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Abstract

As illustrated by some French departments, how can we explain the existence of
equilibria with different fertility and growth rates in economies with the same fun-
damentals, preferences, technologies and initial conditions? To answer this question
we develop an endogenous growth model with altruism and love for children. We
show that independently from the type of altruism, a multiplicity of equilibria might
emerge if the degree of love for children is high enough. We refer to this condition
as the love for children hypothesis. Then, the fertility rate is determined by expec-
tations on the future growth rate and the dynamics are not path-dependent. Our
model is able to reproduce different fertility behaviours in a context of completed
demographic transition independently from fundamentals, preferences, technologies
and initial conditions.

JEL Classification: J13, O41, D11

Key Words: Fertility, Love for Children, Expectations, Endogenous Growth, Bal-
anced Growth Path.

1 Introduction

Many countries have almost surely completed their demographic transition. For
instance, in France, the total fertility rate of all women has reached its plateau.
Data from Insee1 show that, from 2006 to nowadays, the total fertility rate of
French women is on average stable at the replacement level of two children per
woman.2 Even though nowadays the total fertility rate of French women is on

∗Corresponding author. E-mail: paolo.melindighidi@parisnanterre.fr. Avenue de la Re-
publique 200, 92000, Nanterre, France.
†E-mail: thomas.seegmuller@univ-amu.fr
1Institut national de la statistique et des études économiques, www.insee.fr.
2The total fertility rate is expressed in per 1000 women (considering women in reproductive

ages, i.e. 15-49 years-old.). We only consider the total fertility rate for Metropolitan France.
See Appendix B for data sources.
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average stable at replacement level, if we focus on small geographical areas, such
as regions or departments, very different fertility patterns emerge. The demo-
graphic literature has already highlighted the existence of these geographical
differences in France dating back to the previous centuries.3

Figure 1 maps the total fertility rate of French women in 2014 at department
level. It clearly show that differentials in fertility rates still persist nowadays.
More precisely, if we concentrate on fertility rates in French departments be-
longing to the same regional entity, we can clearly observe very different fertility
behaviours. The coefficients of spatial autocorrelation of Moran and Geary at
department level confirm the existence of a strong fertility heterogeneity across
departments.4

[Figure 1 here]

This is, in our opinion, a very interesting phenomenon that deserves to be
analysed in details. Indeed, in a context of completed fertility transition without
heterogeneity of individuals’ preferences, abilities, norms or initial conditions,
such as in departments belonging to the same regional entity, we would expect
a convergence of fertility rates across departments. However, this expectation
is not confirmed by the empirical evidence. The case of Alsace is emblematic.5

Even though this region is composed by two departments, Bas-Rhin and Haut-
Rhin, with similar, if not the same, fundamentals and initial conditions, we can
observe the existence of an important fertility differential. We cannot ascribe
this phenomenon to heterogeneity of preferences of individuals populating two
neighbourhood departments, since their cultural fundamentals, religious values,
historical heritages and social norms are the same. Of course, this fact is not
specific to Alsace and can be observed in other adjacent French departments. At
the same time, there also exists some French departments, adjacent and belong-
ing to the same region, that do not exhibit any differentials but a convergence
of fertility rates.

To understand if these different current fertility behaviours have persisted
over time, we use time-series data for French departments. We observe that
time-persistence might arise in different geographical areas of France. Figure 2
clearly shows this statement.6 In particular, it depicts the dynamic evolution of
the total fertility rate of all women over the period 1975-2014 for four couples

3For instance, in the second half of the XIX century, the total fertility rate of all women
was much more higher in the North, North-West and East compared to the South-West, center
and South of France. See Desplanques (2011) and Vivier (2014).

4While the first coefficient is a measure of global spatial autocorrelation, the second mea-
sures local spatial autocorrelation. Negative values indicate negative spatial autocorrelation
while positive values indicate positive one. Both coefficients measure the correlation among
values of a single variable strictly attributable to their relatively close locational positions on
a two-dimensional surface (Griffith (1987)).

5Take in mind that we define regions as they were before the law of December 12, 2014,
that reduces the number of French metropolitan regions from 22 to 13 from January 1, 2016.

6For this figure we consider two adjacent departments in the following regions: Alsace (Bas-
Rhin and Haut-Rhin), Lorraine (Meurthe-et-Moselle and Meuse), Bourgogne (Côte-d’Or and
Yonne), PACA (Bouches-du-Rhône and Vaucluse)
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of two adjacent departments belonging to a particular region for which this
persistence of fertility behaviours is pronounced.7

[Figure 2 here]

Looking at other adjacent departments in Figure 1 we can clearly observe
that differences in fertility rates at department level is not the only possible em-
pirical outcome observable in French data. We also find patterns characterized
by convergence of fertility rates across adjacent departments and over time. To
support this claim, we present in Figure 3 four cases of adjacent departments
belonging to the same regional entity in which we do not report any persistence
of fertility differentials over time.8 The fertility behaviour of women in each
department tends to be much more homogeneous with respect to the case of
persistent fertility gap. Indeed, in all four cases in Figure 3, fertility rates at de-
partment level fluctuate around very similar values and cross each other several
times.

[Figure 3 here]

These important empirical facts we observe in French departments ask to
answer to the following theoretical questions: how can we explain, on the one
hand, the persistence and, on the other hand, the absence of fertility differentials
in a context of completed fertility transition in which households’ preferences,
such as altruism, norms, religious beliefs, technologies and initial conditions are
homogeneous? Can an economic model of fertility explain this diversity when
is not assumed the heterogeneity of fundamentals?

We claim that a standard fertility model with homogeneous preferences, fun-
damentals, technologies and initial conditions cannot explain this diversity of
configurations because it would necessarily predict the convergence of fertility
rates. Therefore, the main motivation of this paper is to fill the gap between
economic theory on fertility and the empirical evidence we have highlighted in
this section. To this end we propose a new theoretical model based on the
role of expectations that might help to understand the variability of fertility
behaviours across French departments. Put differently, the main objective of
this paper is to develop a new model of fertility that is able to reproduce the-
oretically the evidence we observe in the French data at department level in a
context of completed fertility transition. In the next section, we will present an
economic model with endogenous growth, fertility, love for children and either
paternalistic or dynastic altruism that is able to provide an explanation, based
on the multiplicity of equilibria, of the different stylized facts presented in this
section.

7We choose adjacent departments to guarantee the convergence in terms of cultural char-
acteristics and initial conditions. Moreover, we choose departments in different regions to
cover all the territory of France. For conciseness, we only consider 4 metropolitan regions of
France but this phenomenon can be found in other geographical areas.

8For Figure 3, we consider two adjacent departments in the following regions: Rhône-Alpes
(Ain and Rhône), Languedoc-Roussillon (Aude and Pyrénées-Orientales), Limousin (Corrèze
et Creuse), Poitou-Charentes (Charente and Charente-Maritime).
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In the literature, several papers have explained the existence of fertility dif-
ferentials, because of heterogeneous endowments in human capital and/or skills
to work (see for instance Dahan and Tsiddon (1998), de la Croix and Doepke
(2003, 2004), Kremer and Chen (1999, 2002)). However, differences in fertility
collapse in the absence of heterogeneities across households, as it seems to be
the case among the French departments we focus on in Section 2. Other contri-
butions interesting for our research questions develop models with endogenous
fertility and traps due to a multiplicity of steady states. This multiplicity may
be explained by the net return of capital which is no more always decreasing
with respect to capital (Palivos (1995), Cai (2002)) or the difference between the
returns of investing in capital and having children (Becker et al. (1990), Galor
and Weil (1996)). In these approaches, one converges to a steady state with high
or low fertility depending on the initial condition on capital. The dynamics are
typically path-dependent. This means that with the same initial conditions, as
in the French departments we consider, one converges to the same equilibrium
and fertility rate. Therefore, these different types of analysis cannot explain the
diversity of configurations we highlight among French departments, such as in
the region of Alsace. In addition, both the existence and the absence of fertility
gaps across adjacent departments cannot be explained by such models in which
individuals are homogeneous in terms of preferences, as we believe it is the case
for individuals living in neighbourhood departments within the same regional
entity.

For these reasons, we look at another explanation based on the multiplicity
of equilibria. Depending on whether agents living in two adjacent departments
coordinate their expectations on the same or on different equilibria, the model
might reproduce the absence or the persistence of disparities in fertility rates.
In other words, we develop a model which is able to replicate both empirical
evidences without considering heterogeneity of preferences or different initial
socio-economic conditions. We obtain these conclusions considering an endoge-
nous growth model with fertility, love for children and either paternalistic or dy-
nastic altruism. We recall that in the first case, utility depends on the amount
of bequest for each child, while in the second one, utility of parents depends
on utility of children. To have a model with growth as tractable as possible,
we consider an Ak technology. We show that whatever the type of altruism,
there exist two balanced growth paths under similar conditions. Therefore, our
results do not depend on the type of altruism considered, which highlights the
robustness of the findings.

Above all, our analysis emphasizes the crucial role of love for children, for-
malized by a utility that depends on the number of children per se. As we show,
the multiplicity of equilibria emerges if love for children is significant, referred
as the love for children hypothesis, and the marginal utility of having children
does not strongly depend on the number of children, meaning that households
are quite indifferent between two (stationary) fertility rates. In this case, the
fertility rate is determined by expectations on the future growth rate. Indeed,
depending on their expectations, agents coordinate on a high fertility rate or
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rather a lower one.9 This result can be related to the Matsuyama (1990) model
with real money balances in the utility in which multiplicities can occur. Indeed,
in our framework, the number of children which is an endogenous argument of
the utility function is also the price of capital. This may explain the diversity
of configurations we observe among adjacent French departments belonging to
the same region. If we associate our economy to a French department, house-
holds of two departments sharing the same fundamentals can coordinate their
expectations on the same or on different equilibria. Finally, on the theoretical
ground, our result is new for two reasons. First, it does not depend on a form
of heterogeneity among agents (preferences, skills, initial conditions). Second,
our economy can jump on one equilibrium or the other one because, in con-
trast to what we usually find in growth models with fertility, dynamics are not
path-dependent. Because of love for children, the fertility rate is determined by
expectations on the future growth rate.

Our analysis is also related to the value of children theory formulated in
the sociological literature by the pioneering work of Hoffmann and Hoffmann
(1973). These authors develop a sociological approach based on the idea that
the combination of socio-economic and normative factors is able to influence
fertility decisions. The main assumption of their sociological model is that the
value that parents give to their children determines the intra-family relationships
and the fertility behaviours. Empirical studies have tested if the value of children
hypothesis is able to explain fertility differentials within and between countries.
The results indicate that this hypothesis is quite predictive of fertility intentions
(Mares and Mozny (2005), Nauck (2006), Nauck and Klaus (2007)). To our
knowledge, no economic contributions have tried to give an explicit theoretical
formulation of this theory. We show that this can be done extending basic
growth model of rational fertility choice to the idea that the marginal utility
of having children does not strongly decrease with the number of children. In
this case, expectations on the value of children could explain the appearance of
fertility differentials between households and geographical areas characterized
by the same fundamentals. However, in an economic setting with altruism and
love for children, it seems to us more appropriate to refer to this theoretical
approach as love for children hypothesis, that is, a welfare that strongly weights
utility for the number of children.

This paper is organized as follows. In the next section, we develop our model
with endogenous growth, fertility, love for children and either paternalistic or
dynastic altruism that exhibits a multiplicity of equilibria. We discuss and
interpret our results in Section 3. We conclude in Section 4, while technical
proofs are relegated to an Appendix.

9A similar result is found by Chabé-Ferret and Melindi-Ghidi (2012). They show that
ethnic minorities are often found to exhibit in some circumstances higher fertility levels and
lower educational investments than the majority group because parents’ fertility decisions are
affected by the uncertainty concerning the future economic status of their offspring. However,
this concept is related to the concept of minority status and the size of each groups with
respect to the majority. In this work we do not concentrate on the minority status hypothesis
but on the concept of value of children and expectations on future growth rates.
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2 The models with love for children and altru-
ism

We present two models with love for children, i.e. parents derive utility for
the number of children they have, and altruism, respectively paternalistic one
and dynastic one. We show that whatever the model chosen, a multiplicity of
equilibria occur under similar conditions: the degree of love for children should
be high enough, i.e. what we call the love for children hypothesis is satisfied,
and the marginal utility of having children should not strongly depend on the
number of children. These models may explain the diversity of experiences met
by adjacent French departments. Depending on whether agents of two such
departments coordinate their expectations on the same equilibrium or not, one
explains non persistent or persistent fertility differentials even in presence of
homogeneity of fundamentals and initial conditions.

Time is discrete (t = 0, 1, ...) and there are two types of agents: firms and
altruistic consumers. We start by presenting the production sector.

2.1 Production

A continuum of unit size of identical firms produces the final good using capital
Kt and labor Lt. In order to introduce in a simple way endogenous growth, a
learning by doing process results in knowledge accumulation. Congestion effects
are taken into account assuming that the externality of knowledge depends on
the capital intensity (Bosi and Seegmuller (2012), Frankel (1962), Ljungqvist
and Sargent (2004), Chapter 14). Therefore, the quantity of final good pro-
duced by each firm is given by Yt = F (Kt, k̄tLt), where k̄t ≡ K̄t/L̄t denotes
the average capital-labor ratio. The technology F (Kt, k̄tLt) has the usual neo-
classical properties, i.e. is a strictly increasing and concave production function
satisfying the Inada conditions, and is homogeneous of degree one with respect
to its two arguments.

Each firm considers knowledge spillovers as given and maximizes its profits
with respect to capital and labor under perfect competition. Since we note rt
the real interest rate and wt the real wage, profit maximization gives:

rt = F1(Kt, k̄tLt) (1)

wt = F2(Kt, k̄tLt)k̄t (2)

We now present the model with paternalistic altruism.

2.2 Paternalistic altruism

2.2.1 Households

The economy is populated by individuals in overlapping generations whose finite
lifespan is divided up into two periods: youth (inactive period) and adult age
(working period). Despite consumption, households have preferences for fertility
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with a weight ε > 0, and altruism, with a weight γ > 0. Paternalistic altruism
means that households take care about the amount of bequest, capital in our
framework, they leave to their children (see Michel et al. (2006)). The size of
the generation of adults born in t − 1 is Nt, growing at an endogenous factor
nt ∈ (0; +∞). Therefore, the population size of successive generations evolves
according to Nt+1 = ntNt.

When adult, an agent born at time t − 1 derives utility from consumption,
ct, having children nt and bequest per child through capital holding κt+1:

ln ct + ε
n1−µ
t

1− µ
+ γ lnκt+1 (3)

with µ > 0 and µ 6= 1. In the limit case where µ = 1, the utility becomes log-
linear, i.e. ln ct+ε lnnt+γ ln kt+1, as in a lot of existing contributions (Galor and
Weil (1996), de la Croix and Doepke (2003)). We generalize this specification
introducing a specification of the utility that allows us to discuss the results
according to the concavity degree with respect to the fertility rate. Note that
a quite similar specification where considered in the seminal contribution by
Razin and Ben-Zion (1975). Parameter µ measures the elasticity of marginal
utility with respect to the number of children. In a related setting, Cordoba and
Ripoll (2016) show that the relationship between family income and fertility is
in accordance with the empirical evidence when consumption and fertility are
intertemporal substitutes. It is therefore relevant to consider µ different and
even smaller than one. The utility function (3) also implies operative bequests
at each period of time, because of an Inada condition with respect to κt+1.

Each young individual induces a rearing time cost b > 0 to her parents. Each
household supplies 1−bnt units of labour to firms, earning the competitive wage
rate wt. Moreover, she receives income from capital bequests κt coming from
her parents remunerated by firms at the rate rt. This income is shared between
family consumption and capital bequests to children. Considering solutions with
nt strictly positive, the budget constraint of an adult born in t − 1 writes as
follows:

ct + nt(κt+1 + bwt) = Rtκt + wt (4)

with Rt ≡ 1− δ + rt the gross return of capital and δ ∈ (0, 1) the depreciation
rate of capital.

An adult household determines her optimal choice maximizing the utility
(3) taking into account the budget constraint (4). One get:

nt =

[
κt+1ε

γ(κt+1 + bwt)

] 1
µ−1

(5)

ct =
κtRt + wt(1− bnt)

1 + γ
(6)

Lemma 1 There exists ε1 > 0 such that the second order conditions are satisfied
for the utility maximisation (3) under the constraint (4) if ε > ε1.
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Proof. See Appendix A.1.

Lemma 1 states that if the weight associated to love for children, i.e. ε is
sufficiently high, household’s utility is maximised whatever the value of µ. The
second order conditions are in particular satisfied for µ < 1, a configuration
in which we will show that a multiplicity of equilibria exists. We refer to this
analytical condition as the love for children hypothesis.10

2.2.2 Equilibrium and balanced growth path (BGP): uniqueness ver-
sus multiplicity

Because of a continuum of unit size of identical firms, individual and average
capital labor ratios coincide at the equilibrium, that is: k̄t = kt = Kt/Lt.
Defining s ≡ F1(1, 1)/F (1, 1) ∈ (0, 1) the capital share in total production and
A ≡ F (1, 1) > 0 the total factor productivity, (1) and (2) rewrite:

rt = sA (7)

wt = (1− s)Akt (8)

Equilibrium on the labor market is satisfied if Lt = Nt(1−bnt). Equilibrium
on the capital market requires kt = Kt/Lt = κtNt/[(1− bnt)Nt] = κt/(1− bnt).

Define gt ≡ kt/kt−1 the growth factor of the capital-labor ratio. We can
rewrite (5) and (6) as follows:

nt =

[
γ

ε

(
1 +

(1− s)Ab
(1− bnt+1)gt+1

)] 1
1−µ

(9)

ct =
kt[(1− δ + sA)(1− bnt) + (1− s)A(1− bnt)]

1 + γ
(10)

with 0 < nt < 1/b. Substituting (7), (8) and (10) into (4), we obtain:

nt

(
1 + γ

γ
gt+1(1− bnt+1) + (1− s)Ab

)
= (1−δ+sA)(1−bnt)+(1−s)A (11)

Equation (9) rewrites:

gt+1 =
(1− s)Ab

(1− bnt+1)(n1−µ
t ε/γ − 1)

(12)

Substituting this equation in (11), we get:

G(nt) = H(nt) (13)

with:

G(n) ≡ (1− s)Abn(εn1−µ + 1) (14)

H(n) ≡ [(1− δ + sA)(1− bn) + (1− s)A](εn1−µ − γ) (15)

10Note that the denomination ”love” for children can already be met in the literature. See
the survey by Nerlove and Raut (1997).
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Equation (13) defines the solutions nt ∈ (0, 1/b). Note that this equation
becomes a static one. Given (nt), we deduce the value of (gt+1) using (12). We
show that:

Proposition 1 Let

ε ≡ (2b)1−µ[1− s+ γ(2− s)] (16)

Assuming ε > ε1, the following holds:

(i) For µ = 1, there is a unique equilibrium 0 < n0 < 1/b if and only if ε > γ;

(ii) For µ > 1, there is a unique equilibrium 0 < n0 < 1/b;

(iii) For 0 < µ < 1, there exist two equilibria n1 and n2, such that (γ/ε)
1

1−µ <
n1 < 1/(2b) < n2 < 1/b, if ε > ε.

Proof. See Appendix A.2.

A BGP is an equilibrium with gt = gt+1 = g, defined by:

g =
(1− s)Ab

(1− bn)(n1−µε/γ − 1)
(17)

with n = n0 for µ > 1 and n = n1 or n = n2 for µ ∈ (0, 1). This last case is
of special interest because it entails a form of global indeterminacy. The agents
coordinate their expectations either on the equilibrium n1, or on n2. This means
that, with the same fundamentals, such as preferences and socio-economic initial
conditions, an economy can either be on the equilibrium n1, or on n2. Different
fertility rates may be obtained depending on agents’ expectations. If our econ-
omy corresponds to a French department, this explains the possible existence
and persistence of fertility differentials between two adjacent departments with
the same cultural and fundamental characteristics.

Two main ingredients are important to obtain this multiplicity. First, the
love for children hypothesis should be satisfied so that ε should be large enough
to satisfy the second order conditions whatever the value of µ. Second, µ should
be low enough, which means that the marginal utility of having children (εn−µ)
weakly depends on the number of children. Then, households are quite indif-
ferent between two equilibria with different fertility rates. They can coordinate
on different values of the fertility rate.

We show now that this result of multiplicity is not specific to the assumption
of paternalistic altruism.

2.3 Dynastic altruism

To show the robustness of our previous results, we introduce dynastic altruism.
Otherwise, the model is similar to the previous one. We show that multiplicities
occur under similar conditions. Therefore, the same problem of coordination
of expectations will be able to explain fertility differentials under the same
fundamentals.
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2.3.1 Households

The population size of the generation born in t − 1 is Nt. In t − 1, the young
agents of this generation are inactive, while in t, they become active. As in the
previous model, agents derive utility from consumption, the number of children
and a form of altruism. The utility for consumption and the number of children
is similar than in the case of paternalistic altruism, but the altruism is now
dynastic. As in Razin and Ben-Zion (1975), agents care about the utility of
their children. Considering that the degree of altruism is now measured by
β ∈ (0, 1), the utility of an adult consumer at period t is given by:

Ut = ln ct + ε
n1−µ
t

1− µ
+ βUt+1

We take into account that bequests are operative. At equilibrium, this will
occur, because otherwise, income and therefore consumption become equal to
zero. Accordingly, the utility of a dynasty writes:

+∞∑
t=0

βt

(
ln ct + ε

n1−µ
t

1− µ

)
(18)

with ε > 0, µ > 0 and µ 6= 1. In the limit case where µ = 1, the utility writes∑+∞
t=0 β

t (ln ct + ε lnnt). As it is explained in the previous model, our specifi-
cation of the utility allows us to discuss the results according to the concavity
degree with respect to the fertility rate. The budget constraints faced at each
period are similar to the previous model, i.e. are given by equation (4).

We determine the optimal behaviour of households maximizing the utility
(18) under the constraints (4), focusing again on nt strictly positive. We get
the following conditions:

ct = nµt
bwt + κt+1

ε
(19)

nt
ct

= β
Rt+1

ct+1
(20)

lim
t→+∞

βt
nt
ct
κt+1 = 0 (21)

Lemma 2 There exists ε2 > 0 such that the second order conditions are satisfied
for the utility maximisation (18) under the constraint (4) if ε > ε2.

Proof. See Appendix A.3.

Lemma 2 indicates that household’s maximisation holds whatever the value
of µ under a similar condition than in the model with paternalistic altruism (see
Lemma 1), i.e. a high enough weight of love for children ε. This means that
again, the so-called love for children hypothesis must be satisfied.

10



2.3.2 Equilibrium and BGP: uniqueness versus multiplicity

Substituting (19) in (4) and (20), we get:

n1−µ
t

bwt + κt+1
= β

Rt+1

(bwt+1 + κt+2)nµt+1

(22)

nµt
wtb+ κt+1

ε
+ nt(κt+1 + bwt) = Rtκt + wt (23)

Using kt = Kt/Lt = κt/(1 − βnt), (7) and (8), equations (22) and (23)
become:

n1−µ
t gt+1

b(1− s)A+ (1− bnt+1)gt+1
= β

1− δ + sA

[b(1− s)A+ (1− bnt+2)gt+2]nµt+1

(24)

gt+1(1− bnt+1) + b(1− s)A = ε
(1− δ + sA)(1− bnt) + (1− s)A

nµt + εnt
(25)

A BGP is a steady state of the system (24)-(25), i.e. a solution (n, g) solving:

g =
β(1− δ + sA)

n
(26)(

nµ

ε
+ n

)
[g(1− bn) + b(1− s)A] = (1− δ + sA)(1− bn) + (1− s)A(27)

Substituting (26) into (27), a BGP is a value of n satisfying I(n) = J(n),
with:

I(n) ≡ (1 + εn1−µ)[(1− bn)β(1− δ + sA) + nb(1− s)A] (28)

J(n) ≡ [(1− δ + sA)(1− bn) + (1− s)A]εn1−µ (29)

On a BGP, κt+1/κt = kt+1/kt = g because n is constant. Using the budget
constraint, we also have ct/κt + ng = 1 − δ + A. This implies that ct+1/ct =
κt+1/κt = g. Therefore, the transversality condition (21) is always satisfied on
a BGP.

We examine now the existence and the number of BGP:

Proposition 2 Let

ε̂ ≡ β(1− δ + sA)

1− δ +A− β(1− δ + sA)

ε̃ ≡ (2b)1−µ[(1− δ + sA)β + (1− s)A]

(1− δ)(1− β) +A(1− βs)

Assuming ε > ε2, the following holds.

(i) For µ = 1, there is a unique BGP (n0, g0), with 0 < n0 < 1/b, if and only if
ε > ε̂;

(ii) For µ > 1, there is a unique BGP (n0, g0), with 0 < n0 < 1/b;
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(iii) For 0 < µ < 1, there exist two BGP, (n1, g1) and (n2, g2), such that
0 < n1 < 1/(2b) < n2 < 1/b and g1 > g2, if ε > ε̃.

Proof. See Appendix A.4.

Before discussing this result on the uniqueness versus the multiplicity of
BGP, we analyze the dynamics of the model. To analyze the stability of the
BGP in the different configurations highlighted in Proposition 2, let us rewrite
the dynamic system (24)-(25) as follows. Using (25), we substitute gt+1 in
equation (24) to get:

Ĩ(nt+1)

(1− δ + sA)(1− bnt+1) + (1− s)A
=

J̃(nt)

(1− δ + sA)(1− bnt) + (1− s)A
(30)

with:

Ĩ(nt+1) ≡ β(1− δ + sA)(1− bnt+1)(εn1−µ
t+1 + 1) (31)

J̃(nt) ≡ εn1−µ
t (1− δ +A)(1− bnt)− (1− s)Abnt (32)

This means that the dynamics are driven by a one-dimensional dynamic
equation that gives the sequence of the non-predetermined variable nt. Of
course, given (nt), we are able to deduce the sequence of growth factor (gt)
using equation (25). Equation (30) allows us to show:

Proposition 3 Assuming ε > ε2, the following holds.

(i) For µ = 1 and ε > ε̂, or µ > 1, the unique BGP (n0, g0) is globally determi-
nate;

(ii) For 0 < µ < 1 and ε > ε̃, the two BGP (n1, g1) and (n2, g2) are locally
determinate.

Proof. See Appendix A.5.

Propositions 2 and 3 show that when µ > 1, there is a unique BGP which is
globally determinate (see also Figure 4). This is the only equilibrium and one
immediately jumps on this BGP. Taking the fundamentals of the economy as
given, rational expectations imply that nt = n0. Therefore, this configuration
is not able to explain the diversity of situations among French departments, i.e.
both the existence and the absence of a fertility differential when we compare
some of them that are adjacent and belong to the same region.

[Figure 4 here]

When 0 < µ < 1, there are two BGP and each one is locally determinate
(see also Figure 5). The coexistence of the two equilibria n1 and n2 means that
there is a form of global indeterminacy associated to the multiplicity of BGP.

12



The agents may coordinate their expectations on one of the two BGP.11 This
is interesting for our aim: as in the case of paternalistic altruism, this model
can explain that economies with the same fundamentals may be characterized
by persistent heterogeneous fertility rates. This may explain the diversity of
situations experienced by some adjacent French departments that can either be
characterized by the same fertility rates or by persistent fertility differentials.

[Figure 5 here]

As in the model with paternalistic altruism, two key conditions are required
to get this result: the love for children hypothesis (ε large enough) and a
marginal utility of having children that weakly depends on the fertility rate
(µ smaller than one).12 Therefore, the utility to have children εn1−µ

t /(1 − µ)
plays the key role to have the multiplicity equilibria and fertility rates. This
conclusion is reinforced if we refer to the paper by Bosi and Seegmuller (2012).
Except that they also introduce heterogeneous agents and exogenous mortality
rates, the main difference with our model with dynastic altruism lies in the fact
that households are of the Barro and Becker (1989) type and there is no love for
children as in our framework. In contrast to us, they always get a unique BGP.

3 Discussion of the theoretical results

We have shown that whatever the type of altruism, paternalistic or dynastic,
there is a multiplicity of BGP and of associated fertility rates. Therefore, our
result seems to be quite robust. In both cases, it requires the same conditions.
First, the love for children hypothesis must be satisfied, i.e. ε should be suffi-
ciently high. Empirical evidence in different disciplines strongly supports this
hypothesis. For instance, love for children can be proxied by the willingness to
pay for a child. In the medical care research, Neumann and Johannesson (1994)
estimate that the ex-ante willingness to pay for a child of infertile adults was
$1,8 million. In psychology, infertility stress is also seen as a crucial factor in
explaining life quality of infertile patients (Moura-Ramos et al. (2012)). Sec-
ond, the elasticity of the marginal utility of having children with respect to the
number of children measured in absolute value, µ, needs to be low enough. This
means that the marginal utility for children does not strongly depend on the
number of children and households are quite indifferent between two (station-
ary) fertility rates. This condition is also supported by empirical evidence. In

11Even if we are not especially concerned with dynamic paths with oscillations and fluctu-
ations, we can note that the model may feature complex dynamics. By direct inspection of
Figure 5, we see that there is a threshold value n̂ that separates the dynamics in two regions.
For either 0 < nt < n̂ or n̂ < nt < 1/b, we observe that there is a form of global indeterminacy,
because there exist values of nt for which it corresponds two values of nt+1. In addition, it
is a priori possible to switch from the region with 0 < nt < n̂ to the one with n̂ < nt < 1/b,
and vice-versa.

12Note that, despite the fact that we consider endogenous growth, our model with dynastic
altruism is close to the one developed in the seminal contribution by Razin and Ben-Zion
(1975). They have no multiplicities because they restrict their attention to the configuration
where µ > 1.
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a related paper, Cordoba and Ripoll (2016) find that the relationship between
income and fertility is empirically relevant when consumption and fertility are
sufficient substitutes over time, which corresponds to µ < 1. Along these lines,
Jones et al. (2010) show that models where consumption and children are high
substitutes perform better replicating the empirical evidence of the relationship
between income and fertility.

The question now is to understand why our models with altruism generate a
multiplicity of stationary solutions, i.e. a form of global indeterminacy. As it is
well known, a large number of contributions have analyzed the conditions for the
occurrence of local indeterminacy. Early references in this literature are Kehoe
et al. (1992) and Spear (1991). They show that sufficiently strong externalities
lead to local indeterminacy. Despite the fact that we have a multiplicity of
BGP and no local indeterminacy, we can ask whether a similar externality
characterizes our models with paternalistic and dynastic altruism. Considering
the case of paternalistic altruism, we notice that when an adult chooses the
(positive) level of bequest, she does not take into account all the effects of
capital per capita on the following periods. Hence, this choice generates an
external effect. However, in the case of dynastic altruism, an adult decides her
choices of consumption, number of children and bequest taking into account
the effects on all the following generations. Therefore, there is no external
effect due to bequest, as the one described above. Since the multiplicity of BGP
emerges under similar conditions in both models with paternalistic and dynastic
altruisms, we argue that a common mechanism to both models should explain
the multiplicity of equilibria.

Note that usually, optimal growth models (i.e. without inefficiencies) have
no multiplicities of equilibria. Notable exceptions are however economies where
the price of an asset enters the utility function. One can refer, for instance,
to models with real money balances in the utility (Matsuyama (1990)) or with
spirit of capitalism (Clain-Chamosset-Yvrard (2016), Kamihigashi (2008)). In
our framework, we argue that we have a closely related feature. Indeed, nt,
which is an argument of the utility function and is endogenous, is also the
price of capital. In line with Matsuyama (1990), multiplicity occurs in our two
models, because it is possible to decrease the price of the asset, i.e. the number
of children, to increase the level of capital, and get a different level of utility.13

We now investigate more precisely how such a mechanism is compatible with
the equilibrium conditions of the two models. Let us rewrite the main arbitrage
conditions. In the case of paternalistic altruism (PA), we have (see (B.1) and
(B.2) in Appendix A.1):

nt
ct

=
γ

κt+1
(33)

εn1−µ
t = γ

κt+1 + bwt
κt+1

(34)

13Note that we do not analyze global dynamics. Figure 5 suggests that global indeterminacy,
bifurcations and cycles may occur. Such a study is however out of the scope of this paper and
could be considered for future research.
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In the case of dynastic altruism (DA), the arbitrage conditions are (see (B.6)
and (B.7) in Appendix A.3):

nt
ct

= β
R

ct+1
(35)

εn1−µ
t =

βR(κt+1 + bwt)

ct+1
(36)

where R = 1− δ + sA.
In both models, the first equation, (33) and (35) respectively, determines

the choice between current consumption and the bequest transmitted to the
next generation. The cost of bequest in terms of the consumption good, nt,
is equal to the marginal utility of bequest over the marginal utility of current
consumption.

We recall that on a BGP, kt = κt/(1 − bn), which means that κt/κt−1 =
kt/kt−1 = g. Using the budget constraint faced by the household, we also have
ct + nκt+1 = (1 − δ + A)κt, which is equivalent to ct/κt = 1 − δ + A − ng.
This implies that ct/ct−1 = κt/κt−1 = g. Hence, in a neighborhood of a BGP,
equation (35) also writes:

nt = β
R

gt+1
(37)

and equation (33) gives an expression for nt proportional to the right-hand side
of (37). Because of the decreasing marginal utilities, the endogenous cost of
the capital bequeathed, nt, is therefore inversely related to the expected growth
factor.

Let us focus on the other arbitrage equation, (34) in the model with PA and
(36) in the model with DA. The left-hand side of both these equations is similar
and corresponds to the cost of capital nt times the marginal utility of having
children εn−µt . The right-hand side is therefore equal to the price of having an
adding child κt+1 + bwt times the marginal utility associated to an increase of
bequest in terms of capital, which is equal to γ/κt+1 in the model with PA and
βR/ct+1 in the model with DA.

On the one hand, we see by direct inspection of the right-hand side of (34)
and (36) that, following an increase in the expected growth factor, the increase
of the price of a child does not cross out the decrease of the marginal utility
associated to altruism. On the other hand, if µ is lower than one, we observe
that, following a decrease of nt, the effect through the price of capital dominates
the opposite one that goes through the marginal utility of having children.

Hence, this arbitrage between the number of children and the amount of
capital bequeathed to each child shows us that if households expect an increase
of the future growth rate, they choose to have a lower number of children. This is
compatible with the other arbitrage between current consumption and bequest
(see equation (37)). Indeed, in both models with PA or DA, a lower fertility,
which also corresponds to a lower cost of investment, leads to a larger capital
investment, which boosts growth.
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Of course, if µ is larger or equal to one, this cannot happen. Any increase of
the expected growth factor implies either a raise or no effect on the number of
children (see (34) and (36)). It contradicts the arbitrage between current con-
sumption and bequest, which describes a negative relationship between growth
and fertility rates (see equation (37)). This implies the uniqueness of BGP.

Finally, when µ < 1, equations (33) and (34) in the model with PA and
equations (35) and (36) in the model with DA describe two negative relationships
between the fertility rate n and the growth rate g. This means that the two
existing BGP, (n1, g1) and (n2, g2), satisfy n1 < n2 and g1 > g2. The BGP
with a lower fertility rate experiences a larger growth. This is in line with the
theoretical and empirical literature highlighting a negative relationship between
fertility and income variables when the demographic transition is completed
(Galor (2005)).

4 Conclusion

In this paper we provided an economic interpretation of the value of children
hypothesis developed by the literature in sociology during the 70’s. Following
this approach, we claimed that expectations could explain the appearance of
fertility differentials within geographical areas characterized by the same fun-
damentals. Since we employed an economic setting with altruism and love for
children, we referred to this new theoretical approach as the love for children
hypothesis, that is, a household’s welfare that strongly weights the utility for
the number of children.

From a theoretical perspective, we developed two growth models with love for
children and altruism. We showed that independently from the type of altruism
chosen, i.e. paternalistic or dynastic, a multiplicity of equilibria might occur
if the degree of love for children is high enough. With respect to the previous
economic literature, our model is the first able to explain simultaneously the
possibility of different configurations of fertility patterns without assuming any
form of heterogeneity in preferences and/or technology. More precisely, our
theoretical conclusions do not depend on heterogeneity in utilities or initial
conditions. Because of love for children and endogenous growth, the fertility
rate is determined by expectations on the future growth rate and the dynamics
are not path-dependent.

This theoretical finding explains important empirical facts. Indeed, despite
the fact that France has completed its demographic transition, fertility differ-
entials seem to persist over time in some areas. If one can claim that adjacent
departments within the same regional entity have the same fundamentals, tech-
nologies, social norms, religious beliefs, to our knowledge, our model is able
to predict simultaneously the possibility of persistence and non-persistence of
fertility differentials over time without assuming some forms of heterogeneity
in preferences and/or technology. Even though we recognize the importance of
socio-economic factors in explaining fertility behaviours, we also highlight that
expectations could complete the overall picture. We believe that this is an im-
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portant theoretical result that nicely contributes to the economic literature in
fertility and growth theory.
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A Proofs

A.1 Proof of Lemma 1

In the model with paternalistic altruism, the objective function maximized by
the household can be written:

L1t ≡ ln [Rtκt + wt − nt(κt+1 + bwt)] + γ lnκt+1 + ε
n1−µ
t

1− µ

The first order conditions are given by:

∂L1t

∂nt
= −κt+1 + bwt

ct
+ εn−µt = 0 (B.1)

∂L1t

κt+1
= −nt

ct
+

γ

κt+1
= 0 (B.2)

with ct = Rtκt+wt−nt(κt+1 +bwt). We easily deduce the following derivatives:

∂2L1t

∂n2
t

= − (κt+1 + bwt)
2

c2t
− µεn−µ−1

t < 0 (B.3)

∂2L1t

κ2
t+1

= −n
2
t

c2t
− γ

κ2
t+1

< 0 (B.4)

∂2L1t

∂κt+1∂nt
= − 1

ct
− nt

κt+1 + bwt
c2t

(B.5)

The second order conditions are fulfilled if the Hessian H1t ≡ ∂2L1t

∂n2
t

∂2L1t

κ2
t+1
−

( ∂2L1t

∂κt+1∂nt
)2 > 0. Using (B.3)-(B.5), we get:

H1t =

[
(κt+1 + bwt)

2

c2t
+ µεn−µ−1

t

] [
n2
t

c2t
+

γ

κ2
t+1

]
−
[

1

ct
+ nt

κt+1 + bwt
c2t

]2

Using (B.1) and (B.2), this equation becomes:

H1t =
nt(κt+1 + bwt)[µct + nt(κt+1 + bwt)]

c4t

1 + γ

γ
−
[
ct + nt(κt+1 + bwt)

c2t

]2

For µ > 1, H1t > 0 if:

1 + γ

γ
nt(κt+1 + bwt) > ct + nt(κt+1 + bwt)

which is equivalent to:
nt(κt+1 + bwt) > γct

Using (B.2), we have ntκt+1 = γct, which means that the second order
conditions are satisfied for all µ > 1.
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For µ < 1, we have H1t > 0 if:

1 + γ

γ
>

[
ct + nt(κt+1 + bwt)

nt(κt+1 + bwt)

]2

which is equivalent to:

nt(κt+1 + bwt)

ct
>

1√
1 + 1/γ − 1

Because the utility function satisfies standard Inada conditions, nt cannot
be zero, but is always strictly positive. This means that there exists ñ > 0 such
that nt > ñ. Using (B.1), we deduce that:

nt
κt+1 + bwt

ct
= εn1−µ

t > εñ1−µ

Therefore, for ε sufficiently large, such that:

ε > ñµ−1 1√
1 + 1/γ − 1

≡ ε1,

H1t > 0 and the second order conditions are satisfied for µ < 1.

A.2 Proof of Proposition 1

Let us start with the limit case where µ = 1. Equations (14) and (15) become:

G(n) ≡ (1− s)Abn(ε+ 1)

H(n) ≡ [(1− δ + sA)(1− bn) + (1− s)A](ε− γ)

If ε > γ, there is a unique equilibrium given by:

n =
(ε− γ)(1− δ +A)

(ε− γ)b(1− δ + sA) + (ε+ 1)(1− s)Ab
∈ (0, 1/b)

Otherwise, no equilibrium exists.
Let us focus on the case where µ 6= 1. Using (14) and (15), we show that:

G′′(n) = (1− s)Ab(2− µ)(1− µ)εn−µ

H ′′(n) = −µn−µ−1(1− µ)ε(1− δ +A)− (1− µ)n−µεb(1− δ + sA)(2− µ)

H(1/b) = (1− s)A(εbµ−1 − γ) < G(1/b) = (1− s)A(εbµ−1 + 1)

We especially deduce that:

G′′(n)−H ′′(n) = (1− µ)(1− δ +A)εn−µ−1[bn(2− µ) + µ]

This implies that G′′(n)−H ′′(n) < 0 if µ > 1 and G′′(n)−H ′′(n) > 0 if µ < 1.
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If µ > 1, we have G(0) < H(0). Since G(1/b) > H(1/b) and G(n)−H(n) is
strictly concave, there is one solution to G(n)−H(n) = 0, which proves (ii) of
the proposition.

If µ ∈ (0, 1), G(n) −H(n) is strictly convex and H(0) = −γ(1 − δ + A) <

0 = G(0). Since H(n) > 0 for all n > (γ/ε)
1

1−µ , there exist two solutions n1

and n2 that belong to ((γ/ε)
1

1−µ , 1/b) to equation (13) if there is a value of

n ∈ ((γ/ε)
1

1−µ , 1/b) such that H(n) > G(n). Take n = 1/(2b) that belongs to
this interval under ε > γ(2b)1−µ. G(1/(2b)) < H(1/(2b)) is equivalent to:

A[(2b)1−µ(1− s+ γ(2− s))− ε] < (1− δ)[ε− γ(2b)1−µ]

This inequality is satisfied if ε > ε. In this case, there exist two solutions n1

and n2 to equation (13) such that (γ/ε)
1

1−µ < n1 < 1/(2b) < n2 < 1/b, which
proves (iii) of the proposition.

A.3 Proof of Lemma 2

In the model with dynastic altruism, the objective function maximized by the
household can be written:

L2t ≡
+∞∑
t=0

βt

[
ln (Rtκt + wt − nt(κt+1 + bwt)) + ε

n1−µ
t

1− µ

]

The first order conditions are given by:

∂L2t

∂nt
= −κt+1 + bwt

ct
+ εn−µt = 0 (B.6)

∂L2t

κt+1
= −nt

ct
+ β

Rt+1

ct+1
= 0 (B.7)

with ct = Rtκt+wt−nt(κt+1 +bwt). We easily deduce the following derivatives:

∂2L2t

∂n2
t

= − (κt+1 + bwt)
2

c2t
− µεn−µ−1

t < 0 (B.8)

∂2L2t

κ2
t+1

= −n
2
t

c2t
− β

R2
t+1

c2t+1

< 0 (B.9)

∂2L2t

∂κt+1∂nt
= − 1

ct
− nt

κt+1 + bwt
c2t

(B.10)

The second order conditions are fulfilled if the Hessian H2t ≡ ∂2L2t

∂n2
t

∂2L2t

κ2
t+1
−

( ∂2L2t

∂κt+1∂nt
)2 > 0. Using (B.8)-(B.10), we get:

H2t =

[
(κt+1 + bwt)

2

c2t
+ µεn−µ−1

t

] [
n2
t

c2t
+ β

R2
t+1

c2t+1

]
−
[

1

ct
+ nt

κt+1 + bwt
c2t

]2
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Using (B.6) and (B.7), this equation becomes:

H2t =
nt(κt+1 + bwt)[µct + nt(κt+1 + bwt)]

c4t

1 + β

β
−
[
ct + nt(κt+1 + bwt)

c2t

]2

For µ > 1, H2t > 0 if:

1 + β

β
nt(κt+1 + bwt) > ct + nt(κt+1 + bwt)

Using (B.6), this is equivalent to ε > βnµ−1
t . Since nt < 1/b, this inequality

is ensured by ε > βb1−µ ≡ ε̂2.
For µ < 1, we have H2t > 0 if:

1 + β

β
>

[
ct + nt(κt+1 + bwt)

nt(κt+1 + bwt)

]2

which is equivalent to:

nt(κt+1 + bwt)

ct
>

1√
1 + 1/β − 1

Because the utility function satisfies standard Inada conditions, nt cannot
be zero, but is always strictly positive. This means that there exists n > 0 such
that nt > n. Using (B.6), we deduce that:

nt
κt+1 + bwt

ct
= εn1−µ

t > εn1−µ

Therefore, for ε sufficiently large, such that:

ε > nµ−1 1√
1 + 1/β − 1

≡ ε̃2,

H2t > 0 and the second order conditions are satisfied for µ < 1.
Let us define ε2 ≡ max{ε̂2, ε̃2}. The second order conditions are satisfied for

all µ > 0 if ε > ε2.

A.4 Proof of Proposition 2

Let us start with the limit case where µ = 1. Equations (28) and (29) become:

I(n) ≡ (1 + ε)[(1− bn)β(1− δ + sA) + nb(1− s)A]

J(n) = [(1− δ + sA)(1− bn) + (1− s)A]ε

There is a unique equilibrium given by:

n =
1

b

ε(1− δ +A)− (1 + ε)β(1− δ + sA)

(1 + ε)[(1− s)A− β(1− δ + sA)] + ε(1− δ + sA)
∈ (0, 1/b)
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if and only if ε > ε̂. Otherwise, no equilibrium exists.
We focus now on the case where µ 6= 1. Using (28) and (29), we have

I(1/b) = (1− s)A(1 + εbµ−1) and J(1/b) = (1− s)Aεbµ−1 < I(1/b). Moreover,
using (28) and (29), we compute:

I ′′(n) = −µ(1− µ)εn−µ−1β(1− δ + sA)

+(1− µ)(2− µ)εn−µb[(1− s)A− β(1− δ + sA)]

J ′′(n) = −µn−µ−1(1− µ)ε(1− δ +A)− (1− µ)n−µεb(1− δ + sA)(2− µ)

We obtain:

I ′′(n)− J ′′(n) = (1− µ)εn−µ−1[1− δ +A− β(1− δ + sA)][µ+ (2− µ)bn]

which shows that I ′′(n)− J ′′(n) < 0 if µ > 1 and I ′′(n)− J ′′(n) > 0 if µ < 1.
If µ > 1, we further have I(0) < J(0). Since I(1/b) > J(1/b) and I(n)−J(n)

is strictly concave, there is a unique solution to the equation I(n) − J(n) = 0,
which proves (ii) of the proposition.

If 0 < µ < 1, I(0) = β(1 − δ + sA) > 0 = J(0) and I(n) − J(n) is strictly
convex. Let us consider n = 1/(2b). Using (28) and (29), we deduce that
I(1/(2b)) < J(1/(2b)) if and only if ε > ε̃. Using the continuity of I(n) and
J(n), we deduce that there are two solutions n1 and n2 solving I(n)−J(n) = 0,
such that 0 < n1 < 1/(2b) < n2 < 1/b. Using equation (26), we determine the
associated values g1 and g2. This proves (iii) of the proposition.

A.5 Proof of Proposition 3

Differentiating equation (30), we get:

Ĩ ′(nt+1)[(1− δ + sA)(1− bnt+1) + (1− s)A] + Ĩ(nt+1)(1− δ + sA)b

[(1− δ + sA)(1− bnt+1) + (1− s)A]2
dnt+1

=
J̃ ′(nt)[(1− δ + sA)(1− bnt) + (1− s)A] + J̃(nt)(1− δ + sA)b

[(1− δ + sA)(1− bnt) + (1− s)A]2
dnt

Using (31) and (32), we obtain Î(nt+1)dnt+1 = Ĵ(nt)dnt, with:

Î(n) ≡ β(1− δ + sA)A(n)

[(1− δ + sA)(1− bn) + (1− s)A]2
(B.11)

Ĵ(n) ≡ (1− δ +A)A(n)

[(1− δ + sA)(1− bn) + (1− s)A]2
(B.12)

A(n) ≡ (1− µ)εn−µ(1− bn)[(1− δ + sA)(1− bn) + (1− s)A]

−b(1− s)A(εn1−µ + 1) (B.13)

We first deduce that at each BGP, we have:

dnt+1

dnt
=

1− δ +A

β(1− δ + sA)
> 1 (B.14)
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This means that each BGP is locally determinate.
When µ > 1, we further have Î(nt+1) < 0 and Ĵ(nt) < 0. This means that

nt+1 is a strictly increasing function of nt for all nt ∈ (0, 1/b). Therefore, since
the BGP is unique, it is globally determinate (see also Figure 4).

When µ < 1, the analysis is different. By direct inspection of equations
(B.11)-(B.13), we have Î(0) = Ĵ(0) = +∞ and Î(1/b) = Ĵ(1/b) < 0. Since A(n)

is strictly decreasing, there is a unique n̂ ∈ (0, 1/b) such that Î(n̂) = Ĵ(n̂) = 0.

In addition, we have Ĵ(nt) > 0 (Î(nt+1) > 0) for nt < n̂ (nt+1 < n̂) and

Ĵ(nt) < 0 (Î(nt+1) < 0) for nt > n̂ (nt+1 > n̂). We deduce that dnt+1/dnt > 0
for all (nt, nt+1) ∈ (0, n̂)2 and (nt, nt+1) ∈ (n̂, 1/b)2 and dnt+1/dnt < 0 for all
(nt, nt+1) ∈ (0, n̂)× (n̂, 1/b) and (nt, nt+1) ∈ (n̂, 1/b)× (0, n̂). Because of these
results and inequality (B.14) holds at each BGP, the two BGP are such that
n1 < n̂ < n2 . Each BGP is locally determinate. Using the different ingredients
of this proof, we can draw Figure 5. The proposition immediately follows.

B The Insee dataset and Philcarto

The Insee provides demographic, economic and social data for France. Data are
available at www.insee.fr. Data are provided at national, regional, departmental
and municipal levels. In our analysis, we concentrate on data at departmental
level. In particular, we use time series for the total fertility rate of women of all
ages (15-49 years-old) between 1975 and 2014. Following the Insee’s definition:
total period fertility measures the number of children a woman would have in the
course of her life if the fertility rates observed at each age in the year considered
remain unchanged. We have merged data on total fertility rate with shape files
provided by Philcarto to produce the geographical map to illustrate total fertility
rate differentials at departmental level in 2014. The program and the shape
files are publicly available at http://philcarto.free.fr. To describe geographical
borders at regional level, we use shape files defining regional borders before
the law of December 12, 2014, that reduces the number of France metropolitan
regions from 22 to 13 from January 1, 2016. We do not consider TOM, i.e.
overseas territories of France.
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Figure 1: TFR of all women in France in 2014
[Q6] TFR 2014 DEP
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Figure 4: Dynastic altruism with µ > 1
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Figure 5: Dynastic altruism with 0 < µ < 1
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