN50; NF-κB inhibitor) and normalized to
control. (J and K) Nuclear ARNT expression in control and treated cells in the presence or absence of CTX. Representative images are shown in K. (L) Fluorescein
transport in control and treated cells in the presence or absence of scrambled antagomiR-223 (Scr miR223) or antagomiR-223 (a-miR223) and normalized to
control. (M) Nuclear ARNT expression in control and treated cells in the presence or absence of Scr miR223 or a-miR223 and normalized to control. Representative
images are shown in SI Appendix, Fig. S4. Data are presented as mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001. (Scale bar: K, 10 μm.)

Fig. 3. Ameliorated transepithelial transport using IS exposure in a 3D
kidney model. (A) Schematic showing the experimental design of trans-
epithelial transport across a 3D bioengineered kidney tubule. (B) IS clearance
in control and IS-treated bioengineered kidney tubules. Data are presented
as mean ± SEM. *P < 0.05.
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measure of oxidative stress and was previously shown to be re-
duced in IS-treated endothelial cells (37). Consistent with these
findings, IS-treated renal epithelial cells demonstrated a reduced
relative ratio as well (ratio of 0.8 ± 0.05, P = 0.03), further
confirming that IS induces oxidative stress in these cells (Fig.
5A). In addition, beta-alanine metabolism is an indicator of in-
creased cellular oxygen consumption, and its declined levels in
IS-treated cells are another indicator of oxidative stress (Fig. 5).
Altogether, cellular stress responses during remote sensing
and signaling are tightly regulated, and ROS molecules control
OAT1-mediated transport.

Discussion
It is hypothesized that kidney function is an essential part of
human gut microbiome symbiosis. The kidney’s excretory ca-
pacity of unusable (potentially deleterious) microbial metabo-
lites is unmatched by other organs. Here, we describe the
identification of an effective mechanism by which human kidneys
sense elevated IS levels through receptor-mediated signaling,
and respond by inducing their secretory pathway via OAT1. This
biological response in remote metabolite sensing and signaling is
governed by the complex interplay between OAT1, EGFR, AhR,
and miR-223 that induces ARNT translocation and ROS-
associated signal transduction. Together, the regulation path-
way reveals a detoxification mechanism facilitated by kidney
epithelial cells to remove gut-derived metabolites and to aid
body homeostasis.
As presented here, EGFR activation by IS and downstream

MAPK−ERK signaling plays a pivotal role in ARNT nuclear
translocation in kidney epithelial cells. Our results are supported
by previous findings by Tan et al. (38), who showed that MAPK−
ERK signaling is activated by dioxin, a known AhR ligand, and
that this activation potentiates the transcriptional activity of
AhR−ARNT heterodimers in mouse hepatoma cells. In addi-
tion, EGF supplementation stimulated the binding of the ARNT
complex to a responsive element within the cyclooxygenase-2 gene
promoter region in human squamous cell carcinoma cells (39),
molecular docking studies revealed that IS binds to the extracel-
lular domain of EGFR (28), and EGFR-dependent regulation of

Fig. 4. Reactive oxygen species aid remote metabolite sensing and signal-
ing. (A) ROS production in control and treated cells in the presence or ab-
sence of trolox. Data were normalized to control. (B) Fluorescein transport in
control and treated cells in the presence or absence of N-acetyl-l-cysteine
(AcCyst) and trolox. Data were normalized to control and are presented as
mean ± SEM. **P < 0.01 and ***P < 0.001.

Fig. 5. Induced glutathione and reduced beta-alanine metabolism during IS sensing and signaling in response to oxidative stress. (A) Metabolomic analysis of
IS-treated cells compared with control. Relative metabolite abundance of the glutathione metabolism, TCA cycle, urea cycle, oxidate pentose phosphate
pathway (PPP), and glycosis are plotted. Color code: orange, P < 0.05; yellow, 0.10 > P > 0.05; white, P > 0.10; gray, not analyzed. (B) Pathway analysis based
on impact and P value showing that glutathione metabolism is enhanced and beta-alanine is reduced in IS-treated cells compared with control. Larger circles
farther from the y axis and orange-red color show higher impact of pathway. P-CoA, pantothenate and co-A biosynthesis; P, propanoate metabolism; CC,
citrate cycle; GST, glycine, serine, and threonine metabolism. *P < 0.05 and **P < 0.01.
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OAT1 via PI3K-AKT and MAPKK−ERK signaling was demon-
strated in cetuximab-treated renal epithelial cells (29).
We provide direct evidence that IS activates EGFR and

downstream MAPK signaling, which stimulates AhR−ARNT
nuclear translocation and results in enhanced OAT1 expression
and function in the kidney. Concomitantly, we investigated re-
lated signaling factors including miR-223 and ROS. To date,
over 200 targets have been described for miR-223 (40), empha-
sizing its ubiquitous involvement in cellular processes. Scavenging
miR-223 leads to a decrease in ARNT translocation, stressing that
miR-223 is a positive posttranscriptional regulator of ARNT
protein expression. The link between miR-223 and ARNT was
also detected in macrophages by Ogando et al. (31), but they
identified miR-223 as a negative ARNT regulator. In our study,
miR-223 might control a repressor related to the AhR−ARNT
complex; however, exact target identification would require
further research.
The balance between oxidation and antioxidation is essential

for many biological processes. It is well documented that IS in-
duces cell stress, ROS production, and inflammation in many cell
types, including endothelial cells, muscle cells, cardiomyocytes,
and renal epithelial cells (37, 41–43). On the other hand, ROS
can act as secondary messengers in key physiological pathways
including AhR, EGFR, and NF-κB signaling (36, 44, 45), sug-
gesting their auxiliary role in signal transduction during metab-
olite sensing. Our metabolomics analysis showed a clear cellular
stress response upon IS treatment, similar to previous studies in,
for example, skeletal muscle cells (41). Interestingly, the gener-
ation of ROS is one of the driving forces in the metabolite
sensing and signaling events, as ROS scavenging counteracted
the IS-induced up-regulation of functional OAT1. Thus, anti-
oxidative response pathways and ROS levels in renal epithelial
cells emphasize the importance, and also the complexity, of
small-molecule communication within the kidney epithelium.
Our work fits in the “remote sensing and signaling hypothesis”

as described by Nigam and coworkers (7, 17, 20, 46) for the
solute carrier family of transporters in mediating interorgan and
even interorganismal communication. These transport proteins
are marked by their broad substrate specificity and ubiquitous
expression in tissues and organs with a barrier function. The
network regulates the transport of important metabolites and
signaling molecules across organs (e.g., gut−liver−kidney axis) by
tuning the expression and function of these drug transporters
accordingly (46). Here, we demonstrate that the microbial me-
tabolite indole, which is oxidized and conjugated with sulfate in
the liver to IS, acts as a signaling molecule to stimulate the ex-
pression and function of uptake and efflux transporters involved in
its renal excretion. In the kidney, AhR-mediated detoxification
mechanisms fulfill a central role in stimulating the clearance of
endobiotics and xenobiotics, but also of environmental pollutants
(47). For example, dioxin-liganded AhR binding massively up-
regulates cytochrome P450s (CYP) enzymes. Consequently, di-
oxin is favorably metabolized by CYPs and efficiently eliminated
from the body, emphasizing that multiple mechanisms can be
activated to stimulate waste clearance. Altogether, remote sensing
and signaling orchestrates the efficient removal of gut-derived
metabolites to aid body homeostasis.
The sensing mechanism elicits the possibility to modulate

OAT1 function in the kidney and may lead to a new era of po-
tential therapeutic avenues to preserve kidney function upon
injury. OATs are also expressed in other organs (e.g., liver,
brain), but the abundant and predominant expression of OAT1
in the kidney gives rise to opportunities for kidney-specific tar-
geting. In support, OAT1 expression is maintained in CKD rats
administered with IS, whereas CKD rats gavaged with p-cresyl
sulfate showed reduced OAT1 expression and clearance of IS
and p-cresyl sulfate. In addition, the development of cell-based
regenerative therapies to replace kidney function, like the

bioartificial kidney (i.e., waste removal facilitated by kidney ep-
ithelial cells), is currently of high interest worldwide (33, 48).
Activating OAT1-mediated transport using the metabolite
sensing mechanism in a cell-aided device would boost the
transport capacity of these cells. Consequently, an advanced
transport capacity will lead to enhanced waste solute removal
critical to the successful development of cell-based therapies for
kidney disease. Further, OAT3 contributes to the renal excretion
of IS, although with a somewhat lower affinity, as shown for rat
(49) and human (50) isoforms. Both solute transporters share
common substrates and are regulated by similar pathways, but
distinct regulatory mechanisms have been described as well (46,
51). Moreover, OAT3 has been proposed to mediate vascular
toxicity through IS uptake and subsequent AhR/NF-κB signaling
(52). A possible contribution of OAT3 to the microbiome me-
tabolite sensing and signaling renal excretion pathway was be-
yond our interest, as we used sole OAT1-expressing renal cells
(27), and has yet to be investigated.
In conclusion, we identified molecular targets involved in re-

mote metabolite sensing and signaling that result in enhanced
OAT1 function and consequently induce waste removal by the
kidney. The cross-talk between AhR, EGF, and miR-223, ac-
companied by an altered redox status, is essential for this
mechanism and emphasizes the well-defined regulation in kidney
cells to modulate transport processes. These data provide addi-
tional support for the hypothesis that kidney function is an es-
sential part of the human gut microbiome symbiosis, named the
gut−kidney axis.

Materials and Methods
For details, see SI Appendix, Supplementary Methods (53–58).

Clinical Study I. The study in human volunteers was performed according to
the Declaration of Helsinki and approved by the ethics committee of the
University Hospitals Leuven, and written informed consent was obtained
from all subjects.

Clinical Study II. The trial was carried out in accordancewith the declaration of
Helsinki and was approved by the medical ethical committee of Wageningen
University. Signed informed consent was obtained from all subjects before
initiation of the study. This trial was registered at ClinicalTrials.gov as
NCT03744221.

Animal Experiments. Animal experiments were approved by the University of
Antwerp Ethics Committee (Permit no. 2012-13) and were performed in
accordance with the National Institutes of Health Guide for the Care and Use
of Laboratory Animals 85-23 (1996).

Cell Models and Ethics Statement. Kidney tissue was obtained from a non-
transplanted donor, after giving informed consent, to isolate primary epi-
thelial cells as outlined by Jansen et al. (18) and was approved by the medical
ethical committee of Radboud University Medical Center. No clinical history
of renal disorders or any other chronic disease was identified.

In Vitro Assays. For all in vitro experiments, cells were exposed to 200 μM IS,
with or without inhibitors, in serum-free medium at day 6, 37 °C, 5% (vol/
vol) CO2 for 24 h. For details, see SI Appendix, Supplementary Methods.

Statistical Analysis. All data are expressed as mean ± SEM of 3 independent
experiments performed at least in triplicate, unless stated otherwise. Sta-
tistical analysis was performed using 1-way or 2-way ANOVA analysis fol-
lowed by Tukey or Sidak’s posttest or, when appropriate, an unpaired t test
with GraphPad Prism version 7. A P value of <0.05 was considered significant
and indicated using one asterisk; ** = P < 0.01, and *** = P < 0.001.
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