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Abstract

We provide the first analysis of the risk-sharing implications of altruism networks. Agents are
embedded in a fixed network and care about each other. We explore whether altruistic transfers
help smooth consumption and how this depends on the shape of the network. We find that altruism
networks have a first-order impact on risk. Altruistic transfers generate efficient insurance when the
network of perfect altruistic ties is strongly connected. We uncover two specific empirical implications
of altruism networks. First, bridges can generate good overall risk sharing, and, more generally, the
quality of informal insurance depends on the average path length of the network. Second, large
shocks are well-insured by connected altruism networks. By contrast, large shocks tend to be badly
insured in models of informal insurance with frictions. We characterize what happens for shocks that
leave the structure of giving relationships unchanged. We further explore the relationship between
consumption variance and centrality, correlation in consumption streams across agents, and the
impact of adding links. (JEL: D64, D85, G22, D80, O12)
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1. Introduction

Informal safety nets are key to helping people cope with negative shocks, especially
in areas with little or no access to formal insurance.1 Applied economists have
extensively studied the effectiveness of informal risk-sharing arrangements. Townsend
(1994) tested and rejected the hypothesis of efficient risk sharing in villages of
rural India. He found that, even though risk-sharing inefficiency is surprisingly low,
household income remains a significant determinant of consumption. These findings,
confirmed by a large literature, have led researchers to model informal transfers
as insurance contracts subject to frictions. Ligon, Thomas, and Worrall (2002)
characterize constrained efficient risk-sharing contracts in a dynamic framework with
limited commitment.2 Different frictions, such as limited commitment, moral hazard,
or hidden income, have different dynamic implications, which can be tested on panel
consumption data (e.g., Kinnan 2019).

The literature on informal insurance contracts has, however, neglected two
key features of informal transfers. First, there is expanding empirical evidence that
informal transfers flow through family and social networks.3 Exogenous or endogenous
networks thus appear to play a central role in the organization of risk sharing. A few
recent papers have studied the interplay between network structure and contracting
frictions.4 Ambrus, Mobius, and Szeidl (2014) characterize constrained efficient
risk-sharing contracts in a static setup with limited commitment where social ties can
be used as social collateral and destroyed to punish deviations. The ties’ values thus
impose capacity constraints on transfers. However, no attempt has yet been made to
fully integrate networks into the dynamic analysis of insurance contracts with frictions.

Second, the literature on informal insurance contracts focuses on one motive
behind transfers: self-interested gains from trade. Yet, there are other motives that
deserve attention. Informal transfers are, to a large extent, motivated by altruism.
Individuals give support to others they care about and, in particular, to their family
and friends in need.5 Altruistic transfers flow from households with positive income
shocks to relatives with negative income shocks, unhindered by contracting frictions.
Transfers motivated by altruism can thus help smooth consumption, even in the
absence of insurance contracts. Our goal in this paper is to study this benchmark. In

1. See, for instance, Banerjee and Duflo (2011, Chap. 6).

2. See also, among others, Ábrahám and Laczó (2017), Coate and Ravallion (1993), Dubois, Jullien, and
Magnac (2008), Kocherlakota (1996), Laczó (2015), Ligon (1998), and Morten (2019).

3. Applied researchers collect and analyze detailed data on actual transfers and help relationships between
individuals and households (see Fafchamps and Lund 2003; De Weerdt and Dercon 2006; Fafchamps and
Gubert 2007; Banerjee et al. 2013; Jack and Suri 2014).

4. We review this emerging literature later.

5. Direct and indirect evidence that some informal transfers are altruistically motivated can be found in
Foster and Rosenzweig (2001), Leider et al. (2009), De Weerdt and Fafchamps (2011), Karner (2012), and
Ligon and Schechter (2012). Altruism likely explains a large proportion of remittances, a main source of
income for many poor households (see Yang 2011). Remittances generally increase following a negative
shock and hence help smooth consumption (e.g., Yang and Choi 2007; Jack and Suri 2014).
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Section 6, we discuss how future research could integrate altruism, social networks,
and insurance contracts with frictions.

We provide the first analysis of the risk-sharing implications of altruism networks.
We introduce stochastic incomes into the model of altruism in networks analyzed in
Bourlès, Bramoullé, and Perez-Richet (2017). Agents care about each other, and the
altruism network describes the structure of social preferences. For each realization of
incomes, agents play a Nash equilibrium of the game of transfers. They do not have
access to formal or informal insurance contracts, for instance, due to large contracting
frictions. Our objective is to understand how altruistic transfers affect the risk faced by
the agents. Do altruism networks help smooth consumption? How does the structure
of the network affect this? Do the empirical implications of altruism in networks
differ from those of other models of informal transfers?

We find that altruism networks have a first-order impact on risk and yield distinct
implications. In line with Becker’s (1974) intuition, altruistic transfers often mimic
insurance contracts.6 Altruistic agents tend to give to others when rich and receive from
others when poor, reducing consumption variability. In our first main result, we show
that altruistic transfers can even yield efficient risk sharing. This happens for any utility
functions and any income distribution if and only if the network of perfect altruistic ties
is strongly connected.7 Some altruistic relationships must be very strong, but the overall
network can be sparse. In this case, consumption patterns resulting from altruistic trans-
fers cannot be distinguished from those induced by frictionless insurance contracts.

Identification becomes possible in the domain of inefficient risk sharing. We
uncover two specific empirical implications of altruism networks.8 We find, first, that
bridges play a critical role in overall risk sharing. One strong tie between two separate
communities generates large spillovers and can lead to good overall risk sharing. More
generally, the quality of informal insurance induced by altruistic transfers depends on
the average path length of the network. These structural predictions are very different
from those obtained by Ambrus, Mobius, and Szeidl (2014) in the social collateral
framework. When links have capacity constraints, a bridge generally has little impact
and the quality of informal insurance depends on the expansiveness of the network
rather than on its average path length. For example, consider rural Indian villages
where economic and social interactions are structured along caste lines. The model
of altruism in networks predicts that a few intercaste marriages can drastically change
the overall patterns of informal transfers and consumption.

6. In a context of household decision making (Becker 1974, p. 1076), “The head’s concern about the
welfare of other members provides each, including the head, with some insurance against disasters.”

7. An altruistic relationship between agent i and agent j is perfect when agent i cares as much about her
own well-being as about agent j’s well-being. The network of perfect altruistic ties is strongly connected
if any two agents are indirectly connected via a path of perfect altruistic relationships (see Section 3).

8. We obtain these results under the assumption that agents have a common utility function, which
displays Constant Absolute Risk Aversion (CARA). We discuss extensions to other classes of utility
functions in Section 3.
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Second, we find that a large negative shock on one agent is well-insured when the
altruism network is connected. The whole community is involved, directly or indirectly,
in supporting the agent. By contrast, we show that a large negative shock on one
agent is badly insured in the social collateral framework. Large transfer requirements
saturate capacity constraints. Once transfers reach their upper bound, further increases
in shock size are fully borne by the agent. In general, large shocks are not well-
insured by informal insurance contracts subject to frictions. Incentive compatibility
typically imposes upper bounds on transfers, limiting insurance against large
shocks.9

We obtain a number of further results that provide insights into the risk-sharing
implications of altruistic transfers. We, first, characterize what happens for income
shocks that leave the equilibrium structure of giving relationships unchanged. This
generically covers any small shocks, as well as some large shocks. In these cases, we
show that altruistic transfers yield constrained efficient risk sharing within the weak
components of the transfer network.10 Conversely, constrained efficiency generically
holds only when giving relationships are invariant across income realizations. We
then analyze consumption correlation. We show that if incomes are independent,
altruistic transfers generate a positive correlation in consumption streams across
agents. Finally, we investigate the impact of the network structure through numerical
simulations. With i.i.d. incomes, we find that a more central agent tends to have less
variable consumption and that the consumption correlation between two agents tends
to decrease with network distance. We also find that adding an altruistic tie to the
network can decrease or increase the consumption variance of indirect neighbors.

Our analysis contributes to a large literature on informal insurance. Applied
researchers have tested the assumption of efficient risk sharing in many different
contexts (see, e.g., Townsend 1994; Mazzoco and Saini 2012). A common finding
is that risk sharing is inefficient, but not too inefficient. Researchers have explained
this finding, and further explored the properties of risk-sharing arrangements, with
models of informal insurance contracts subject to frictions. This literature, however,
generally ignores altruistic motives and the role played by social networks as channels
of informal transfers. We consider a different benchmark here. We provide the
first analysis of the risk-sharing implications of altruism networks, when ex-ante
contracting is very frictional or altogether impossible. We notably show that altruism
networks can generate good but imperfect risk sharing and identify specific empirical
implications of altruism in networks.

9. Another differential implication is that, in some situations, transfers always flow in the same direction
under altruism. This cannot happen with informal insurance contracts, which rely on transfer reversals. In
an unpublished Ph.D. dissertation, Karner (2012) derives differing implications of altruism and informal
insurance contracts and tests these implications on data from Indonesia. He finds that transfers tend to
persistently flow in the same directions, consistently with altruism. We thank Dilip Mookherjee for bringing
this interesting work to our attention.

10. Two agents are in the same weak component of the transfer network if they are indirectly connected
by a path of giving or receiving transfers (see Section 4).
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Our analysis also contributes to a recent theoretical literature on informal insurance
in networks.11 Ambrus, Mobius, and Szeidl (2014) characterize Pareto-constrained
risk-sharing contracts when links can be used as social collateral and link values
constrain transfer flows. They find that more expansive networks provide better
insurance. In a related framework, Ambrus, Milan, and Gao (2017) characterize
Pareto-constrained risk-sharing arrangements under local informational constraints.
Jackson, Rodriguez-Barraquer, and Tan (2012) analyze the conditions under which
networks can sustain the exchange of discrete favors over time. They find that links
must be “supported” by a common friend in equilibrium networks. We introduce
stochastic incomes to the setup of Bourlès, Bramoullé, and Perez-Richet (2017).
Agents are embedded in a fixed network of altruism and, once incomes are realized,
play a Nash equilibrium of the transfer game. We identify key structural properties of
risk sharing induced by altruistic transfers. In particular, informal insurance tends to
be better when the altruism network has a lower average path length, a very different
property from expansiveness and support.12 Bridges notably play a critical role under
altruism, but not in the other models.

Finally, our analysis advances the economics of altruism pioneered by Becker
(1974) and Barro (1974). Economic studies of altruism consider either small groups
of completely connected agents (e.g., Bernheim and Stark 1988; Bruce and Waldman
1991; Alger and Weibull 2010) or linear dynasties (e.g., Laitner 1988; Altig and Davis
1992; Galperti and Strulovici 2017). However, these structures are not realistic. As
is well-known from human genealogy and argued early on by Bernheim and Bagwell
(1988), family ties form complex networks. Bourlès, Bramoullé, and Perez-Richet
(2017) introduce networks into a model of altruism à la Becker, with nonstochastic
incomes. We build on this previous analysis and study whether and how altruism
networks affect risk.

The remainder of this paper is organized as follows. We introduce the model
of altruism in networks with stochastic incomes in Section 2. We analyze arbitrary
shocks in Section 3. We characterize what happens for income shocks leaving the
structure of giving relationships unchanged in Section 4. We investigate structural
effects in Section 5 and conclude in Section 6.

2. Setup

We introduce stochastic incomes into the model of altruism in networks analyzed
in Bourlès, Bramoullé, and Perez-Richet (2017). Society is composed of n � 2
agents who may care about each other. Incomes are stochastic. Once incomes are

11. One branch of this literature looks at network formation and network stability (see, e.g., Bloch,
Genicot, and Ray 2008; Bramoullé and Kranton 2007a,b).

12. Expansiveness measures the number of connections that groups of agents have with the rest of the
network, relative to group size. A link connecting two agents is supported if these two agents have a
common friend. Average path length measures the average network distance between any two agents.
These three measures capture distinct features of a network’s structure.
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realized, informal transfers are obtained as Nash equilibria of a noncooperative game
of transfers. We, first, describe how transfers are determined conditional on realized
incomes. We then introduce risk and the classical notion of efficient insurance.

2.1. Transfers Conditional on Incomes

Agent i has income y0
i � 0 and can give tij � 0 to agent j. By convention, tii D 0. The

collection of bilateral transfers T 2 R
n2

C defines a network of transfers. Income after
transfers, or consumption, yi is equal to

yi D y0
i �

X
j

tij C
X

k

tki; (1)

where
P

jtij represents overall transfers made by i and
P

ktki represents overall
transfers received by i. Private transfers redistribute income among agents and
aggregate income is conserved:

P
i yi D P

i y0
i .

Agent i chooses her transfers to maximize her altruistic utility:

vi .y/ D ui .yi / C
X
j ¤i

˛ijuj .yj / (2)

under the following assumptions. Private utility ui W R ! R is twice differentiable
and satisfies u0

i > 0, u00
i < 0, and limy!1 u0

i .y/ D 0. Coefficient ˛ij 2 [0, 1] captures
how much i cares about j’s private well-being. By convention, ˛ii D 1. The altruism
network ˛ D .˛ij/

n
i;j D1 represents the structure of social preferences.13 In addition,

we assume that

8i; j; 8y; u0
i .y/ � ˛iju

0
j .y/; (3)

which guarantees that an agent’s transfer to a friend never makes this friend richer
than her. When agents have the same utility functions, this assumption simply reduces
to ˛ij � 1.

In a Nash equilibrium, each agent chooses her transfers to maximize her altruistic
utility conditional on transfers made by others.14 Transfer network T 2 R

n2

C is a Nash
equilibrium if and only if the following conditions are satisfied:

8i; j; u0
i .yi / � ˛iju

0
j .yj / and tij > 0 ) u0

i .yi / D ˛iju
0
j .yj /: (4)

In particular, under common CARA utilities ui(y) D �e�Ay, equilibrium conditions
become

8i; j; yi � yj � ln.˛ij/=A and tij > 0 ) yi D yj � ln.˛ij/=A:

13. These preferences could be exogenously given, or could be generated by primitive preferences where
agents care about others’ private and social utilities (see Bourlès, Bramoullé, and Perez-Richet 2017,
p. 678).

14. Note that to compute her best response, an agent only needs to know the levels of income after
transfers of the other agents she cares about. She does not need to know the precise transfers made by or
to others, nor what happens in distant parts of the network.
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Our analysis builds on equilibrium properties established in our previous paper.15

In particular, an equilibrium always exists, equilibrium consumption is unique, and
the network of equilibrium transfers is generically unique and has a forest structure.
Formally, T has a forest structure when it contains no nondirected cycle, that is, sets
of agents i1, i2, . . . , il D i1 such that 8s < l; ti

s
i
sC1

> 0 or ti
sC1

i
s

> 0.

PROPOSITION 1(Bourlès, Bramoullé, and Perez-Richet 2017). A Nash equilibrium
exists. Equilibrium consumption y is unique and continuous in y0 and ˛. Generically
in ˛, the network of equilibrium transfers is unique and is a forest.

2.2. Stochastic Incomes

We now consider stochastic incomes. Following each income realization, agents make
equilibrium transfers to each other. Proposition 1 ensures that there is a well-defined
mapping from incomes to consumption. Let Qy0 denote the stochastic income profile
and Qy the resulting stochastic consumption profile. 16

To illustrate how altruistic transfers affect risk, consider the following simple
example. Two agents care about each other with ˛12 D ˛21 D ˛. They have common
CARA utilities u(y) D �e�y. Let c D �ln (˛). Agents’ incomes are i.i.d. with binary
distribution: y0

i D � � � with probability 1=2 and y0
i D � C � with probability 1=2,

with � > c=2. When one agent has a positive shock and the other a negative shock, the
lucky agent makes a positive transfer to the unlucky one. Altruistic transfers lead to
the following stochastic consumption: (y1, y2) D (� � c=2, � C c=2) with probability
1=4, (� C c=2, � � c=2) with probability 1=4, (� � � , � � � ) with probability 1=4,
and (� C � , � C � ) with probability 1=4.

In this example, consumption Qy is less risky than income Qy0 for Second-Order
Stochastic Dominance. The reason is that altruism entails giving money when
rich and receiving money when poor. Altruistic transfers in this case mimic a
classical insurance scheme. Whereas informal insurance provided by altruistic
transfers is generally imperfect, Qy becomes less and less risky as ˛ increases
and idiosyncratic risks are fully eliminated when ˛ D 1. In the rest of this
paper, we study how these effects and intuitions extend to complex networks
and risks.

Our analysis relies on the classical notion of efficient insurance (see, e.g., Gollier
2001).

15. Our assumptions differ slightly from the assumptions made in Bourlès, Bramoullé, and Perez-Richet
(2017), to cover situations where altruism may be perfect and ˛

ij
D 1. We describe in the Appendix how

our previous results generalize to this extended setup.

16. Throughout this paper, we denote random variables with tilde and specific realizations of these
random variables without tilde.
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DEFINITION 1. Informal transfers generate efficient insurance if there exist Pareto
weights � � 0, � ¤ 0 such that consumption Qy solves

max
yP

i
y

i
DP

i
y0

i

X
i

�iEui .yi /:

Efficient insurance is a central notion, describing the ex-ante Pareto frontier with
respect to private utilities. It provides the conceptual foundation of a large empirical
literature, following Townsend (1994), which attempts to assess the extent of actual
insurance in real contexts. Note that

P
i �iEvi D P

i .
P

j ˛ji�j /Eui . Therefore, a
Pareto optimum with respect to expected altruistic utilities always generates efficient
insurance. The converse may not be true, however, and efficient insurance situations
may not constitute altruistic Pareto optima.17

Let us next recall some well-known properties of efficient insurance. When
� > 0, efficient insurance is such that u0

i .yi /=u0
j .yj / D �j =�i for every income

realization y0. The ratio of two agents’ marginal utilities is constant across states
of the world. Define Ny0 D .

P
i y0

i /=n. When agents have common utilities and
equal Pareto weights �i D �j D �, this leads to equal income sharing yi D Ny0.
When agents have CARA utilities and under normalization

P
kln(�k) D 0, this yields

yi D Ny0 C ln.�i /=A. An agent’s consumption is then equal to the average income
plus a state-independent transfer. In general, an agent’s consumption is a function of
average income depending on Pareto weights and utilities.

3. Arbitrary Shocks

3.1. Perfect Altruism

We, first, characterize situations where altruistic transfers generate efficient insurance
for every income distribution. Say that agent i is perfectly altruistic towards agent j
if ˛ij D 1. The network of perfect altruism is the subnetwork of ˛, which contains
perfect altruistic ties. The network of perfect altruism is strongly connected if any
two agents are connected through a path of perfect altruistic ties. Formally, for any i
6D j there exists a set of l agents i1 D i, i2, . . . , il D j such that 8s < l; ˛i

s
i
sC1

D 1.

Detailed proofs are provided in the Appendix.

17. This concerns the extreme parts of the private Pareto frontier. If i is altruistic towards others, the
dictatorial private Pareto optimum where �

j
D 0 if j 6D i is not an altruistic Pareto optimum. In general,

if det.˛/ ¤ 0, a private Pareto optimum with weights � is an altruistic Pareto optimum if and only
if .˛t /�1� � 0. In the literature on welfare evaluation, some researchers argue that social preferences
should not be taken into account when evaluating welfare (see, e.g., Blanchet and Fleurbaey 2006,
Sec. 5.4).
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PROPOSITION 2. Informal transfers generate efficient insurance for every income
distribution if and only if the network of perfect altruism is strongly connected. In this
case, agents have equal Pareto weights.

To prove sufficiency, we show how to combine equilibrium conditions to obtain
the first-order conditions of the planner’s program. To prove necessity, we assume
that the network of perfect altruism is not strongly connected. We build instances of
income distribution for which altruistic transfers do not generate efficient insurance.

Proposition 2 complements earlier results on equal income sharing (see Bloch,
Genicot, and Ray 2008); Bramoullé and Kranton 2007a, Prop. 1).18 Consider, for
example, common utilities and suppose that any altruistic link is perfect ˛ij 2 f0,
1g. Agent i’s best response is to equalize consumption with her poorer friends.
Proposition 1 shows that when all agents seek to equalize consumption with their
poorer friends and when the altruism network is strongly connected, private transfers
necessarily lead to overall equal income sharing, that is, yi D Ny0.

This result is straightforward when the network of perfect altruism is complete,
as all agents then seek to maximize utilitarian welfare. Proposition 2, however, shows
that perfect altruism also generates efficient insurance in sparse networks such as the
star and the line or when two communities are connected by a unique bridge. In these
cases, agents’ interests are misaligned. Agents care about different subsets of people.
Still, under connectedness, the interdependence in individual decisions embedded in
equilibrium behavior leads noncooperative agents to act as if they were following a
planner’s program.

3.2. Imperfect Altruism

We next look at imperfect altruism. In general, how far can informal insurance induced
by altruistic transfers move away from efficient insurance with equal Pareto weights?
And how does this depend on the structure of the altruism network?

To answer these questions, we consider common utilities and introduce measures
of distance from equal income sharing, as in Ambrus, Mobius, and Szeidl (2014). We
consider two measures: the average and the largest deviation from the income mean.
Formally, given income realization y0,

DISP.y/ D 1

n

X
i

jyi � Ny0j;

MDISP.y/ D max
i

jyi � Ny0j:

18. Bloch, Genicot, and Ray (2008) show that equal sharing in components is the only allocation
consistent with the social norm of bilateral equal sharing. Bramoullé and Kranton (2007a) show that
if linked pairs meet at random and share income equally, consumption converges to equal sharing in
components. By contrast, Proposition 2 identifies conditions under which equal sharing in components
emerges as the unique Nash equilibrium of a game of transfers.
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Both measures are greater than or equal to zero, and are equal to zero only for
equal income sharing. We can then compute their expected value over all income
realizations.19 For instance,

EDISP. Qy/ D E
1

n

X
i

jyi � Ny0j such that EDISP. Qy/ D 0 , 8y0; 8i; yi D Ny0:

Next, we extend the notion of network distance to altruism networks. Following
Bourlès, Bramoullé, and Perez-Richet (2017), introduce cij D �ln(˛ij) if ˛ij > 0 as
the virtual cost of the altruistic link. Stronger links have lower costs. Define the cost
of a path as the sum of the costs of the links in the path. If i and j are connected
through a path of altruistic links in ˛, define Ocij as the lowest virtual cost among
all paths connecting i to j. For instance, when all links have the same strength ˛ij 2
f0, ˛g, then Ocij D � ln.˛/dij, where dij is the usual network distance between i and
j, that is, the length of a shortest path connecting them. When links have different
strengths, Ocij is a measure of altruism distance between i and j accounting for the
strength of altruistic ties in indirect paths connecting the two agents. In particular,
Ocij D 0 if and only if there is a path of perfect altruistic links connecting i to j.

In our next result, we show that under CARA utilities and for any income
realization, distance to equal income sharing is bounded from above by a simple
function of network distances, when the altruism network is strongly connected. By
contrast, when the altruism network is not strongly connected or under the model
of social collateral of Ambrus, Mobius, and Szeidl (2014), distance to equal income
sharing can take arbitrarily large values.

PROPOSITION 3. Assume that agents have common CARA utilities. If the altruism
network is strongly connected, then for any income realization

DISP.y/ � 1

An2

X
i

max

0
@X

j

Ocij;
X

j

Ocji

1
A ;

MDISP.y/ � 1

An
max

i

0
@max

0
@X

j

Ocij;
X

j

Ocji

1
A
1
A :

If the altruism network is not strongly connected or under the model of social
collateral, EDISP and EMDISP can take arbitrarily large values.

We prove the first part of this result by combining, in different ways, inequalities
appearing in equilibrium conditions (4) and the second part through examples of
income distribution leading to unbounded distances from equal sharing. Note that for

19. Ambrus, Mobius, and Szeidl (2014) consider the Euclidean distance to equal sharing:

SDISP . Qy/ D
�

E
1

n

X
.y

i
� Ny0/2

�1=2

:

We show later that our result extends to this measure.
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CARA utilities, the first part of Proposition 2 directly follows from Proposition 3. The
network of perfect altruism is strongly connected if and only if 8i; j; Ocij D 0, and in
that case both bounds are equal to zero.

Proposition 3 identifies specific structural features governing the extent of
informal insurance provided by altruistic transfers. It shows, first, that bridges
play a critical role. Bridges are links whose removal disconnects the network. To
illustrate, consider an altruism network formed of two separate, strongly connected
communities. Community-level shocks are not insured, and expected distance from
equal sharing can be arbitrarily large. Next, add a single altruistic link between the
two communities. Distance from equal sharing is now bounded from above and
this bound is independent of the size of the shocks. A large negative shock in one
community generates large transfers flowing through the bridge. Both bridge agents
play the role of transfer intermediaries and help ensure that informal support from the
rich community reach the poor community.

More generally, Proposition 3 says that the quality of informal insurance depends
on distances in the altruism network. To see why, consider links that are undirected
and have the same strength: ˛ij D ˛ji 2 f0, ˛g. In that case, the upper bound on DISP
is proportional to

n.n � 1/

n2
Nd ;

where Nd is the average path length in the network,

Nd D 2

n.n � 1/

X
i<j

dij:

The average deviation from equal income sharing tends to be lower when agents are,
on average, closer to each other in the altruism network. Similarly, the upper bound on
MDISP is proportional to maxi

Ndi , where Ndi is the average path length between i and
every agent, Ndi D .

P
j dij/=n. This bound thus depends on the largest average distance

between one agent and all other agents in the altruism network. The largest deviation
from equal income sharing tends to be lower when this largest average distance is lower.

This notably implies that informal insurance induced by altruism is subject to
small-world effects (see Watts and Strogatz 1998). Starting from a spatial network
with a high average path length, adding a few long-distance connections leads to a
disproportionate decrease in average path length and hence to a potentially strong
increase in the quality of informal insurance.

Proposition 3 can help empirically distinguish different models of informal
transfers in networks. In the model of social collateral, adding a bridge between
separate communities has little impact in the presence of large shocks. The reason
is that a large negative shock on one community saturates the bridge’s capacity
constraint, and the distance to equal income sharing can be arbitrarily large.20 As

20. Bridges also have little impact on overall informal insurance in a model of risk sharing under local
information constraints (see Ambrus, Milan, and Gao 2017).
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shown in Proposition 3, this holds more generally. In the model of social collateral,
distance from equal sharing is never bounded from above. For any network structure,
large shocks can saturate capacity constraints and induce arbitrary large deviations
from equal sharing. We next illustrate these effects through numerical simulations.

As a preliminary remark, note that altruistic transfers generally affect all moments
of the consumption distribution. Expected consumption may thus differ from expected
income. Although these redistributive aspects are potentially interesting, we wish
to focus here on the risk-sharing implications of altruistic transfers. To do so, we
identify a natural benchmark where expected consumption is invariant. Altruistic ties
are undirected when 8i, j, ˛ij D ˛ji. Say that income distribution Qy0 is symmetric
if individuals have the same expected income and if the whole profile is distributed
symmetrically around its expectation. Formally, Qy0 D �1 C Q" with E. Q"/ D 0 and
f ."/ D f .�"/, where f is the p.d.f. of Q". This covers i.i.d. symmetric distributions as
well as symmetric distributions with income correlation.

LEMMA 1. Suppose that agents have common CARA utilities, that altruistic ties are
undirected, and that income distribution is symmetric. Then 8i; Eyi D Ey0

i .

To prove this result, we prove that if equilibrium transfers T are associated with
shock ", then reverse transfers T t are equilibrium transfers for shock �".21 Symmetry
assumptions then guarantee the absence of redistribution in expectations.

We next present results of numerical simulations based on the following
assumptions. Agents have CARA utilities ui(y) D �e�Ay with A D 0.5. Incomes
are i.i.d. binary y0

i D 30 � x with probability 0.5 and y0
i D 30 C x with probability

0.5. Under altruism, links have strength ˛ � 0.37 such that �ln(˛)=A D 2. Under
social collateral, links have capacity constraint � D 4 and Pareto weights are
equal. We generate 1,000 realizations of incomes. For each realization, we compute
Nash equilibrium transfers and consumption under altruism, and Pareto-constrained
transfers and consumption in the social collateral model.

Figure 1 depicts the expected deviation from equal income sharing under altruism
(in bold) and under social collateral (in light) for two different networks with
20 agents. The first network is composed of two complete, separate subnetworks of
ten agents (continuous lines). In the second network, one bridge is added between
these two complete subnetworks (dashed lines). Figure 1 depicts how the distance
to efficient insurance varies as the size of the shock x increases, for different models
and networks. We see distinct patterns emerging. Under social collateral, expected
distance from equal sharing increases with shock size, convexly and without bounds.
Adding a bridge improves insurance slightly, but has essentially no impact on the way
informal insurance depends on shock size. By contrast, the bridge has a strong impact
under altruism. Consistent with Proposition 3, distance from equal sharing quickly

21. We thank Adam Szeidl for having first made the connection between this property and the result of
no redistribution in expectation.
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FIGURE 1. Impact of a bridge: altruism versus social collateral.

reaches an upper bound when the network is connected, but keeps growing when the
network is disconnected.

Figure 1 also illustrates the impacts of shock size. Starting from a baseline of
similar incomes, small shocks are better insured under social collateral than under
altruism. By contrast, large shocks are better insured under altruism than under social
collateral. And they are much better insured when the network is connected. We
further explore these effects in the following.

In the Appendix, we show how to extend Proposition 3 in several directions. First,
we obtain similar bounds for other measures of distance from equal income sharing.
We derive, in particular, a bound for the Euclidean distance SDISP, introduced in
Ambrus, Mobius, and Szeidl (2014). We show that this bound decreases with the
average path length and the variance of path lengths in the altruism network. Second,
we obtain similar bounds for other utility functions. For common Constant Relative
Risk Aversion (CRRA) utilities, we show that DISP.y/= Ny0 is bounded from above
by a simple function of distances in the altruism network. For common quadratic
utilities, a similar property holds for DISP.y/=.y0

max � Ny0/, where y0
max is the largest

possible income value. Third, we obtain different bounds through different arguments.
We notably show in the Appendix that when ˛ is strongly connected,

DISP.y/ � 1

2A
max
i;j

Ocij:

For undirected binary networks, maxi;j Ocij D cdmax, where dmax is the network’s
diameter, that is, the length of the longest shortest path. This improves on Proposition
3 for networks whose diameter is not much greater than their average path length.

13



Although Proposition 3 applies to any income distribution, the bounds’ tightness
varies. Taking our analysis further, we consider specific assumptions on income
shocks. We next look at large shocks on one agent. In Section 4, we characterize what
happens for small shocks.

3.3. Large Shocks on One Agent

We next analyze the impacts of large shocks on one agent, under altruism and
under social collateral. Our next result characterizes for both models how an agent’s
consumption varies with large income shocks, holding others’ incomes fixed.

PROPOSITION 4. Suppose that agents have common CARA utilities.
(1) Consider a strongly connected altruism network. Then, 8y0�i , 9YH, YL such that

y0
i � YH ) yi D Ny0 C 1

An

X
j

Ocij and y0
i � YL ) yi D Ny0 � 1

An

X
j

Ocji:

(2) Under social collateral, 8y0�i , 9YH, YL, �H, �L such that

y0
i � YH ) yi D y0

i � �H and y0
i � YL ) yi D y0

i C �L:

To prove the first part of Proposition 4, we show that if an agent has a large positive
shock, money indirectly flows from her to any other agent. If she has a large negative
shock, money indirectly flows from any other agent to her. Appropriately combining
the Nash conditions then yields the Proposition’s formulas. To prove the second part,
we rely on the fact that as an agent’s realized income increases, efficient insurance
demands larger and larger transfers from this agent to the rest of the network, until
all the capacity constraints are saturated and no further transfer is possible. Similarly,
when the agent’s realized income decreases, larger and larger transfers must flow to
the agent until all capacity constraints bind.

Proposition 4 implies that, as the size of the income shock grows, the proportion
of this shock actually borne by the agent converges to 1=n under altruism, as with
efficient insurance, whereas it converges to 1 under social collateral, as in the absence
of informal arrangements. Formally, fix y0�i and assume that agent i’s income is
y0

i C x with x � 0. Consider, then, (yi(x) � yi(0))=x, the difference in consumption
induced by the shock divided by the size of the shock. A direct application of
Proposition 4 shows that (yi(x) � yi(0))=x converges to 1=n under altruism and to 1
under social collateral as x becomes large. Similarly, if agent i’s income is y0

i � x,
then (yi(0) � yi(x))=x converges to 1=n under altruism and to 1 under social collateral
as x becomes large. In this respect, income shocks are asymptotically perfectly insured
under altruism and asymptotically uninsured in the social collateral model.

We next illustrate these effects through numerical simulations. Consider the same
parameters as defined previously (A D 0.5, ˛ � 0.37, � D 4). Consider a line with
n D 10 agents and i located at one extremity. Assume that y0

i D 50 � x and y0
j D 50 if

j 6D i. Figure 2 depicts the proportion of the shock borne by the agent (yi(0) � yi(x))=x as
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FIGURE 2. Proportion of a shock borne by an agent: altruism versus social collateral.

a function of shock size x under altruism (in bold) and under social collateral (in light).
When the shock is very small, transfers lie below capacity constraints and insurance is
efficient under social collateral, leading to a proportion of 0.1. By contrast, there is no
transfer and no insurance under altruism, and hence a proportion of 1. The situation is
quickly reversed as shock size grows. Under social collateral, the agent bears an increas-
ingly large proportion of her shock, whereas under altruism the agent bears a decreas-
ingly small proportion of her shock. In the limit for very large shocks, the outcome is
similar to isolation under social collateral and to equal income sharing under altruism.

Finally, consider stochastic income distributions where a single agent i is
subject to large shocks. Consider a binary and undirected network and recall that
Ndi D .

P
j dij/=n measures the average distance between i and every agent. The

arguments in the proof of Proposition 4 can be used to show that under CARA,

DISP.y/ D � ln.˛/

nA

X
j

j Ndi � dijj and MDISP.y/ D � ln.˛/

A
Ndi

and the largest deviation from equal sharing is reached for agent i. When a single
agent is subject to large shocks, the average distance from equal sharing depends on
the dispersion of network distances from this agent. And the largest deviation from
equal sharing is proportional to the agent’s average distance from others.

4. Small Shocks

In this section, we characterize what happens for small shocks. More precisely,
we consider income shocks that do not affect transfer relationships—who gives to
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whom. Formally, consider the network of equilibrium transfers T . This network is
endogenous and depends on altruistic relations and incomes. In particular, agents only
give to others they care about tij > 0 ) ˛ij > 0. Introduce the directed binary graph
of transfers G such that gij D 1 if tij > 0 and gij D 0 if tij D 0. In Bourlès, Bramoullé,
and Perez-Richet (2017), we showed that generically in ˛ and in y0 there exists �

> 0 such that if jj Oy0 � y0jj � �, then the unique equilibrium OT for incomes Oy0 has
the same graph of transfers as the equilibrium T for incomes y0, and this graph is
a forest. Thus, income variations that are relatively small in magnitude generically
leave G unchanged.22 They affect, of course, the amounts transferred, and we next
characterize the insurance properties of these transfer adjustments.

To present our main result, we introduce some additional notions and notations.
A weak component of G is a component of the undirected binary graph where i and j
are connected if gij D 1 or gji D 1. When i and j belong to the same weak component
of forest graph G , define

Ncij D
X

sWg
i
s

i
sC1

D1

ci
s
i
sC1

�
X

sWg
i
sC1

i
s

D1

ci
sC1

i
s

for the unique path i1 D i, i2, . . . , il D j such that 8s; gi
s
i
sC1

D 1 or gi
sC1

i
s

D 1. Note

that Ncij is generally distinct from Ocij. Although the altruism distance Ocij is greater than
or equal to zero and depends only on the altruism network ˛, the parameter Ncij can
take negative values and also depends on who gives to whom. The interior of a set is
the largest open set included in it. A partition of society is a set of nonempty groups
such that every agent belongs to a unique group.

THEOREM 1. (1) Let Qy0 be an income distribution and G a forest graph such that,
for any income realization, there exists a Nash equilibrium of the transfer game with
transfer graph G . Then altruistic transfers generate efficient insurance within weak
components of G . If agent i belongs to weak component C of size nC, his Pareto
weight �i is such that ln.�i / D .

P
j 2C Ncij/=nC under normalization

P
j2Cln(�j) D 0.

(2) Consider an income distribution whose support’s interior is nonempty. Suppose
that there is a partition of society such that altruistic transfers generate efficient
insurance within groups, Then, generically in ˛, the graph of transfers is constant
across income realizations in the support’s interior and these groups correspond to
the weak components of the transfer graph.

To prove the first part of Theorem 1, we compare equilibrium conditions
with the first-order conditions of the planner’s program. When i makes transfers
to j in equilibrium, the ratio of their marginal utilities is equal to the altruistic
coefficient: u0

i .yi /=u0
j .yj / D ˛ij. Under efficient insurance, we would have

22. Note that some large income variations also leave G invariant. For instance, with two agents and
CARA utilities, i gives to j in equilibrium if and only if y0

i
� y0

j
C c

ij
=A.
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u0
i .yi /=u0

j .yj / D �j =�i . We thus look for Pareto weights such that �j=�i D ˛ij.
Naturally, this equality cannot generally be satisfied for all pairs of agents. We show
in the Appendix how to exploit the forest structure of equilibrium transfers to find
appropriate Pareto weights. Our proof is constructive and based on the explicit formulas
provided in Theorem 1. Note that the Pareto weights depend only on ˛ and G and hence
do not depend on the specific income realization. Because money flows within but not
between weak components, this leads to efficient insurance within weak components.

In the second part of Theorem 1, we show that shocks leaving the structure of giving
relationships unchanged are, generically, the only situations where altruistic transfers
generate constrained efficient insurance. We provide a sketch of the proof here. The
main idea is to exploit the first part of Theorem 1: locally around some income profile,
altruistic transfers yield constrained Pareto efficiency with known features (groups
and Pareto weights). These features must then be consistent with the original assumed
pattern of constrained efficiency, and we show that this can happen only when the
graph of transfers is invariant. An important step in the proof is to show that generically
in ˛, the Pareto weight mapping G ! �.G / is injective. Overall, this result provides
a generic characterization of situations where there is constrained efficient insurance.

The first part of Theorem 1 extends Bourlès, Bramoullé, and Perez-Richet (2017,
Thm. 3). It characterizes the income-sharing functions uncovered in that result and
shows that the weak components of the transfer graphs form endogenous risk-sharing
communities.

Theorem 1 shows that, following small shocks, adjustments in altruistic transfers
satisfy a property of constrained efficiency. Within a weak component of G , agents
act as if they were following a planner’s program. The quality of informal insurance
provided by altruistic transfers then depends on the connectivity of the transfer
graph. Informal insurance is efficient if G is weakly connected. This happens, for
instance, when one agent is much richer than all other agents. By contrast, agents
fully support their income risks when G is empty. This happens when 8i, j, ˛ij < 1
and Qy D Qy01 C Q" for small enough Q". When the income differences among agents are
small in all realizations, agents make no altruistic tranfers in equilibrium. By contrast,
such small shocks would be efficiently insured in the social collateral model.

More generally, the extent of informal insurance depends on the number and
sizes of G ’s weak components. Under common CARA utilities, the equilibrium
consumption of agent i in component C is equal to yi D Ny0

C C ln.�i /=A. Under
i.i.d. income shocks, this implies that Var.yi / D Var.y0

i /=nC , and an increase in
components’ sizes leads to a decrease in consumption variance for all agents.23

The Pareto weights capture how agents’ private preferences are represented in the
equivalent planner’s program. They reflect agents’ positions in the graph of transfers

23. Effects are more complex when shocks are not i.i.d. When shocks are independent but not identical,
Var.y

i
/ D .

P
j 2C

Var.y0
j

//=n2
C

. Consumption variance may be greater than income variance for an agent
with a relatively low income variance. However,

P
i2C

Var.y
i
/ D .

P
i2C

Var.y0
i

//=n
C

<
P

i2C
Var.y0

i
/.

Increases in variance for some agents are more than compensated by decreases in variance for others.
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and depend on the graph’s full structure. For instance, a giving line where ti
1
i
2

> 0,
ti

2
i
3

> 0; : : : ; ti
n�1

i
n

> 0 yields �1 > �2 > : : : > �n. More generally an agent’s
preferences tend to be well-represented when this agent has a relatively “higher”
position in the network of transfers. This happens when she tends to give to others
towards whom she is not too altruistic, inducing higher c’s.

A further implication is that local changes may have far-reaching consequences.
Suppose, for instance, that gij D 1 in forest graph G and consider a small increase
in ˛ij that does not change the pattern of giving relationships. Let C be the weak
component of i and j and define Ci as the weak component of i in the graph obtained
from G by removing the link ij, and similarly for Cj. Note that C D Ci [ Cj and
Ci \ Cj D ¿. Informally, Ci represents agents indirectly connected to the giver,
whereas Cj represents agents indirectly connected to the receiver.

PROPOSITION 5. Suppose that the binary graph of transfers G is a forest graph and
that gij D 1. Consider a small increase in ˛ij leaving G unaffected. Then, �k decreases
if k 2 Ci and increases if k 2 Cj.

Therefore, the normalized Pareto weights of the giver and of agents indirectly
connected to her decrease, whereas the normalized Pareto weights of the receiver and of
agents indirectly connected to her increase. This implies that the consumption of agents
in Ci decreases, whereas the consumption of agents in Cj increases, and hence Propo-
sition 5 extends the first part of Bourlès, Bramoullé, and Perez-Richet (2017, Thm. 4).

5. Network Structure and Informal Insurance

In this section, we study the impact of the network structure on consumption
smoothing. How is the position of an agent in the altruism network related to her
consumption variance? How do altruistic transfers affect the correlation structure of
consumption streams across individuals? How does a new link between two agents
affect their consumption variance? How does it affect the consumption variance of
other agents in the network? We uncover some complex effects, which we analyze
through a combination of analytical results and numerical simulations.

We present results of numerical simulations based on the following parameter
values. We consider a real network of informal lending and borrowing relationships,
connecting 111 households in a village in rural India drawn from the data analyzed
in Banerjee et al. (2013). The network is depicted in Figure 1. Altruistic links have
strength ˛ and agents have CARA utilities ui(y) D �e�Ay with �ln(˛)=A D 3. Incomes
are i.i.d. binary: y0

i D 0 with probability 0.5 and 20 with probability 0.5 . We consider
10,000 realizations of incomes, and, for each realization, we compute equilibrium
transfers and consumption. The analysis was replicated with lognormal incomes with
the same mean and variance, and all the results reported in what follows were found
to be qualitatively robust.
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TABLE 1. Correlation between centralities and consumption variance.

Variance

Degree �0.7657���
Between �0.5148���
Eigen �0.6800���

���Denotes statistical significance at the 1% level.

We start by looking at the relationship between the network structure and the
consumption variance–covariance matrix. Are more central agents better insured? We
compute correlation coefficients between consumption variance and different measures
of centrality (degree, betweenness centrality, eigenvector centrality; see Table 1).
Correlation is clearly negative and both quantitatively and statistically significant.

SIMULATION RESULT 1. More central agents tend to have a lower consumption
variance.

On this dimension, the model of altruism in networks generates predictions similar
to those of the model of social collateral. Its predictions differ from those of the
model of local information constraints, which generates a positive correlation between
consumption variance and centrality (see Ambrus, Milan, and Gao 2017). Under local
information constraints, more central agents act as quasi-insurance providers for more
peripheral neighbors: they bear a larger share of risk and are compensated by higher
state-independent transfers.

We next look at correlations in consumption streams across individuals. We show
that, starting from independent incomes, altruistic transfers necessarily induce a
weakly positive covariance in consumption across agents. This holds for any pair of
agents, any altruism network, and any utility functions.

PROPOSITION 6. Suppose that incomes are independent across agents.
8i; j; cov. Qyi ; Qyj / � 0.

We obtain this result by relying on the global comparative statics of consumption
with respect to incomes (see Bourlès, Bramoullé, and Perez-Richet 2017, Thm. 3).
This result says that yi is weakly increasing in y0

j for any i, j. A positive shock on
any agent’s income thus induces weakly positive changes in the consumption of every
agent in society, and conversely for negative shocks. To prove the result, we then
combine this property with classical properties of the covariance operator.

Altruistic transfers thus tend to generate a positive correlation across individuals’
consumption streams. We next explore through simulations how these correlations
depend on the network distance between agents. Figure 4 depicts the correlogram of
consumption correlation between yi and yj as a function of network distance between
i and j. We consider all pairs at given distance d and compute the average correlation
coefficient (plain line) as well as the 5th and 95th percentiles of the correlation
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FIGURE 3. A network of informal risk sharing.

FIGURE 4. Consumption correlation as a function of network distance.

distribution (dashed lines). We see that consumption correlation is generally positive,
consistently with Proposition 6. Furthermore, we have the following result.

SIMULATION RESULT 2. Consumption correlation tends to decrease with network
distance.
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Consumption correlation can reach very high levels for direct neighbors and then
tends to decrease at a decreasing rate as network distance increases.

Finally, we study the impact of adding one altruistic link on agents’ consumption
variances. We ran extensive numerical simulations for a variety of income distributions
and network structures. With i.i.d. incomes and under the assumptions underlying
Lemma 1, the consumption variance of the two agents becoming connected generally
drops.24 This is consistent with Simulation Result 1: acquiring more links, or a better
position, in the altruism network allows agents to reduce consumption variability. By
contrast, the new link may increase or decrease the consumption variance of other
agents in the network. Two opposite forces are at play here. On one hand, the new
link provides a source of additional indirect support, which can help further smooth
consumption. On the other hand, the new neighbor is also a competitor for the support
of the existing neighbor, which can reduce consumption smoothing.

For instance, with three agents, i.i.d. binary incomes, and CARA utilities, we can
show the following result (proof in Appendix). Start from a situation where agent 1 is
connected to agent 2 but not to agent 3. Add the connection between 2 and 3 to form
a line, and Var.y1/ drops. Next, close the triangle by adding the connection between
1 and 3, and Var.y2/ increases. Connecting the two peripheral agents of a three-agent
line leads to an increase in consumption variance for the center. Consider, next, a line
connecting six agents, labeled 1–6 and with agents 1 and 6 at the periphery. Add the
link between 1 and 6, transforming the line into a circle. Numerical simulations show
that consumption variance decreases for agents 1 and 6 and for their direct neighbors,
agents 2 and 5. By contrast, consumption variance increases for neighbors’ neighbors,
agents 3 and 4.

Finally, we look at the impact of adding a link to a complex, real-world network,
as shown in Figure 3. We depict in Figure 5 the new link in bold and focus on the
region of the network close to the new link. No change in variance is detected outside
this region. Nodes for which we detect a change in consumption variance are depicted
in gray, with a symbol describing the direction of the change.25 We observe both
increases and decreases in consumption variance for indirect neighbors. To sum up,
we have the following result.

SIMULATION RESULT 3. Connecting two agents generally leads to a decrease
in their consumption variance and can lead to a decrease or an increase in the
consumption variance of indirect neighbors.

24. We provide a simple example in the Appendix showing that if incomes are correlated, obtaining a
new connection may lead to an increase in consumption variance.

25. Because of numerical variability, we set a relatively high detection threshold t and report only variance
changes � Var.y

i
/ such that j� Var.y

i
/j � t . Thus, Figure 3 likely does not report false positives (detected

changes being likely true changes) and may report false negatives (with some true changes may not be
detected).
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FIGURE 5. Impact of a new link on consumption variances.

6. Discussion and Conclusion

In reality, informal transfers are likely explained by a combination of altruism,
networks, and informal insurance contracts. Incorporating altruism networks in
dynamic models of insurance contracts with frictions and bringing these extended
models to data are important and challenging objectives for future research.26

Many studies of informal insurance contracts with frictions rely on models with two
agents. Empirical implementations on groups with n agents generally make (strong)
assumptions and approximations to avoid the curse of dimensionality.27 With an
altruism network, avoiding this curse will be difficult. Even when agents have common
private utilities, different network positions induce different altruistic utility functions.

In a model of limited commitment, altruism affects the incentive compatibility
constraint in important ways. Recall that this constraint says that for every agent,
the current utility of making contractual transfers plus the expected future utility

26. Another important direction for future research is to analyze the interaction between formal and
informal risk-sharing institutions.

27. Following Ligon, Thomas, and Worrall (2002), many studies assume common CRRA utility functions
and do not consider the constrained efficient risk-sharing contracts among n households. Rather, they
consider the simpler problem of an agent sharing risk with another agent representing the rest of the group,
under the (incorrect) assumption of unconstrained efficient risk sharing among these n � 1 households
(e.g., Dubois, Jullien, and Magnac 2008; Laczó 2015). As observed in Ábrahám and Laczó (2017, p. 25),
“We do not know of a satisfactory treatment of the N-household case in limited commitment models, and
structural empirical studies of risk sharing in village economies follow the household versus rest of the
village approximation.”
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from the contract should be at least as high as the current utility of reneging plus the
expected future utility from punishment. Under altruism, agents care about others and
take into account their transfers’ impact on others.28 Altruism thus has two opposite
effects on incentives to share risk. On one hand, altruism reduces the temptation to
deviate, because agents who make transfers partly internalize others’ benefits from
receiving these transfers. On the other hand, altruism can reduce the effectiveness of
punishments, a version of the Samaritan’s dilemma. Note that reversion to autarky
is not necessarily natural when agents care about each other. In a two-agent model,
Foster and Rosenzweig (2001) consider Nash reversion instead. They assume that
if one agent does not meet his transfer obligations, the two agents then play a static
Nash equilibrium in every subsequent period. As we showed in our analysis, the
risk sharing generated in a static Nash equilibrium can actually be quite extensive.
Thus, agents may face less severe punishments in a network with strong altruistic ties.
The overall impact of altruism networks on the risk sharing attainable under limited
commitment is, a priori, ambiguous. This deserves further investigation.29

To conclude, we analyze the risk-sharing implications of altruism networks, in the
absence of formal or informal insurance contracts. We find that altruistic transfers have
a first-order impact on risk. Altruistic transfers generate efficient insurance for any
income distribution when the network of perfect altruistic ties is strongly connected.
More generally, the average and largest deviations from the income mean tend to
increase with the average path length of the altruism network. Bridges can deeply
alter the overall transfer patterns and can generate good overall risk sharing. Large
shocks on one agent are well-insured in connected altruism networks. These distinct
predictions can help empirically identify the motives behind informal transfers. We
further show that when income shocks leave the structure of giving relationships
unchanged, altruistic transfers generate constrained efficient risk sharing within the
weak components of the transfer network. Conversely, these are generically the only
income shocks where constrained efficiency holds. Finally, we uncover and investigate
complex structural effects.

Appendix

A.1. Extension of Previous Results to Perfect Altruism

Bourlès, Bramoullé, and Perez-Richet (2017) assume that ˛ij < 1 and
u0

i .y/ > ˛iju
0
j .y/. We relax these assumptions slightly here by assuming that

28. From a technical point of view, the derivative of the Lagrangian with respect to the utility promise
made to agent i in some state of the world then depends on the Lagrange multipliers of the incentive
compatibility constraints of others who care about i.

29. An interesting particular case is when agents have some altruistic links, for instance, towards kin or
members of the same caste, and also have formal or informal contractual relationships with agents they do
not care about, such as labor relationships with members of others castes.
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˛ij � 1 and u0
i .y/ � ˛iju

0
j .y/, allowing for perfect altruism. Perfect altruism gives rise

to unbounded Nash equilibria caused by cycles in transfers. For instance, if two agents
are perfectly altruistic towards each other, ˛12 D ˛21 D 1, and have the same utility
functions and incomes, Nash equilibria are transfer profiles of the form t12 D t, t21 D
t, leaving consumption unaffected. Bourlès, Bramoullé, and Perez-Richet (2017, Thm.
1–4) still hold under the new assumptions with two caveats. (1) Equilibrium transfers
are now not necessarily acyclic. An acyclic Nash equilibrium still exists, however. To
see why, suppose that there is a cycle in transfers: ti

1
i
2

> 0; : : : ; ti
l
i
1

> 0. This implies

that u0
i
1

.yi
1
/=u0

i
2

.yi
2
/ D ˛i

1
i
2
; : : : ; u0

i
l

.yi
l
/=u0

i
1

.yi
1
/ D ˛i

l
i
1
. Multiplying all equalities

yields 1 D ˛i
1
i
2

: : : ˛i
l
i
1

and hence ˛i
l
i
1

D � � � D ˛i
l
i
1

D 1. Cycles in transfers can
happen only in cycles of perfect altruistic ties. Then, let t D min.ti

1
i
2
; : : : ; ti

l
i
1
/.

Removing t from all transfers in the cycle yields another Nash equilibrium, and
repeating this operation leads to an acyclic Nash equilibrium. (2) The genericity
condition in ˛ must be supplemented by the condition that ˛ does not contain
directed cycles of perfect altruistic ties. This then guarantees that Nash equilibria are
acyclic.

A.2. Proof of Proposition 2

We will make use of the following properties established in Bourlès, Bramoullé,
and Perez-Richet (2017). Define Ǫ ij D e

� Ocij if Ocij < 1 and Ǫ ij D 0 otherwise.
Then, 8i; j; u0

i .yi / � Ǫ iju
0
j .yj / and u0

i .yi / D Ǫ iju
0
j .yj / if there is a directed path

connecting i to j in T . Next, suppose that i is much richer than everyone else.
Then money indirectly flows from i to every other agent j such that Ǫ ij > 0 and
8i; j W Ǫ ij > 0; u0

i .yi / D Ǫ iju
0
j .yj /.

Observe that the network of perfect altruistic ties is strongly connected if
and only if 8i; j; Ǫ ij D 1. If this holds, then 8i; j; u0

i .yi / � u0
j .yj / and hence

u0
i .yi / D u0

j .yj /:These are the first-order conditions of the problem of maximizing
utilitarian welfare. Next, suppose that there exist i and j such that Ǫ ij < 1. Define
y0 such that y0

i D Y and 8k ¤ i; y0
k

D 0. If Ǫ ij D 0, money cannot flow from
i to j. As Y increases, consumption yi tends to 1, whereas yj D 0: If Y is large
enough, u0

i .yi / < u0
j .yj /. If Ǫ ij > 0, then u0

i .yi / D Ǫ iju
0
j .yj / < u0

j .yj / if Y is large

enough. Similarly, define Qy0 such that Qy0
j D Y and 8k ¤ j; Qy0

k
D 0. Because Ǫ ji � 1,

u0
j . Qyj / � u0

i . Qyi / if Y is large enough. Under efficient insurance, we would then have �j
< �i and �j � �i, a contradiction. Therefore, altruistic transfers do not generate efficient
insurance.

A.3. Proof of Proposition 3

Recall 8i; j; u0
i .yi / � Ǫ iju

0
j .yj /. This is equivalent to
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.u0
j /�1

�
1
Ǫ ij

u0
i .yi /

�
� yj . Summing over j leads to

X
j

.u0
j /�1 1

Ǫ ij

u0
i .yi /

!
� n Ny0:

We also have 8i; j; u0
j .yj / � Ǫ jiu

0
i .yi / and hence yj � .u0

j /�1. Ǫ jiu
0
i .yi //, leading to

n Ny0 �
X

j

.u0
j /�1. Ǫ jiu

0
i .yi //:

Under common CARA utilities, this yields

� 1

An

X
j

Ocji � yi � Ny0 � 1

An

X
j

Ocij and hence

jyi � Ny0j � 1

An
max

0
@X

j

Ocij;
X

j

Ocji

1
A:

Finally,

DISP.y/ � 1

An2

X
i

max

0
@X

j

Ocij;
X

j

Ocji

1
A:

Next, we compute similar bounds for other measures of distance and other utility
functions. Introduce

SDISP. Qy/ D
"

E
1

n

X
i

.yi � Ny0/2

#1=2

as in Ambrus, Mobius, and Szeidl (2014). We obtain

SDISP.y/ � 1

A

1

n3=2

2
64X

i

max

0
@X

j

Ocij;
X

j

Ocji

1
A

2
3
75

1=2

:

When the network is binary and undirected, the bound becomes

� ln.˛/

A

1

n3=2

2
4X

i;j

d2
ij

3
5

1=2

:

Then,

1

n.n � 1/

X
i;j

d2
ij D Nd2 C V.d/;

where V.d/ is the variance of path lengths. Thus, SDISP tends to be lower when
average path length and path length variance are lower.
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Alternatively, consider common CRRA utilities: u(y) D y1 � �=(1 � �) if � 6D 1,
� > 0 and u(y) D ln(y) if � D 1. This yields 

nP
j Ǫ�1=�

ji

� 1

!
Ny0 � yi � Ny0 � nP

j Ǫ1=�
ij

� 1

!
Ny0

and hence

DISP.y/ � 1

n

X
i

max 1 � nP
j Ǫ�1=�

ji

;
nP

j Ǫ1=�
ij

� 1

!
Ny0:

Next, consider common quadratic utilities: u.y/ D y � 1
2
�y2, under the

assumption that y � y0
max D 1=�. A similar reasoning yields

1 � nP
j Ǫ ji

!
.y0

max � Ny0/ � yi � Ny0 �
0
@1 � nP

j
1
Ǫ ij

1
A .y0

max � Ny0/

and hence

DISP.y/ � 1

n

X
i

max

0
@ nP

j Ǫ ji

� 1; 1 � nP
j

1
Ǫ ij

1
A .y0

max � Ny0/:

Next, consider common CARA utilities and suppose that the network of altruism
is not strongly connected. Then, there exists a set S such that S ¤ ¿, N � S ¤ ¿,
there exists a path between any two agents in S in ˛, and no agent in S cares about
an agent not in S. Consider the income distribution such that y0

i D Y > 0 if i 2 S and
y0

i D 0 if i 62 S. Then, there is no transfer in equilibrium and y D y0. Here,

Ny0 D nS

n
Y and jyi � Ny0j D n � nS

n
Y if i 2 S and

nS

n
Y if i … S:

This yields

DISP.y/ D EDISP D 2
nS .n � nS /

n
Y and

MDISP.y/ D EMDISP D max.nS ; n � nS /

n
Y;

and both distances becomes arbitrarily large as Y increases.
Finally, consider the social collateral model and the income distribution such that

y0
i
0

D Y > 0 and y0
i D 0 if i 6D i0. Proposition 4 shows that there exist YH and �H

such that Y � YH ) yi
0

D Y � �H . Moreover, because the only source of income

is i0, we then have yi � �H if i 6D i0. Here,

Ny0 D 1

n
Y and jyi

0
� Ny0j D n � 1

n
Y � �H ; whereas jyi � Ny0j � 1

n
Y � �H
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if Y is large enough. Therefore,

DISP.y/ D EDISP � 2.n � 1/

n2
Y � �H and MDISP.y/ D EMDISP � 1

n
Y � �H

and both distances become arbitrarily large as Y increases.

A.4. Proof of Lemma 1

We, first, establish that reverse transfers form an equilibrium for the opposite shock.
Denote by y0."/ D �1 C " and by y."/ the associated equilibrium consumption.
Let T be a Nash equilibrium for incomes y0."/ leading to consumption y."/. We
now show that T t is a Nash equilibrium for incomes y0.�"/ and y."/ � y0."/ D
y0.�"/ � y.�"/. To see why, note that y D �1 C " � T 1 C T t1. Denote by y 0
the consumption associated with transfers T t when incomes are �1 � ". Then,
y 0 D �1 � " � T t1 C T 1. Comparing yields, we have y � �1 � " D �1 � "�y 0 and
hence y."/ � y0."/ D y0.�"/ � y 0. Equilibrium conditions on T are (1) 8i, j, yi � yj
� cij=A, and (2) tij > 0 ) yi � yj D cij=A. Let us check that T t satisfy the equilibrium
conditions for incomes y0.�"/. We have y0

i D 2� � yi . This implies that y0
i � y0

j D
yj � yi . Therefore, 8i; j; y0

i � y0
j D yj � yi � cji=A D cij=A because the ties are

undirected. In addition, .T t /ij D tji and tji > 0 ) yj � yi D cji=A ) y0
i � y0

j D
cij=A.

We have E.yi � y0
i / D R

"Œyi ."/ � y0
i ."/�f ."/d". In the integral, the term

associated with no shock is equal to 0, yi .0/ D y0
i .0/. The term associated with shock

" is equal to Œyi ."/ � y0
i ."/�f ."/d". The term associated with shock �" is equal

to Œyi .�"/ � y0
i .�"/�f .�"/d" D Œy0

i ."/ � yi ."/�f ."/d" using the previous result
and by shock symmetry. The sum of these terms is then equal to 0 and the integral
aggregates such sums.

A.5. Proof of Alternative Bound for DISP.y/ in Section 3.2

Denote by Ocmax D maxi;j Ocij. Because 8i; j; u0
i .yi / � Ǫ iju

0
j .yj /, 8i; j; yi �

yj C Ocij=A � yj C Ocmax=A. This implies that ymax � ymin � Ocmax=A, where ymax D
max i yi and ymin D min i yi. Consider the problem of maximizing DISP.y/ under the
constraint that ymax � ymin D 	, where 	 is some arbitrarily fixed value. The solution
to this problem is to set yi D ymax for n=2 agents if n is even and for (n C 1)=2 agents
if n is odd and yi D ymin for n=2 agents if n is even and for (n � 1)=2 agents if n is
odd. This yields DISP.y/ D 1=2	 if n is even and D(1=2 � 1=2n2)	 if n is odd. This
implies that, in general, DISP.y/ � 1=2.ymax � ymin/ � 1=2 Ocmax=A.

A.6. Proof of Proposition 4

(1) We work with the matrix of lowest virtual costs Ocij, as we showed in Bourlès,
Bramoullé, and Perez-Richet (2017) that it yields the same equilibrium consumption
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as the original problem. Let

YH D max
j ¤i

X
k¤i

��
y0

j C 1

A
Ocij

�
�
�

y0
k C 1

A
Ocik

��
;

and suppose y0
i � YH . Then consider the candidate equilibrium transfers where, for

all j 6D i,

tij D 1

n

X
k

��
y0

k C 1

A
Ocik

�
�
�

y0
j C 1

A
Ocij

��

and other transfers are 0. y0
i � YH implies that each tij is nonnegative. These transfers

imply that yi D Ny0 C 1
An

P
j Ocij, as in the proposition. Furthermore, we have, for

every j 6D i,

yi � yj D 1

A
Ocij;

and, for every j, k 6D i,

yj � yk D 1

A

� Ocik � Ocij

	 � 1

A
Ocjk :

Therefore, the first-order conditions are satisfied and these transfers indeed form an
equilibrium. The low-income case can be shown in a similar way.

(2) Consider a fixed vector of Pareto weights � and a fixed income vector y0�i . Let � ij �
0 be the capacity of link ij in the social collateral model, with � ij D 0 if i and j are not con-
nected. The problem of the planner we consider is to maximize

P
i �iEUi .yi / subject

to yi D y0
i CP

j tji �P
j tij, and incentive compatibility constraints tij � � ij. Because

of additive separability, the problem can be solved ex post for each income realization.
By incentive compatibility in the social collateral model, the highest feasible

consumption for i is given by yi D y0
i CP

l �li, and the lowest feasible consumption
level for any agent j is given by yj D y0

j �P
l �jl . Define the weighted marginal

utility function of any agent j by Fj .x/ D �j U 0
j .x/, which, by the CARA assumption,

is strictly decreasing. We define

YL D F �1
i max

j W�ji>0
Fj y0

j �
X

l

�jl

!!
�
X

l

�li:

Then for y0
i � YL, we show that any constrained efficient risk-sharing agreement

for weights � must satisfy yi D y0
i CP

l �li. Indeed, suppose y is the consumption
vector associated with income realization y0

i � YL for some constrained efficient risk-
sharing agreement and yi < y0

i CP
l �li. For this to be true, there must be some j con-

nected to i such that either (i) tji < � ji or (ii) tij > 0. But then, by construction, we have

Fj .yj / < Fi .yi /;

which implies that increasing j’s transfer to i in case (i), or decreasing tij in case
(ii), would increase the planner’s utility. Because both operations are feasible, this
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contradicts the constrained optimality of y . The proof is similar for high-income
realizations for i.

A.7. Proof of Theorem 1

LEMMA A.1. Fix a transfer graph G . For any i, j, k, we have: Ncji D �Ncij,
Ncij C Ncjk D Ncik and ln.�i / � ln.�j / D Ncij. Further,

P
iln(�i) D 0.

Proof. (1) The path leading from j to i reverses all directions from the path leading
from i to j, leading to the first property. (2) Suppose that j lies on the path connecting i
to k. By definition, Ncik D Ncij C Ncjk . If k lies on the path connecting i to j, we then have
Ncij D Ncik C Nckj D Ncik � Ncjk . Next, suppose that l is the last agent lying both on the
path from i to k and on the path from i to j. Then, Ncik D Ncil C Nclk and Ncij D Ncil C Nclj .
Moreover, the path from k to j is formed of the path from k to l and of the path from
l to j. Therefore, Nckj D Nckl C Nclj . This yields Ncik C Nckj D Ncil C Nclk C Nckl C Nclj D
Ncil C Nclj D Ncij. (3) Applying these two properties, we obtain

ln.�i / � ln.�j / D 1

nC

X
k2C

. Ncik � Ncjk/ D 1

nC

X
k2C

. Ncik C Nckj / D 1

nC

X
k2C

Ncij D Ncij:

(4) Finally, note that
P

i ln.�i / D 1
n

C

P
i;j Ncij D 1

n
C

P
i<j . Ncij C Ncji/ D 0. �

LEMMA A.2. Consider an income realization y0, equilibrium transfers T with
transfer graph G . Let C be a weak component of G . Then, equilibrium consumption
profile yC on C solves the planner’s program: max Qy

C

P
i �iui . Qyi / under the

constraint
P

i2C Qyi D P
i2C y0

i and with �i such that ln.�i / D 1
n

C

P
j 2C Ncij.

Proof. Consider i and j in C, connected through the path i1 D i, i2, . . . , il D j. If
gi

s
i
sC1

D 1, then equilibrium conditions imply that ln.u0
i
s

.yi
s
// � ln.u0

i
sC1

.yi
sC1

// D
�ci

s
i
sC1

. If gi
sC1

i
s

D 1, then ln.u0
i
s

.yi
s
// � ln.u0

i
sC1

.yi
sC1

// D ci
sC1

i
s
. Summing

over all agents in the path yields

ln.u0
i .yi // � ln.u0

j .yj // D �Ncij D ln.�j / � ln.�i /

by Lemma A.1. These correspond to the first-order conditions of the planner’s
program. In addition, no money flows from C to N � C or from N � C to C. Therefore,P

i2C y0
i D P

i2C yi and aggregate income is preserved within C.
Suppose that for any income realization, there is a Nash equilibrium with transfer

graph G . Then, the �i’s do not depend on the income realization and the first part of
Theorem 1 follows directly from Lemma A.2.

For the second part, consider an altruism network ˛ satisfying the
following property. Consider an undirected cycle, that is, a binary graph U

connecting l agents i1,. . . , il D i1 such that either ui
s
i
sC1

D 1 or ui
sC1

i
s

D 1

and uij D 0 if i and j are not two consecutive agents in the set. Then,
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P
sWu

i
s

i
sC1

D1 ci
s
i
sC1

�P
sWu

i
sC1

i
s

D1 ci
sC1

i
s

¤ 0. In Bourlès, Bramoullé, and Perez-

Richet (2017), we showed that such networks are generic and that they always have
a unique Nash equlibrium. Given a binary directed forest G , define Y0.G / D fy0 2
Y0 W the transfer graph of the Nash equilibrium is Gg the set of income realizations

leading to G and VY0.G / its interior. Observe that the nonempty sets Y0.G / define a
finite partition of Y0. Define �.G / the profile of Pareto weights as defined in the first
part of Theorem 1. This mapping satisfies the following useful property. �

LEMMA A.3. Consider two binary directed trees G and H . Then,
�.G / D �.H / ) G D H .

Proof. Let � D �.G / D �.H / and suppose that G ¤ H . There exists i, j such that
gij D 1 and hij D 0. Because gij D 1, ln(�i) � ln(�j) D cij. Because � D �.H /,
ln.�i / � ln.�j / D Ncij D P

sWh
i
s

i
sC1

D1 ci
s
i
sC1

�P
sWh

i
sC1

i
s

D1 ci
sC1

i
s

for an undirected

path connecting i to j. The set i, i2, . . . , il D j, i then defines an undirected cycle
satisfying

P
sWu

i
s

i
sC1

D1 ci
s
i
sC1

�P
sWu

i
sC1

i
s

D1 ci
sC1

i
s

D 0, which is impossible given

our assumptions on ˛.
Suppose, first, that there is only one community in the partition. In other words,

altruistic transfers generate efficient insurance for Pareto weights �. This implies that
there exist functions fi such that 8y0 2 Y0; yi D fi .

P
j y0

j /. Let G be any graph

such that VY0.G / ¤ ¿. Such a graph exists by the assumption that VY0 ¤ ¿. Suppose
that G is disconnected. Then by the first part of Theorem 1, there exist functions gi

such that 8y0 2 VY0.G /, yi D gi .
P

j 2C y0
j / D fi .

P
j 2C y0

j CP
j 2N �C y0

j /. This

implies that 8y0 2 VY0.G /;
P

j 2N �C y0
j D L, which contradicts the fact that VY0.G /

is a nonempty open set.
Therefore, G is connected and hence is a tree. By the first part of Theorem 1, there

is efficient risk sharing on VY0.G / for Pareto weights �.G /. 8i; j; u0
i .yi /=u0

j .yj / D
�j =�i D �j =�i . This implies that there exists t > 0 such that � D t�.G /. Next

consider another graph H for which VY0.H / ¤ ¿. By the same reasoning, there exists
t0 > 0 such that � D t 0�.H /. Because �.G / and �.H / satisfy the same normalizationP

jln(�j) D 0, �.G / D �.H /. By Lemma A.3, G D H . Therefore, VY0 D VY0.G /.
Finally, suppose that the partition is composed of several communities. Apply, first,

the previous reasoning to each community C considered separately. There exists a tree
graph GC connecting agents in C such that �C D tC �.G C / for tC > 0 and �C Pareto
weights within C and GC describes the pattern of giving relationships within C. Next,
let us show that for any income realization in the support’s interior, an agent in one
community cannot give to an agent in another. Constrained efficiency implies income
conservation within communities: 8C;

P
i2C yi D P

i2C y0
i . Suppose that for some

y0 2 Y0, there are some intercommunity transfers. The graph connecting communities
is also a forest. Therefore, there exists a community connected to other communities
through a single link. Formally, there exists C 6D C0 such that i 2 C, j 2 C0, and tij > 0
or tji > 0 and where there is no other giving link connecting C and N � C. If tij > 0, this
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implies
P

i2C yi D P
i2C y0

i � tij. If tji > 0, this implies
P

i2C yi D P
i2C y0

i C tij.
In either case,

P
i2C yi ¤ P

i2C y0
i , which contradicts the original assumption. �

A.8. Proof of Proposition 5

If ˛ij increases, cij decreases. Then, Nckl decreases if the link ij lies on the path
connecting k to l. By contrast, Nckl increases if the link ji lies on the path connecting k to
l. Agents in Ci are connected through agents in Cj through the link ij, and this link does
not appear on the path connecting agents in Ci. This implies that

P
l2C Nckl decreases

if k 2 Ci. Similarly,
P

l2C Nckl increases if k 2 Cj.

A.9. A New Connection Can Increase Consumption Variance under Income
Correlation

Consider agents 1, 2, and 3 with incomes (12,0,0) with probability 1=2 and
(0,12,12) with probability 1=2. Note that this satisfies the symmetry assumption of
Proposition 1. Agents have common CARA utilities with �ln(˛)=A D 2. In the
original network, 1 and 2 are connected and 3 is isolated. Consumption is (7,5,0) with
probability 1=2 and (5,7,12) with probability 1=2. Next, connect 2 and 3. Consumption
becomes (6,4,2) with probability 1=2 and (6,8,10) with probability 1=2. Agent 2 faces
a more risky consumption profile. Here, the income streams of agents 2 and 3 are
perfectly positively correlated. Agent 2’s consumption becomes lower when poor and
higher when rich, due to this new connection.

A.10. Variance Computations in the Example of Section 5 with Three Agents

With three agents, there are eight states of the world. Consider, first, the network
where 1 and 2 are connected and 3 is isolated (see the example in Section 2.1).
Because c < 2� , the variance of y1 and y2 drops from �2 to 1

2
�2 C 1

4
c2. Next, connect

agents 2 and 3 to form a line. We assume that altruism is high enough to induce
transfer paths of length 2 in situations where a single peripheral agent has a positive
or a negative shock. This is satisfied if and only if c < 2

3
� . Computing transfers and

consumption for each state of the world, we find

Var.y1/ D Var.y3/ D 1

3
�2 C 1

18
�c C 19

36
c2 and Var.y2/ D 1

3
�2 � 1

9
�c C 1

9
c2:

All variances drop. Finally, connect agents 1 and 3 to form the triangle. Consumption
variance for any agent is now equal to 1

3
�2 C 1

6
c2. Var.y2/ increases, whereas

Var.y1/ D Var.y3/ decreases.

A.11. Proof of Proposition 6

Our proof makes use of the following classical properties of the covariance
operator (see, e.g., Gollier 2001). First, if f and g are nondecreasing functions
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and zX is some random variable, then cov.f . zX/; g. zX// � 0. Second, the law
of total covariance states that if zX; QY ; QZ are three random variables, then
cov. zX; QY / D E.cov. zX; QY jZ// C cov.E. zX jZ/; E. QY ; Z//.

Given a set of agents S, denote by y0�S the vector of incomes of agents
not in S. Apply the law of total covariance to variables Qyi ; Qyj , and Qy0�1. This
yields cov. Qyi ; Qyj / D E.cov. Qyi ; Qyj jy0�1// C cov.E. Qyi jy0�1/; E. Qyj jy0�1//. Note that
conditional on y0�1, yi and yj are deterministic, nondecreasing functions of y0

1

by Bourlès, Bramoullé, and Perez-Richet (2017, Thm. 3). By the property of the
covariance of monotone functions, this implies that 8y0�1, cov. Qyi ; Qyj jy0�1/ � 0 and
hence E.cov. Qyi ; Qyj jy0�1// � 0. Next, let f1 denote the p.d.f. of Qy0

1 . By independence,

E
� Qyi jy0�1

	 D
Z

yi

�
y0

1 ; y0�1

	
f1

�
y0

1

	
dy0

1 :

Because yi .y
0
1 ; y0�1/ is nondecreasing in y0

2 , this implies that E. Qyi jy0�1/ is also
nondecreasing in y0

2 . We can therefore repeat the argument:

cov
�
E. Qyi jy0�1/; E. Qyj jy0�1/

�
D

E

�
cov. Qyi ; Qyj jy0�1;2/

�
C cov

�
E. Qyi jy0�1;2/; E. Qyj jy0�1;2/

�
;

where E.cov. Qyi ; Qyj jy0�1;2// � 0 by monotonicity. Dimensionality is reduced at each
step, and all terms are nonnegative.

References
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