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Understanding complex phenomena *?
Examples: combustion phenomena

Direct numerical simulations 7

A physicist approach: reduce the complexity
ending with simplified equations
to be solved analytically and compare with experiments



Hopefully gaseous detonations are not easy to initiate

What minimum energy should be deposited
by an external source
to initiate a gaseous detonation in an open space 7

Safety of nuclear power plant
Explosions.....supernovae....



Detonations = combustion supersonic waves

inert shock followed by an exothermal reaction zone
in gas at ordinary conditions: 1800—3400 m/s, 15—30 bar, 2500—3700 K

X

Deflagration = combustion subsonic waves
reaction-diffusion waves

Old scientific topic (end of 19th - extensively studied since the mid 20th)

Comprehensible explanation of the multidimensional geometry and complex dynamics of the wave fronts has
been elusive. Understanding is recent (nonlinear analyses)

Reactive Euler equations



Back to school

Background in compressible fluids

Planar shock waves and detonations
1860-1940
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OVERDRIVEN DETONATION
REACTING GAS
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Planar detonation

Overdriven regime / Self sustained wave
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Planar detonation
(inner structure in steady state)

propagation velocity
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Negligible heat conduction and viscosity
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Back to our problem !

What minimum energy should be released
by an external source
to initiate a gaseous detonation in open space (3D) ?

Zeldovich criterion (1956)

chemical energy 3
X

critical energy =~ (detonation thickness)

unit volume
Wrong ! Under estimated by a factor 10°—108

Experiments (1975)-(1980)



Numerics in spherical geometry

Korobeinikov (1971)
Detonation = discontinuity

(zero detonation thickness)
No critical energy !

Sedov 1946-Taylor 1950
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Conclusion: the critical energy is due to small modifications of the inner structure !



Curvature effect (steady state approximation)

L. He & P.C (1994)

Marginal CJ condition in the parameter space «radius-velocity »
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Curvature effect (steady state approximation)

Turning point
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Role of unsteadiness of the inner structure 7
Dynamics close to the critical radius ?

Experiments and DNS show a sensitivity to details

Direct initiation of gaseous detonations by an energy source

L5

unsteadiness promotes failure
trajectory 2

unsteadiness promotes re-ignition
trajectory 3

0 500 1000 1500 2000

The analysis is In progress



1D dynamics in planar geometry

PC & F.A. Williams (2002-2009)



1-D dynamics of the inner structure of planar detonations

Constitutive equations

1D o D1
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Hyperbolic equations: Eqs. of the characteristics

Nonlinear acoustic waves generated by an exothermal reaction



1-D compressible, inviscid and reactive gas mixture

+ energy eq. for T heat release per unit mass progress variable

9 9N [ - O qmw(T,Yy/<§t+uaﬁ)Y:w(f,Y)
ot ' or Pl=or " 5

chemical kinetics

entropy wave 1w : non-dimensional reaction rate

Newtonian approximation

acoustic waves heat release rate
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4+ + — + = ——
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sound speed a = \/(7 — 1)e, T

small heat release: a =~ cst.

3 nonlinear modes: Entropy wave + 2 acoustic waves

4 nonlinear equations & 4 unknowns: P; T, u, Y

too complicated system for a general analytical solution



1-D dynamics of the inner structure of planar detonations
Set of feedback loops

quasi-instantaneous
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Threshold of the planar instability of the CJ regime:

Small heat release = | Transonic flow

3rd simplification:

Two-time scales: The upstream running acoustic wave controls the loops

4

The two other modes involves much shorter time lags




Integral equation for the propagation velocity a:(t)

Unperturbed flow velocity of burnt gas (intrinsic dynamics):

velocity of the lead shock / time lag / upstream running acoustic wave
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Theoretical analyses of cellular structures
1996-2017

1-D oscillatory instability

+ transverse propagation and Mach stem formation

one-dimensional instability
1996-2002




B.Maxwell, R.Bhattacharjee, S. Lau-Chapelaine, S.Falle, G. Sharpe and M. Radulescu
Journal of Fluid Mechanics 2017
CH4 +202 p=3.5kP, 2D geometry experiment

High activation energy: Irregular structure and transient phenomena

Schlieren images

Intermittentfformation- -
o)

burning pockets of fresh mixture
engulfed in the burned gas

Successive frames 11us apart



The role of unsteadiness in the decay to the CJ regime
when the piston is brought to instantaneous halt

PC & B. Denet (2018)



1-D (planar) centered rarefaction wave
when the piston is suddenly arrested
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Selection mechanism of the self sustained propagation (CJ wave)

by the rarefaction wave in the burnt gas
(planar geometry and inner structure of the detonation in steady state)
Levin & Chernyi (1967), P.C.& B.Denet (2017)
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Integral equation for the propagation velocity a:(t)

Unperturbed flow velocity of burnt gas

2a¢(t) = /_ G(2', & (t + 2"))d2’

Relaxation to the CJ regime when the piston is suddenly stopped at t = 0 :
PC & B. Denet JFM (2018)

forcing term: rarefaction wave

0 in the burnt gas

t>0: 24(t) = / G2, a(t+ 2))d2" + (1 +t/73) >
oo )
t<0: a(t)=1 / G(z',1)dz =1

piston-supported detonation (overdriven regime)
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distributions in steady state for different a¢
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the upstream running mode controls the response

Transonic flow: divergence of the delay when approaching the CJ self-sustained regime

Solvability condition: selection of the family of the overdriven regimes approaching the CJ regime
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This analysis presents a simple tool that can be extended for
describing the chaotic dynamics around the critical radius
controlling the initiation of detonations in free space.
Results are expected soon !

Thank you for your attention



