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Recent theoretical results on the dynamics of gaseous detonations are presented. An 
asymptotic analysis is performed, retaining the physical mechanisms controlling the 
modifications to the inner structure of the detonation. As a result, the system of hyperbolic 
equations for the compressible fluid mechanics coupled with a detailed chemical kinetics 
of heat release is reduced to a single integral equation for the propagation velocity of 
the combustion wave versus time. Concerning the direct initiation of spherical detonations 
by a blast wave, curvature effects are shown to be responsible for a critical condition of 
initiation. Near criticality, the role of the unsteadiness of the inner structure is pointed out. 
The whole complexity of the critical dynamics is reproduced and explained by the integral 
equation. The necessary background knowledge in gaseous detonation is recalled in the 
two first sections of the article in order to facilitate the reading by non-specialists.

© 2019 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Detonations are supersonic combustion waves. Major advances in the understanding of the complex dynamics of these 
waves have resulted from asymptotic analyses that are reviewed in a 2017 article [1] and in a recent book [2], in which 
an history of the topic with an extensive list of references of the pioneering works can be found so that they are not 
included in the list of references of the present paper. In gaseous mixtures of fuels and oxygen, the propagation Mach 
number at ordinary conditions is in between 4 and 8. Detonations were discovered during the last quarter of the 19th 
century, half a century after the first experiments on premixed flames, which are subsonic waves (propagation Mach number 
≈ 10−3–10−2). A propagation velocity (a few km/s) of reaction waves in gaseous mixtures much faster than the mean 
velocity of molecules has been intriguing for a long time, even though shock waves were known to exist in inert gases. The 
steady inner structure of plane gaseous detonations was understood in 1940, more than half a century after the discovery 
of detonations. In the meantime, experiments showed the multidimensional geometry and the complex dynamics of the 
detonation fronts involving irregular and strongly unsteady cellular structures delimited by lines of singularities (triple 
points) propagating in the transverse direction. The explanation of the cellular structure has been elusive for a long time 
and the major steps in the understanding are recent. This is also the case for the initiation mechanism of a detonation 
by a blast wave. For example, the deflagration to detonation transition is not yet understood. The complex dynamics of 
detonation fronts is governed by the unsteadiness of their inner structure.
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The release of chemical heat results from the difference of binding energy of the molecules in the fresh mixture and 
in the combustion products, the latter being more stable than the former. Combustion proceeds through a complex chem-
ical network of hundreds of elementary reactions involving tens of intermediate species with a wide range of timescales 
(10−3–10−8 s). Two distinct periods are identified in the overall rate of heat release, an induction period in which the heat 
release is negligible, followed by an exothermic period. The induction delay is highly sensitive to temperature. There is no 
exothermic reaction in gaseous mixtures at atmospheric pressure for a temperature below 500 K (composition frozen far 
from chemical equilibrium). The induction delay varies from a few seconds at 800 K to less than 10−5 s at 1200 K. Above 
1000 K, the duration of the exothermic period is of the same order of magnitude as the induction delay. The strong release 
of chemical energy induces nonlinear phenomena in the flow (as, for example, shock waves) retroacting upon the chemical 
kinetics controlling the overall rate of heat release.

The strategy developed at IRPHE to study such complex phenomena is the opposite of the most popular method based 
today on huge numerical codes including the whole details of the physical and chemical mechanisms characterized by a 
bunch of parameters. Instead, we consider limits of parameters for which the complexity of the basic system of conservation 
equations is reduced sufficiently to be solved analytically. The key point is to find out the relevant limits stressing the 
essential mechanisms governing the dynamics. The corresponding asymptotic analyses provide us with the physical insights 
that are necessary to put experiments and direct numerical simulations on a right track.

In the same spirit as in my conference at the 2017 meeting in Nice in honor of Pierre Coullet, this article is addressed to 
physicists who are not specialists of combustion theory and who are interested in nonlinear phenomena in fluid mechanics. 
The objective is neither to write another review article on detonations nor to present the details of the analyses. The purpose 
is to explain the phenomena in physical terms as they are enlightened by asymptotic analyses [3] and [4]. For simplicity, 
attention will be focused on one-dimensional problems describing the critical condition of the direct initiation process of 
detonation by local deposition of energy. The necessary background knowledge is recalled in the next section.

2. Physical mechanisms at work in gaseous detonations

2.1. Background

Consider a piston set in motion (subsonic velocity) at the closed end of an infinitely long tube in which an inert gas is 
enclosed. Soon after the piston reaches a constant subsonic velocity, a shock wave a few mean free paths thick is formed and 
propagates ahead of the piston in the quiescent gas at a constant and supersonic velocity. The flow velocity of the column 
of gas delimited by the piston and the shock has a uniform velocity equal to that of the piston. The length of this column 
increases linearly with time at a rate equal to the difference of propagation velocities between the supersonic shock and the 
subsonic piston. This self-similar solution in planar geometry is the result of the wave-breaking mechanism in compressible 
flows, described in one of the masterpieces of B. Riemann (1860). Conservation of mass, momentum, and total energy across 
the steady inner structure of the shock wave leads to the jump conditions of W.J.M. Rankine (1870) and P.H. Hugoniot 
(1889). Consider now a similar Gedankenexperiment for a reactive gaseous mixture. The increase of temperature across the 
shock ignites the chemical reaction and the chemical energy is released in the compressed gas after the induction delay. For 
a sufficiently large velocity of the piston, a reactive layer a few millimetres thick in the compressed gas stays attached to the 
inert shock. This piston-supported exothermic wave is called overdriven detonation. The separation of length scale between 
the lead shock in the inert gas and the reactive layer is a consequence of a well-known phenomenon in combustion pointed 
out by Ya. B. Zel’dovich and D.A. Frank-Kamenetskii (1938): the elementary reactions involved in the induction delay result 
from inelastic collisions that are less frequent than the elastic collisions controlling the inner structure of the lead shock. 
This is because the reactive collisions require a sufficiently high energy for breaking the molecules in the fresh mixture. 
The binding energy of the molecules is much larger than the thermal energy, explaining why the composition of a reactive 
mixture can stay frozen at ordinary initial conditions (T ≈ 300 K, p ≈ 1 atm). Even at high temperature (T ≈ 1000–2500 K), 
the reactive collisions concerns the tail of the Maxwell–Boltzmann distribution. This leads to the Arrhenius law with a large 
activation energy E/kBT � 1 describing the high thermal sensitivity and the thermal runaway that are responsible for the 
sudden and violent nature of some combustion phenomena. In simple words, as soon as the temperature is sufficiently 
high to initiate the exothermic reaction, the increase of temperature by the release of chemical heat further increases the 
reaction rate.

To summarise, the inner structure of a gaseous detonation consists in a (non-reactive) shock wave that can be considered 
as an hydrodynamic discontinuity, followed by a macroscopic reaction layer (induction + exothermic zone). In the laboratory 
frame, the velocity of the compressed gas is oriented in the direction of propagation. In the reference frame attached 
to the lead shock, the flow velocity is subsonic, of the order of the local speed of sound, and oriented in the opposite 
direction, see Fig. 1 in § 4. This velocity is sufficiently large for neglecting heat conduction and viscosity (large Reynolds 
number, see below). The quasi-steady inner structure of a detonation is controlled by the balance between the reaction 
rate and the Lagrangian motion of fluid particles in the reference frame of the lead shock (balance between reaction and 
convection). Denoting au the sound speed in the initial mixture and t−1

r the reaction rate at the compressed side of the 
lead shock (Neumann state), the detonation thickness is of order d = autr. The reaction rate being smaller than the collision 
frequency t−1

coll (Arrhenius law: tcoll/tr ≈ e−E/kB T � 1), the Reynolds number is large, Re = a2
utr/ν � 1, where ν ≈ a2

utcoll
is the molecular diffusion. Therefore, the dynamics of the inner structure is described by the reactive Euler equations for 
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inviscid compressible fluid complemented by the Rankine–Hugoniot conditions at the lead shock linking the conditions 
(pressure, temperature, and density) in the compressed gas just behind the shock (Neumann state) to the shock’s velocity. 
The dynamics of the lead shock is a free boundary problem of an hyperbolic nature, which is closed by the conditions at 
the exit of the reaction zone.

Ten years after the discovery of the gaseous detonation, a young Russian scientist, V.A. Mikhel’son, reported in his 
1893 PhD thesis at Moscow University that the conservation of mass, momentum, and total energy (including the binding 
energy of molecules) across the steady-state structure of a plane detonation wave leads to two families of solutions for 
a given supersonic propagation velocity. They differ by the velocity of the burnt gas relative to the shock wave, subsonic 
with a lead shock in one family and supersonic without lead shock in the other. The former is the solution mentioned 
above, while the latter is not relevant because ignition cannot occur at ordinary temperature. The two solutions merge at 
a minimum velocity of propagation DCJ, for which the velocity of the burnt gas relative to the shock wave is sonic. There 
is no planar supersonic wave having a steady inner structure and propagating at a constant velocity D smaller than DCJ, 
so that overdriven detonations are characterised by D > DCJ ∝ √

qm, qm being the chemical energy per unit of mass of the 
reactive mixture. The marginal solution D = DCJ is called the CJ solution in honor of the works of Chapman (1899) and 
Jouguet (1904) (it would have been better called Mikhel’son solution).

Moreover, CJ waves are self-sustained (propagating at constant velocity without the support of a piston). The sonic con-
dition at the end of the reaction zone protects the inner structure of the detonation from being damped by the rarefaction 
wave. The latter develops systematically in the burnt gas between the flow at the exit of the reaction zone and the down-
stream boundary condition (zero velocity at the close end of a tube or at the centre for spherical detonations expanding 
freely in open space). The propagation velocity of overdriven detonations decreases down to DCJ under the influence of the 
rarefaction wave as soon as the supporting mechanism is suppressed.

2.2. The problem of direct initiation of detonation

The direct initiation process of detonation refers to the formation of a self-sustained detonation in open space in the 
decay of a strong blast wave produced by a concentrated energy source. The energy is deposited quasi-instantaneously in 
a hot spot of tinny size so that the density of energy is initially much larger than the density of chemical energy available 
in the gaseous mixture. Therefore, the initial condition corresponds to the Sedov (1946)–Taylor (1950) self-similar solution 
for a strong blast wave in an inert gas. Soon after, overdriven detonations are generated with a decreasing propagation 
velocity while the radius of the lead shock increases. The experiments show that a spherical CJ wave is formed at a finite 
distance r∗

f from the source only if the amount of energy liberated is sufficiently large E > E∗ . A rough evaluation of this 
radius corresponds to r∗

f ≈ (E∗/ρuqm)1/3 where ρu is the initial density of the reactive mixture. Initiation of detonation 
fails for E < E∗ and there is no spherical CJ detonation with a smaller radius. Pioneering numerical solutions were obtained 
around 1970 under the approximation considering the detonation wave as a discontinuity across which the planar jump 
conditions are satisfied. This approximation does not have a critical energy: in contrast with experiments, such a numerical 
solution predicts that the overdriven wave relaxes systematically to a CJ detonation, no matter how small the value of E is. 
This indicates that the critical condition for initiation is associated with the finite thickness of the detonation wave. A first 
criterion for the direct initiation was proposed by Zeldovich et al. (1956), assuming that the time taken for the blast wave 
velocity to decrease to DCJ ∝ √

qm must not be shorter than the reaction time. This criterion leads to a critical radius of the 
order of the thickness of the CJ wave and to a critical energy smaller than the experimental data by a factor 10−5 to 10−6

when relevant values of the reaction time are used,

E∗

ρuqm
= 2

(γ + 1)4

(γ − 1)2
d3

oCJ
, r∗

f = 21/3 (γ + 1)4/3

(γ − 1)2/3
doCJ ≈ 8 doCJ (1)

where doCJ is the detonation thickness of the planar CJ wave and γ ≡ cp/cv is the ratio of specific heat.
A further step was achieved forty years later by considering the small modification of the inner structure by the curvature 

of the wave [5]. This analysis of a curved CJ detonation was performed in the limit of a large activation energy E/kB � 1, 
assuming that the inner structure is in steady state. Using a crude model for the inner structure of the plane CJ wave, namely 
the square-wave model for which the chemical energy is released instantaneously after the induction delay, this nonlinear 
analysis incorporates a small curvature term whose effect is amplified by the large activation energy. An extension of the 
analysis to a realistic inner structure is presented in § 6.2. The analysis in [5] leads to a non-linear relation between the 
propagation velocity of the curved CJ detonation DCJ and the curvature doCJ/rf , rf denoting the radius of the lead shock. 
Denoting the CJ velocity of the plane wave DoCJ , the relation between DCJ/DoCJ and rf/doCJ presents a turning point in the 
phase-space “propagation velocity–radius”. There is no quasi-steady solution to spherical CJ waves below a critical radius 
r∗

f , which is much larger than doCJ , essentially because of the large activation energy E/kB T � 1. The critical radius r∗
f is 

typically 102–103 larger than that in (1). Therefore, the energy varying like r3, the order of magnitude of E∗ observed in 
experiments is recovered by the theoretical analysis [5]. The numerical simulations of He [6] using a detailed chemical 
scheme for the combustion of hydrogen–oxygen mixtures showed results in satisfactory agreement with the theoretical 
prediction, even though unsteady effects that are neglected in [5] are non-negligible in the numerical simulation. The 
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importance of unsteadiness in the direct initiation process of gaseous detonation was also observed later in numerical 
simulations using a simple one-step exothermal reaction governed by an Arrhenius law [7]. The unsteady terms are found 
to be even larger than the geometrical terms describing the curvature effect. However, surprisingly, the critical radius was 
not much different from that predicted in [5], the ratio of the numerical radius to the theoretical radius being between 2 
and 4. Considering the difference of models of inner structure in [5] and in [7], the agreement is quite satisfactory indeed.

The purpose of the analytical study [4] is precisely to investigate the role of unsteadiness in direct initiation of deto-
nation, especially near the critical radius. An overview of the asymptotic method and of the results are presented in § 5
and § 6. A first step consists in analyzing the decay to the CJ regime in planar geometry when the supporting piston is 
suddenly arrested. This hyperbolic problem is old and has been solved under the approximation of a detonation consid-
ered as a discontinuity (detonation front without modification of the inner structure) following Chandrasekhar (1943) and 
Friedrichs (1948) for the decay of a pure shock wave. The analytical solution taking into account the unsteadiness of the 
inner structure of the detonation has been obtained only recently [3] and is presented in § 5.2.

The mathematical formulation is given in § 3. Physical insights are presented in § 4 followed by the analyses of the 
detonation decay in the planar and spherical geometry in § 5 and § 6.

3. General formulation

3.1. Constitutive equations

In spherical geometry, ∇·u = ∂u/∂r + 2u/r, the reactive Euler’s equations are

1

ρ

(
∂

∂t
+ u

∂

∂r

)
ρ + ∂u

∂r
+ 2

u

r
= 0, ρ

(
∂

∂t
+ u

∂

∂r

)
u = −∂ p

∂r
(2)

(
∂

∂t
+ u

∂

∂r

)[
ln T − (γ − 1)

γ
ln p

]
= qm

cp T

ẇ(Y , T , p)

tr
,

(
∂

∂t
+ u

∂

∂r

)
Y = ẇ(Y , T , p)

tr
(3)

where ρ , p and u are respectively the density, the pressure, and the radial velocity in the laboratory frame and γ , qm, 
T , Y , tr and ẇ � 0 are respectively the ratio of specific heat γ ≡ cp/cv = cst., the chemical heat release per unit mass of 
mixture, the temperature, the progress variable (Y = 0 in the initial mixture and Y = 1 in the burned gas), the reaction time 
at the Neumann state of the CJ wave and the non-dimensional heat-release rate expressed in term of the thermodynamic 
variables. The first equation in (3) is the conservation of energy written in the entropy form. The entropy production results 
from the rate of heat release, heat conduction and molecular diffusion being negligible behind the lead shock. The second 
equation in (3) is a short notation for a complex chemical kinetics of combustion. The pressure p and the sound speed a
are given by the ideal gas law

p = γ − 1

γ
cp ρ T , a =

√
γ

p

ρ
(4)

Using the mass conservation in (2) and the equation of state in (4) for eliminating ρ and T , the energy equation in (3) can 
be written in terms of p and u in the form

1

γ p

(
∂

∂t
+ u

∂

∂r

)
p + ∂u

∂r
+ 2

u

r
= qm

cp T

ẇ

tr
(5)

Equations for the conservation of mass and momentum in (2) can be put in the form of two hyperbolic equations for u and 
p when the equation for conservation of momentum in (2) multiplied by a/(γ p) = 1/(ρa) is added to or subtracted from 
(5)

1

γ p

[
∂

∂t
+ (u ± a)

∂

∂r

]
p ± 1

a

[
∂

∂t
+ (u ± a)

∂

∂r

]
u = qm

cp T

ẇ

tr
− 2

u

r
(6)

When (4) is used and when the expression of the reaction rate in term of the thermodynamic variables ẇ(T , p, Y ) is known, 
equations (3) and (6) form a closed set for p, u, T , and Y . Equations (3) describe the entropy wave propagating with the 
velocity of the flow. Equation (6) is the extension of the usual characteristic equations to the case of a reacting gaseous 
mixture in spherical geometry. They describe compressible waves C+ and C− propagating in two opposite directions at the 
speed of sound relatively to the fluid particles. When the right-hand side is set equal to zero, the linearized version of (6)
represents the simple waves of planar acoustics δp = ±ρa δu. The divergence of the spherical flow 2 u/r in the right-hand 
side of (6) is the only difference with the planar geometry.
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3.2. Boundary conditions

Introducing the instantaneous radius and velocity of the shock front r = rf(t), D(t) ≡ drf/dt > 0, it is convenient to 
consider the coordinate attached to the lead shock

x ≡ r − rf(t) ⇒ ∂/∂r → ∂/∂x, ∂/∂t → ∂/∂t −D(t)∂/∂x (7)

For an expanding spherical detonation, drf/dt > 0, u � 0, the initial mixture and the compressed gas correspond to x > 0
and x � 0 respectively. The boundary conditions at the compressed gas side x = 0− of the shock front (called Neumann state 
and denoted by the subscript N) take the form

x = 0− : Y = 0, ẇ = ẇN(TN) > 0, p = pN(t), T = TN(t), u = uN(t) (8)

where, using the Rankine–Hugoniot conditions, pN(t), TN(t), and uN(t) are expressed in term of D(t) and the thermody-
namic variables pu and Tu of the quiescent mixture, frozen in the initial state denoted by the subscript u. The propagation 
velocity D(t) is determined when a rear boundary condition at the exit of the reaction zone is applied to the solution to 
the hyperbolic equations (3) and (6) satisfying (8). The rear boundary condition of a weakly curved detonation rf/aNtr � 1
takes a simple form if the length scale of the external flow in the burnt gas uext(r, t) (rarefaction wave) is larger than 
the detonation thickness, lext � aNtr, 1/lext ≡ |(1/uext)∂uext/∂r|r=rf(t) . Then, introducing the non-dimensional coordinate ξ
attached to the moving front of the lead shock (radius rf),

ξ ≡ x

autr
= r − rf(t)

autr
(9)

and denoting the end of the reaction by a subscript b (ξ = ξb < 0)

|ξb| = O (1), ξ � ξb : ẇ(Y = 1, T ) = 0, ξb < ξ � 0 : ẇ(Y , T ) > 0 (10)

the rear boundary condition of the inner structure takes the form

ξ = ξb < 0 : u = ub(t), ub(t) = uext(rf(t), t) (11)

where the flow field of burnt gas uext(r, t) is solution to an external problem (inert rarefaction wave). The solution to (3)
and (6) satisfying (8) and (11) yields the expression of D(t) as a functional of ub(t).

Analytical solutions to the decay to the CJ regime cannot be obtained without further simplification. Not only the intrinsic 
dynamics of the inner structure is a tough problem, but also the external flow uext(r, t) is a rarefaction wave that depends 
on the dynamics of its leading edge so that the boundary condition ub(t) in (11) depends in fact on the solution. This 
difficulty is overcome in § 6.1 thanks to the quasi-transonic character of the flow at the exit of the exothermic zone when 
approaching the CJ regime. The dynamics of the inner structure is solved in § 5.

4. Physical insights

The purpose of this section is to identify the main physical mechanisms controlling the dynamics in order to determine 
the limit of parameters to be used in the asymptotic analysis. From now on, we consider the reference frame attached to 
the lead shock of a detonation propagating with a positive velocity D > u > 0. The flow velocity in the inner structure of a 
detonation is subsonic relatively to the shock and its absolute value increases 0 < (D − u) < a with the amount of released 
heat from the Neumann state at x = 0− to the end of the reaction at x = xb < 0, (D − uN) < (D − ub), see Fig. 1. The 
sonic condition is verified only at the exit of the reaction zone of the CJ wave, (DCJ − ub) = ab while (D − ub) < ab in the 
overdriven regimes.

4.1. Newtonian approximation

Across the inner structure of usual gaseous detonations, adiabatic compressional heating is not important. Its effect on 
temperature is relatively small compared to the temperature increase due to the release of chemical heat. Therefore, the 
pressure term can be neglected in Eqs. (3) governing the downstream running entropy wave,(

∂

∂t
+ (u −D)

∂

∂x

)
T ≈ qm

cp

ẇ(T , Y )

tr
,

(
∂

∂t
+ (u −D)

∂

∂x

)
Y = ẇ(T , Y )

tr
(12)

x = 0− : T = TN(t), Y = 0 (13)

This corresponds to what is called the Newtonian approximation 0 < (γ − 1) � 1. The compressible phenomena are fully 
retained in the Rankine–Hugoniot conditions at the lead shock and also in the characteristic equations (6) of the compress-
ible modes propagating in the two directions across the inner structure of the detonation, see Fig. 1. For usual gaseous 
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Fig. 1. Sketch of the inner structure of a gaseous detonation. Left: the profile of the rate of heat release is plotted with the absolute value of the flow 
velocity in the reference frame of the lead shock, (D − u) > 0. The latter has a shape similar to that of the temperature distribution. The upstream and 
downstream running modes (compressible simple waves), respectively C+ and C− , are shown on top, upstream, and downstream, referring to the flow in 
the reference frame of the lead shock. The downstream running entropy wave that propagates with the fluid particles at the flow’s velocity is also shown. 
Right: plot of the flow velocity in the reference frame attached to the lead shock, (u − D) < 0. Its profile is similar to that of the reduced flow field 
μ(ξ, τ ) > 0 used in the asymptotic analysis, μ ∈ [μb, 1], 0 < μb � 1, see definition (23).

detonations, the activation energy is large and the variation of the reaction rate with the pressure can be neglected in front 
of its variation with temperature and with the progress variable, ẇ(T , Y ).

The solution to (12)–(13) is easily obtained if the variation of (u − D) with time is negligible. Introducing the delay 
associated with a fluid particle issued from the lead shock to reach the point at a distance |x| from the shock, 	(x) =∫ 0

x dx′/(D − u) > 0, the instantaneous distribution of the rate of heat release w(x, t) = ẇ(T , Y ) obtained from (12)–(13)
then takes the form

w(x, t) = w
(

x, TN
(
t − 	(x)

))
(14)

where w(x, TN) is the steady-state solution associated with the boundary condition x = 0 : T = TN, Y = 0. Equation (14)
means that the value of the instantaneous distribution of the reaction rate w(x, t) at a distance |x| from the lead shock 
is related to its value in the steady state, corresponding to a Neumann condition defined at a time shifted in the past by 
the delay 	(x). The temperature TN(t) at the Neumann state is related to the propagation velocity of the lead shock D(t)
through the Rankine–Hugoniot conditions, so that the distribution of the rate of heat release (14) is expressed in terms of 
the propagation velocity at an early time. Solving (6) with the boundary conditions (8) and (11) is still a too complicated 
hyperbolic problem for a general analytical solution D(t) to be obtained.

4.2. Two timescales in the feedback loops

According to the Rankine–Hugoniot conditions, the variation of the propagation velocity D(t) generates perturbations 
of p and u at the Neumann state. They are transported toward the reacting gas by the entropy wave with the absolute 
velocity (D− u) > 0 and also by the downstream running characteristics C− with the absolute velocity a + (D− u) > a. Part 
of the resulting disturbances of the source terms in the right-hand side of (6) are sent back to the shock by the upstream 
running mode C+ propagating with the velocity a −(D−u) > 0, see Fig. 1. When these upstream running disturbances reach 
the Neumann state, they modify D(t) through the Rankine–Hugoniot conditions. Therefore the instantaneous propagation 
velocity of the lead shock, D(t) is determined by the cumulative effects of a continuous set of feedback loops, illustrating 
the complexity of the hyperbolic problem. For a fixed condition at the exit of the reaction zone, these loops can lead to an 
intrinsic instability of the inner structure studied by asymptotic analyses in [3,8] and [9], briefly recalled in planar geometry 
in § 5.2.

If the subsonic velocity of the flow D − u, a > (D − u) > 0, is sufficiently close to the speed of sound (quasi-transonic 
flow), 0 < [a − (D − u)] � a, the problem of the dynamics of the inner structure is one of two timescales since the prop-
agation velocity of the downstream running modes (entropy wave and characteristics C−) becomes much larger than that 
of the upstream running mode C+ , (D − u) � [a − (D − u)] and a + (D − u) � [a − (D − u)]. Therefore, the transit time of 
the disturbances that are propagated by the downstream running modes is much shorter than those propagated by C+ . The 
delay in each feedback loop is controlled by the slowest mode, namely C+ , the effect of the downstream running modes 
being quasi-instantaneous. Therefore the characteristic time of the overall dynamics of the inner structure is larger than the 
transit time of a fluid particle across the detonation thickness and, to leading order in a two timescales analysis, the delay 
	 can be neglected in (14),



P. Clavin / C. R. Mecanique 347 (2019) 273–286 279
[a − (D − u)] � a ⇒ w(x, t) ≈ w(x, TN(t)) (15)

Equation (15) is valid for any complex chemical scheme. Moreover, the effects of small variations of TN(t) in (15) are 
amplified by a high thermal sensitivity.

Unfortunately, the quasi-transonic approximation [a − (D − u)] � a is not uniformly valid in the inner structure of real 
gaseous detonations, even for overdriven regimes close to the CJ regime, (D − ub) ≈ ab. In the induction layer, one has 
typically D − uN = 0.3 aN. The quasi-transonic approximation is verified everywhere in the inner structure of detonations 
close to the CJ regime only in the limit of small heat release. This limit provides the framework for a systematic theoretical 
analysis of the unsteady inner structure of detonations. Even though the limit of small heat release is not realistic for 
real detonations, it is a convenient approximation provided that the lead shock is still considered as a discontinuity. All 
the mechanisms involved in the dynamics of the inner structure are well kept and the technical difficulty associated with 
the variation of the sound speed that does not play a significant role is suppressed. This yields analytical results that are 
qualitatively relevant and quantitative agreement with real detonations can be obtained simply by rescaling the asymptotic 
results, see the end of § 5.2.

5. Asymptotic analysis of the unsteady inner structure

The analyses presented below were carried out in the limit of small heat release ε2 ≡ qm/cp Tu � 1, using the Newtonian 
approximation (γ close to unity) in order to suppress the compressional heating,

ε ≡ (MoCJ − 1) � 1, (γ − 1)/ε � 1 (16)

where MoCJ ≡DoCJ/au ≈ 1 +√
qm/cp Tu is the Mach number of the planar CJ wave in steady state propagating at the velocity 

DoCJ , au being the speed of sound in the initial mixture. A sufficiently large thermal sensitivity then ensures that the small 
fluctuations that are produced in the limit (16) produce a substantial effect on the overall dynamics, δD(t)/D = O (1).

5.1. Formulation in the asymptotic limit

On the basis of the results of [5], anticipating that the critical radius of the lead shock is larger than the detonation 
thickness, a non-dimensional curvature κ(τ ) of order unity in the limit (16) is introduced by

autr

rf(τ )
= εκ(τ ), κ = O (1) (17)

For conditions close to the CJ regime of plane detonations we introduce the following dimensionless quantities of order 
unity in the limit (16), μ(ξ, τ ), π(ξ, τ ) and α̇τ (τ ) for, respectively, the flow velocity relative to the lead shock, the pressure, 
and the instantaneous propagation velocity of the lead shock D(t) = drf/dt ,

u −DoCJ

au
≡ −1 + ε μ(ξ, τ ),

D −DoCJ

au
≡ ε α̇τ (τ ),

1

γ
ln

(
p

pu

)
≡ επ(ξ, τ ) (18)

where τ is the reduced time of order unity describing the dynamics, see (25) below. The objective of this subsection 
is to show that, in the limit (16), the non-dimensional shock velocity α̇τ (τ ) is obtained by solving a single (nonlinear) 
partial–differential equation for the non-dimensional flow field μ(ξ, τ ),

∂μ

∂τ
+ [μ − α̇τ (τ )]∂μ

∂ξ
= w(ξ, τ )

2
− (1 + μ)κ(τ ) (19)

ξ = 0 : μ = 1 + 2α̇τ (τ ), ξ = ξb(τ ) : μ = μb(τ ) (20)

where μb(τ ) is a given function obtained from the external flow in the burnt gas.
In the limit of small heat release (16), the speed of sound a/au = √

T /Tu and the curvature term rf/r are, according to 
(9) and (17), almost constant across the inner structure of the detonations ξ = O (1), a/au = 1 + O (ε), rf/r = 1/[1 + εκξ ]. 
When these terms, which are of order smaller than ε2, are neglected, Eqs. (6), written in the reference frame attached to 
the lead shock (7), using the notations (9) and (18), take the non-dimensional form

ε

[
tr

∂

∂t
+ [−2 + ε(μ − α̇τ )]

∂

∂ξ

]
(π − μ) = ε2 ẇ − 2ε2(1 + μ)κ (21)

ε

[
tr

∂

∂t
+ ε(μ − α̇τ )

∂

∂ξ

]
(π + μ) = ε2 ẇ − 2ε2(1 + μ)κ (22)

obtained by using (16)–(18) in the form

u = ε(1 + μ),
(u −D) = ε(μ − α̇τ ) − 1,

u = ε2κ(1 + μ)
rf (23)
au au r r
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Using the Rankine–Hugoniot relations, the boundary conditions at the Neumann state take the form,

ξ = 0 : μ = μN(τ ) = (1 + 2α̇τ ) + O (ε), π = πN(τ ) = 2(1 + α̇τ ) + O (ε) (24)

The two-timescale nature of the dynamics in the limit (16) is revealed by the comparison of (21) and (22). The velocity 
of the simple wave (21), issued from the lead shock (ξ = 0) and propagating toward the exit of the reaction zone (in the 
negative ξ direction) is larger (by a factor of 1/ε) than the velocity of the simple wave (22) propagating in the opposite 
direction for closing the feedback loops. Therefore, to leading order in the limit (16), the propagation mechanism in (21)
is instantaneous and the dynamics of the inner structure is controlled by the simple wave (22). The resulting dynamics is 
slow at the scale of the transit time tr of a fluid particle propagating from the lead shock up to the end of the reaction 
zone. Therefore, the reduced timescale τ of order unity is

τ ≡ ε
t

tr
,

∂

∂t
= ε

tr

∂

∂τ
(25)

The leading order of (21), ∂(π −μ)/∂ξ = 0, shows using (24) that the quantity π −μ is constant, (π −μ) ≈ 1. Expressed in 
terms of the reduced time (25), the leading order of (22) in the limit ε � 1, after division of the two sides by ε2, takes the 
form (19). Skipping for the moment the matching difficulty mentioned at the end of § 3.2, the function μb(τ ) is given by 
the external solution in the burnt gas, except for the CJ regime, for which the dynamics of the inner structure is decoupled 
from the flow of burnt gas by the sonic condition,

CJ wave: μb(τ ) = α̇τ (τ ) (26)

(α̇τ = 0 in the planar CJ wave, κ = 0).
The unsteady distribution of the reaction rate (15) requires to compute the inner structure of a family of steady 

overdriven detonations w(x, T N) for different propagation velocity D, D, and TN, being in one-to-one correspondence 
(Rankine–Hugoniot relation). Numerical simulations of overdriven detonations of hydrogen–oxygen mixtures [10] show that 
w(x, T N) can be well approximated from the distribution of the CJ detonation in the steady state, woCJ (ξ) � 0 by rescaling 
the length scale with the time-dependent induction length, yielding

w(ξ, τ ) = ebα̇τ (τ )woCJ(ξ ebα̇τ (τ )), with

0∫
−∞

woCJ(ξ)dξ = 1 ⇒
0∫

−∞
w(ξ, τ )dξ = 1 (27)

where the parameter b characterizes thermal sensitivity,

b = 2(γ − 1)ε
E

kB Tu
(28)

and E is the activation energy of the Arrhenius law controlling the variation of the induction length with the Neumann 
temperature. The normalization condition in (27) corresponds to a reference timescale tr in (3)–(9) equal to the reaction 
time at the Neumann state of the CJ wave, so that its non-dimensional thickness is equal to unity, ξ � −1 : woCJ (ξ) = 0, 
−1 < ξ � 0 : woCJ (ξ) > 0. Therefore, the end of the reaction zone in the unsteady structure is located at

ξ = ξb(τ ) = −e−bα̇τ (τ ), ξ � ξb(τ ) : w(ξ, τ ) = 0 (29)

To summarize, when (27) is inserted into (19), the hyperbolic problem (2)–(11) is reduced in the asymptotic limit (16)
to solve (19) with the boundary conditions (20) for ξb in (29). If the flow of shocked gas is kept subsonic relatively to the 
lead shock, as is the case in the steady state, the term in the bracket on the left-hand side of (19), computed from (18),

ξb < ξ � 0 : [μ − α̇τ ] = [au − (D − u)]/εau > 0 (30)

is positive everywhere across the inner structure and increases from the end of the heat release (ξ = ξb < 0) to the lead 
shock (ξ = 0), like the flow velocity u increases in the laboratory frame from ub to uN under the effect of the chemical 
heat release, see Fig. 1 (right). Therefore, the wave-breaking mechanism by the nonlinear term (μ − α̇τ ) ∂μ/∂ξ cannot be 
produced in the reacting flow behind the lead shock.

5.2. Dynamics of planar detonations

The solution to (19)–(20) with (29) leads to an integral equation for the instantaneous propagation velocity α̇τ (τ ). Before 
considering the direct initiation of detonations, the dynamics of planar detonations is worth recalling. The equation to be 
solved is (19) for κ = 0 and the stability of planar detonations against planar disturbances is performed for a constant value 
of the flow velocity at the end of the exothermic reaction, μb = μb = cst. in (20). For any positive value μb > 0, there are 
two steady-state solutions, only one describing a (weakly) overdriven wave, [μ(ξ,μb) − α̇τ (μb)] > 0, α̇τ (μb) > 0,
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y/b = (1 + μb)
−1μ2

b/2, μ(ξ, y) − y/b =
√

(μb − y/b)2 + μ2
oCJ

(ξ ey) (31)

where the notation y ≡ b α̇τ has been used and where the marginal CJ solution μoCJ (ξ) (μb = 0, y = 0) is a increasing 
function from 0 at the end of the reaction ξ = −1 to 1 at the Neumann state ξ = 0. The linear version to the hyperbolic 
equation (19) is solved in [3] and [8] for a parameter b of order unity in the limit (16), corresponding to a large activation 
energy, E/kBTu � 1. Introducing the decomposition y(τ ) = y + δy(τ ), the variation of the shock velocity δy(τ ) is found to 
be solution to an integral equation,

b = O (1), κ = 0 : 2(1 + 2 y/b) δy(τ ) =
0∫

−∞
g(ξ) y(τ + ζ (ξ))dξ (32)

where g(ξ) ≡
{b

2

∂

∂ y

[
ey woCJ(ξ ey)

]
y=y + dμ

dξ

}
, ζ (ξ) ≡ −

0∫
ξ

dξ ′

μ(ξ ′)
< 0, ζ b ≡ −

0∫

ξb=− e−y

dξ ′

μ(ξ ′)
(33)

where |ζ b| < ∞ is the total transit time of the perturbation transported upstream by the compressible mode C+ to reach the 
lead shock from the end of the reaction and |ζ (ξ)| < |ζ b| is the transit time from the position ξ . The physical interpretation 
of (32) is straightforward: the function g(ξ) y(τ − |ζ |) is the perturbation of the shock velocity at time τ resulting from the 
local modification at ξ of the reaction rate produced at earlier time by the downstream propagating modes (entropy wave 
and C−), the time lag |ζ (ξ)| being the delay taken by C+ for sending the perturbation back to the lead shock. The integral 
term in (32) corresponds to the cumulative effects of the loops associated with all the points in the internal structure. The 
lower bound of the integral in (32) is replaced by −∞ because the kernel g(ξ) vanishes for ξ < ξb. The stability limit is 
obtained by looking for a solution to (32) in the form δy(τ ) = eστ yielding a transcendental equation for the linear growth 
rate σ (a complex number) corresponding to the Laplace transform of g ,

0∫
−∞

g̃(ζ )eσζ dζ = 2(1 + 2 y/b) where g̃(ζ ) ≡ μoCJ(ξ(ζ ))g(ξ(ζ )) (34)

the function ξ(ζ ) being obtained by inversion of (33), corresponding to a one-to-one relation between ξ and ζ . Equation 
(34) has a discrete set of complex roots σi , i = 1, 2... . For a temperature sensitivity sufficiently small and for a distribution 
woCJ (ξ) sufficiently smooth, the detonation is stable against planar disturbances; the real part of all the roots is negative, 
corresponding to damped oscillatory modes (Im σi �= 0, Re σi < 0 ∀i). An oscillatory instability occurs when b is slightly 
increased above the instability threshold bc at which one of the oscillatory modes σ j becomes neutral, b = bc: Re σ j = 0, Im 
σ j �= 0 of order unity, b > bc: Re σ j > 0. When b is further increased, many unstable oscillatory modes develop. The value 
bc depends on the shape of woCJ (ξ). For typical distributions woCJ (ξ) of real detonations, the parameter bc at the instability 
threshold and the reduced frequency of the marginal mode are of order unity. The stiffer is woCJ (ξ) the smaller is bc and 
the larger is the frequency.

A nonlinear extension to marginally unstable detonation in planar geometry has also been obtained [3]

2 y(τ ) = y +
0∫

−∞
G
(
ξ, y(τ + ζ (ξ))

)
dξ, G(ξ, y) ≡ W (ξ, y) + dμoCJ

dξ
y (35)

where W (ξ, y) ≡ b

2

[
ey woCJ(ξey) − woCJ(ξ)

]
,

0∫
−∞

W (ξ, y)dξ = 0,

0∫
−∞

G(ξ, y)dξ = y (36)

and 2 y/b has been neglected in front to 1 in the boundary condition at ξ = 0. The numerical solution to (35) shows a 
supercritical bifurcation. Nonlinear oscillations develops for b slightly larger than bc, followed by a transition to a chaotic 
signal y(τ ) through period doubling when b is further increased.

The delay |ζb| increases when approaching the CJ regime (μb → 0+) and, for an usual reaction rate, it diverges at CJ. 
This does not change the stability analysis, because g̃(ζ ) decreases sufficiently quickly to zero when ζ increases. In that 
respect, the marginal character of the CJ regime does not play a particular role. This is not the case for the linear response 
to disturbances of the flow at the exit of the reaction zone δμb(τ ). For a slightly overdriven detonation μb > 0 in the stable 
domain b < bc, |δμb| < μb, one gets

2δα̇τ (τ ) =
0∫

g(ξ)δα̇τ (τ + ζ (ξ))dξ + μbδμb(τ − |ζ b|) (37)
−∞
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When the timescale of the forcing term δμb(τ ) is larger than that of the inner response, the time delays can be forgotten, 
leading to a quasi-steady response. The linear response (37) has no meaning for a CJ wave since μb = 0. The relevant 
problem is to determine the decay of the propagation velocity of a detonation associated with a velocity of the burnt gas 
relaxing to its CJ value in the planar case μb(τ ) → 0+ . This problem can be solved in the limit (16) when the supporting 
piston is suddenly arrested [3]. For a stable CJ detonation (b < bc), the end of the relaxation towards the marginal regime is 
described by

μb(τ ) → 0+ : 2 y(τ ) =
0∫

−∞
g(ξ) y(τ + ζ (ξ))dξ + εμ2

b(τ − |ζ b|)/2 (38)

the square in the forcing term being the signature of the marginality of the CJ wave. Using 
∫ 0
−∞ g(ξ) dξ = 1 the quasi-steady 

approximation of (38) α̇τ (τ − |ζ b|) ≈ α̇τ (τ ) yields,

y ≈ bμ2
b(τ )/2 ⇔ α̇τ (τ ) ≈ μ2

b(τ )/2 (39)

recovering the classical quadratic relation between the propagation velocity of slightly overdriven detonation and the veloc-
ity of the burnt gas in the limit μb � 1. The decay to the CJ regime of a marginally stable or unstable detonation (b ≈ bc) 
is described by a nonlinear equation [3],

κ = 0, μb(τ ) → 0+ : 2 y(τ ) =
0∫

−∞
G
(
ξ, y(τ + ζ (ξ))

)
dξ + bμ2

b(τ )/2 (40)

written for a forcing term evolving slowly, μ−1
b dμb/dτ � |ζ b|−1 so that μ2

b(τ − |ζ b|) → μ2
b(τ ). For stable detonations, the 

quasi-steady relaxation (39) is effectively observed while nonlinear oscillations of y(τ ) with a period of oscillation of order 
unity are superimposed to the quasi-steady relaxation for marginally unstable detonations.

It is worth mentioning that an integral equation similar to (35), but with a different time lag, was obtained previously 
[10] in the opposite limit of small heat release, namely for strongly overdriven detonations and large heat release M2

oCJ
� 1. 

In this limit, in contrast to what is said below (24) in the limit (16), the compressible modes C+ and C− propagate faster 
than the entropy wave. The integral equation is the same as (35) with the difference that the delay is now associated 
with the downstream running entropy wave, the loop being closed quasi-instantaneously by the upstream running C+ . 
A description of real detonations is obtained with a good quantitative accuracy by (35) into which the sum of the two 
delays (of the entropy wave and of the compressible mode C+) is introduced, the role of the compressible mode C− being 
limited to relate the fluctuations of pressure and velocity as is indicated below (25). This indicates how useful are asymptotic 
analyses to describe the dynamics of real detonations, at least qualitatively, even when they correspond to limiting values 
of the parameters that are not well representative of real situations.

6. Asymptotic analysis of the decay to the CJ regime in spherical geometry

6.1. Condition at the exit of the reaction zone

The first difficulty mentioned at the end of § 3.2 concerns the evolution of the flow at the exit of the reaction zone. When 
approaching the CJ regime, this flow is quasi-transonic in real detonations. Following the pioneering works concerning pure 
shock waves, the problem is easily solved in planar geometry when detonations are considered as discontinuities. Thanks to 
the marginal character of the CJ regime, the perturbations of the flow of burnt gas, introduced by the entropy wave and the 
C− mode, are negligible. The entropy being not disturbed, the rarefaction wave in the burnt gas (inert flow) is simply the 
continuation of the centred rarefaction wave (isentropic self-similar solution) developing as soon as the piston is suddenly 
arrested. This is also true when the response of the inner structure of the detonation is taken into account [3], yielding 
in the limit (16), μb(τ ) = α(τ )/τ , so that the 1967 relaxation law D − DoCJ ∝ 1/t2 is recovered when the response of the 
inner structure is neglected, α̇τ ≈ (α/τ )2/2.

In spherical geometry, retaining the term −2 u/r in (6), the decay is different. Under the approximation of a detonation 
considered as a discontinuity, there is no curvature-induced modification of the inner structure. However, the divergence 
of the flow −2 u/r plays an important role; in contrast to the planar case, the CJ velocity is reached at a finite time and 
at a finite radius. In an enlightening paper, A. Liñan et al. (2012) [11] deciphered the transition between two self-similar 
solutions, namely the Sedov–Taylor solution to a strong non-reactive blast wave and the Zeldovich (1942)–Taylor (1950) 
solution to a spherical CJ detonation. They also showed that, thanks to the transonic character of the burnt gas flow at the 
detonation front, the final stage of the decay is a local phenomenon. This can also be viewed on (19) at the exit of the 
reaction zone w = 0 for μ � 1 and α̇τ � 1,

dμb(τ )/dτ = −κ(τ ) (41)
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Fig. 2. Sketch of the trajectories in the phase space (y–x) “propagation velocity–radius of the lead shock”. The boundary of the dashed region represents the 
spherical CJ waves (45) whose inner structure is in a steady state, the blue solid line being the upper branch. The black solid lines are the quasi-steady 
trajectories (48). Line 1 represents a success of the initiation process while line 2 is a failure. Typical results of direct numerical simulations [5–7] for stable 
or marginally unstable detonations are sketched by the thin dark lines. Line (i) is a success of the initiation process while lines (ii) and (iii) are failures. 
The difference between the numerical results and lines 1 and 2 illustrates the unsteadiness of the inner structure.

This relation between the time derivative of the flow velocity and the radius is the same as the one obtained by A. Liñan 
et al. (2012) [11] for a detonation front of zero thickness (no modification to the inner structure) and in a limit opposite to 
(16), namely for a large propagation Mach number MoCJ � 1.

As mentioned in § 2.2, small modifications to the inner structure of a curved detonation have a drastic effect if the induc-
tion is highly sensitive to temperature variations. As a result, initiation of a CJ detonation becomes a critical phenomenon; 
depending on the initial conditions, success or failure of the initiation process is produced. This was clearly pointed out in 
the limit MoCJ � 1 using the square-wave model of detonation when unsteadiness in the inner structure is neglected, re-
taining only the geometrical modifications due to the curvature of the detonation wave [5]. Here, the purpose is to take into 
account the unsteady effects that are expected to be essential at the critical condition, as is shown by the direct numerical 
simulations sketched in Fig. 2. This can be achieved analytically for any chemical kinetics in the limit of small heat release 
by investigating the solution to (19)–(20) using (27) and the boundary condition (41) at the exit of the reaction zone. We 
will just outline the analysis; the details are given in a companion article [4]. It is worth revisiting first the spherical CJ 
waves when the inner structure is assumed to be in a steady state.

6.2. Spherical CJ waves in a steady state. CJ peninsula

Consider the steady version of (19) for κ �= 0, neglecting the unsteady term ∂μ/∂τ , and look for the solution satisfying 
the boundary conditions (20)–(26) with, according to (29), ξb = −e−bα̇τCJ . The steady-state solutions will be denoted with 
an overbar. When the parameter b is sufficiently large, the velocity of the CJ spherical velocity in steady state, expressed 
in terms of the curvature, α̇τCJ (κ), presents a turning point and take the form of a peninsula in the phase space velocity–

radius, see Fig. 2. The steady planar CJ wave μoCJ (ξ) =
√∫ ξ

−1 ωoCJ (ξ
′)dξ ′ in (31) is solution to (19) for κ = 0 and ∂/∂τ = 0. 

Anticipating that the turning point (κ = κ∗) corresponds to κ∗ of order 1/b in the limit b � 1, the unknown μ in front of 
κ in the right-hand side of (19) can be replaced by μoCJ(ξ) near the turning point,

b � 1 : κ∗ = O (1/b); κ/κ∗ = O (1) ⇒ μκ → μoCJ κ (42)

Integrating the so-modified version of (19) from the end of the reaction ξ = −e−bα̇τCJ to the Neumann state ξ = 0 then 
yields the solution in the form propagation velocity versus radius α̇τCJ (κ). Introducing the parameter λ ∈ [1, 2],

λ ≡ 1 +
0∫

−1

μoCJ(ξ)dξ (43)

with the reduced velocity and radius of the shock front, y and x, of order unity near the turning point,

b � 1 : y ≡ bα̇τ = O (1), yCJ ≡ (bα̇τCJ) = O (1), 1/x ≡ (bκ)λ = O (1) (44)

the equation of the peninsula in the phase space velocity–radius y–x for the spherical CJ detonations whose inner structure 
is in steady state yCJ(x) takes the form
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b � 1 : yCJ + 1

x
e−yCJ = 0 (45)

There is no solution for a radius smaller than a critical value x < x∗ , the coordinates of the turning point being (x∗ = e, 
y∗ = −1). The propagation velocity of curved CJ waves is smaller than that of the planar CJ wave, yCJ < yoCJ = 0 (D <DoCJ ), 
and the solutions on the upper branch of the peninsula go to the planar CJ solution D = DoCJ when the radius increases. 
The lower branch corresponds to a failure of the initiation process, since the difference (DoCJ − D) > 0 increases with the 
radius, see Fig. 2.

6.3. Quasi-steady trajectories near the CJ peninsula

According to the propagation velocity of the lead shock D = drf/dt with the relations (17)–(18), (25) and (41)–(44), the 
velocity of the flow at the exit of the reaction zone can be related to the radius of the lead shock rf , yielding the expressions 
μb(τ ) and/or μb(x) in the phase space velocity–radius, the reduced radius x being a linear function of the time near the CJ 
peninsula,

dx/dτ = 1/(b λ), x/xi = 1 + (τ − τi)/(λbxi), dμb/dτ = −1/(bλx), μb(x) = μbi − ln(x/xi) (46)

the subscript i denoting an initial condition. Consider quasi-steady overdriven detonations approaching the CJ regime. In 
planar geometry and in the limit b � 1, μb = O (1/

√
b), y = O (1), the velocity profile of the quasi-steady inner structure of 

a weakly-overdriven detonation (31) takes the form

b � 1, κ = 0 : μ(ξ) =
√

μ2
b + μ2

oCJ
(ξ ebμ2

b/2) + O (1/b), μ(ξ) = μoCJ(ξ ebμ2
b/2) + O (1/

√
b) (47)

the relaxation of the propagation velocity to its CJ value being given in (39). The quasi-steady trajectories of spherical 
detonations y(x), are obtained from the solutions to the steady version of the partial differential equation (19), modified 
as indicated in (42), by using the boundary conditions (20) with (46). The so-obtained trajectories y(x) are solutions to the 
nonlinear equation

b � 1 : y + 1

x
e−y = m2(x) where m ≡ √

b μb/
√

2 = O (1) (48)

The decreasing function m(x), given by (46), depends on the initial condition. The trajectories y(x), solution to (48), show 
two different behaviours depending on the initial conditions (xi, yi ) which corresponds to a negative slope dy/dx|x=xi < 0
and a positive value of m, mi ≡ m(xi) > 0. For initial conditions such that the trajectory y(x) goes down to y = 0 for a 
radius larger than the critical radius x > x∗ = e, the upper branch of the CJ peninsula (m = 0) is reached tangentially, in a 
way similar to the planar case studied in [11] when the modification of the inner structure is neglected, D → DoCJ . If not, 
the slope of the trajectories dyCJ/dx goes to −∞ at y = − ln x with x < x∗ , see Fig. 2. The validity of the analysis stops 
there. The trajectory is expected to go below the CJ peninsula in agreement with the real initiation process, a successful 
initiation being produced only if the energy that is deposited is sufficiently large for making the trajectories crossing the CJ 
peninsula, as conjectured in [5].

Unfortunately, the quasi-steady analysis is not valid. In the limit b � 1, the contribution of the unsteady term in (19), 
evaluated from (46)–(48), is in fact larger than the small curvature term,

0∫

−e−yCJ

(∂μ/∂τ )dξ = −(λ − 1)
dy

dτ
e−yCJ where

dy

dτ
= dy

dx

dx

dτ
= O (m/

√
b) (49)

so that the integral is of order (λ − 1)/
√

b, larger than the curvature term in (19), which is, according to (42), of order 1/b. 
Therefore the asymptotic analysis should retain the unsteadiness.

6.4. Integral equation for the dynamics near the CJ peninsula

In the context of the direct initiation process, the decay of spherical detonations, taking into account the unsteadiness of 
the inner structure, can be studied in the limits (16) and (42) by considering the ordering

b � 1 : (λ − 1)/λ = h/
√

2b with h = O (1) (50)

so that the effect of unsteadiness is, according to (49), of the same order of magnitude as the one of curvature κ = O (1/b). 
This is a good approximation for an ordinary distribution of the reaction rate for which λ ≈ 1.5 when b = 10, yielding 
h ≈ 1.5. The attention is focused upon the regimes that are close to the CJ peninsula, so that the velocity profile μ(ξ, τ ) is 
close to the profile μ(ξ, τ ) of planar overdriven detonations decaying in a quasi-steady state to the CJ regime. According to 
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(47), the ξ -dependence of this reference unsteady profile is that of the planar CJ wave rescaled by the unsteady induction 
length, μ(ξ, τ ) = μo(ξ em2(τ ), τ ), μo(ξ, τ ) =

√√
2m(τ )/

√
b + μ2

oCJ
(ξ), where m(τ ) = O (1) is a linear function of time, see 

(46) and (48),

m = mi − √
b/2 ln(x/xi) = mi − √

b/2 ln[1 + (τ − τi)/bxi] ≈ mi − (τ − τi)/(xi

√
2b) � 0 (51)

Following a method similar to the analyses discussed above, an integral equation is obtained for y(τ ) involving the unsteady 
time delay

ζ(ξ, τ ) ≡ −
0∫

ξ

dξ ′

μ(ξ ′, τ )
= −e−m2(τ )

0∫

ξ em2(τ )

dξ ′

μo(ξ ′, τ )
< 0, |ζ(ξ, τ )| < ∞ (52)

From a given initial condition mi = O (1), mi > 0, according to (51), the time taken by the quasi-steady overdriven detonation 
to reach the CJ regime (m = 0) is of order 

√
b, (τ − τi)/τi = O (

√
b), so that the flow velocity at the exit of the reaction 

zone evolves slowly at the scale of the response of the inner structure, δτ/τ = O (1). For saving the notations, we use 
the notation m(τ ), keeping in mind that m(τ ) varies of order unity for (τ − τi)/τi = O (

√
b). However, the delay |ζ(ξ, τ )|

increases when approaching the end of the reaction zone, where it becomes larger than unity and diverge at the CJ regime 
(m → 0+) like 

√
b/m, see [4], so that a quasi-steady state assumption cannot be valid. Skipping the technical details of the 

analysis presented in [4], the integral equation for the propagation velocity y(τ ), as is obtained by the asymptotic analysis 
in the limits (16) and b � 1, is a composite expression of (40) and (48) plus additional unsteady terms:

y(τ ) + 1

x(τ )
e−y(τ ) = m2(τ ) +

0∫
−∞

W
(
ξ, y(τ + ζ )

)
dξ

+
0∫

−∞
μ′

oCJ
(ξem2(τ ))[y(τ + ζ ) − y(τ )]em2(τ )dξ − h

x(τ )
e−m2(τ )m(τ ) (53)

where W (ξ, y) is given in (36) and the notation μ′
oCJ

(ξ) ≡ dμoCJ (ξ)/dξ has been used. The two integral terms on the 
right-hand side of (53) come from the response of the inner structure similar. Neglecting the curvature and the time 
dependence of m, the planar case, (35)–(36) and (40), is recovered. The last term on the right-hand side is the unsteady 
effect (49) coming from the zeroth-order solution μoCJ (ξem2(τ )) using dm2/dτ = b μb dμb/dτ = −√

2b m/λx, see (46). The 
curved CJ waves m = 0 are now unsteady and differ from the CJ peninsula (45) because of unsteadiness of the inner 
structure, the CJ peninsula being recovered only when the time delay is neglected y(τ + ζ ) → y(τ ) by using (36). The 
quasi-steady trajectories y(x), obtained from (53), y(x) + e−y(x)/x = m2(x) − h e−m2(x)m(x)/x, differ from (48) by the last 
term, which is the unsteady effect identified in (49). Each trajectory y(x) is associated with its initial condition (yi, xi ) 
related to mi by the relation yi + e−yi /xi = m2

i − he−m2
i mi/xi .

7. Discussion and perspective

For a typical distribution woCJ (ξ), the value of the parameter b at the instability threshold is of order unity, bc = O (1), 
so that planar detonations are strongly unstable in the limit b � 1. In order to extend the analysis to marginally stable 
and/or unstable detonations (b ≈ bc), the parameter b appearing in the final result in the expression (36) of W (ξ, y) with ∫ 0
−∞ W (ξ, y) dξ = 0 ∀b, should be considered of order unity. This is justified by noticing that, in real detonations (M2

oCJ
� 1), 

the coefficient of proportionality between the critical radius r∗
f and the detonation thickness doCJ is larger than the parameter 

controlling the dynamics through the thermal sensitivity of the induction length, see [5], while the two parameters become 
identical in the limit of small heat release (16) used here to solve analytically the dynamics of the inner structure, see 
(44)–(45).

Near the instability threshold (b ≈ bc), the complex dynamics near criticality (rf(t) ≈ r∗
f , x∗ = e), which is sketched in 

Fig. 2, is well reproduced by the numerical solutions to (53) for various initial conditions (xi, yi ) assumed to be in quasi-
steady state, y � yi : y ≈ y(x), see [4]. The unsteady effect is reinforced when approaching the CJ regime by a long-range 
time delay. The relative importance of unsteadiness and curvature effect upon the critical dynamics can be carefully analyzed 
from (53). The critical dynamics cannot be recovered when suppressing one of the two mechanisms in (53). In that respect, 
both are essential, in contrast to the point of view expressed in [7] “the primary failure mechanism is found to be unsteadiness”. 
Moreover, the critical radius is not very different from r∗

f predicted in (44)–(45) using a steady-state approximation (x∗ = e).
An extension of the asymptotic analysis to a more realistic limit than (16), namely for a large propagation Mach number, 

M2
o � 1, is in process by the method mentioned at the end of § 5.2.
CJ
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