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Literacy is one of the greatest achievements of both human 
civilization and the human mind. Through reading and 
writing, “we can shape events in each other’s brains . . . 
bridging gaps of time, space, and acquaintanceship” 
(Pinker, 1994, pp. 1–2). One of the biggest challenges in 
cognitive and developmental sciences is to understand the 
complex machinery that is behind this extraordinary abil-
ity. As stated by Edmund Burke Huey (1908/1968), who 
was one of the pioneers of experimental psychology, “to 
completely analyse what we do when we read, would 
almost be the acme of the psychologist’s achievements, for 
it would be to describe many of the most intricate work-
ings of the human mind” (p. 6).

Ever since the first connectionist model of letter and 
word perception (McClelland & Rumelhart, 1981), com-
putational models of reading have played an important 
role in our understanding of the “intricate workings” that 
make it possible to read and comprehend written words. 
Computational models of reading are computer pro-
grams that specify the ingredients of the reading process 
and implement the units and computations that are nec-
essary to transform visual information into linguistic 

information (phonemes, stress, words, meaning). Once 
a model is implemented, it can be used to simulate real 
reading performance in terms of reading latencies (how 
long it takes to compute the pronunciation of a word or 
nonword) and reading accuracy (whether the output of 
the model is correct or, with nonwords, the output is the 
same as what people produce).

Computational models offer far more than black-box 
predictions of reading behavior. They allow us to better 
understand reading impairments, such as developmental 
dyslexia, a neurodevelopmental disorder that affects 
between 5% and 10% of the population and is character-
ized by a failure to automatize word-recognition skills 
despite normal intelligence and appropriate schooling 
(Peterson & Pennington, 2015). Indeed, model compo-
nents can be “impaired” in very specific and focal ways, 
and the consequences of these impairments can 
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Abstract
How do children learn to read? How do deficits in various components of the reading network affect learning outcomes? 
How does remediating one or several components change reading performance? In this article, we summarize what 
is known about learning to read and how this can be formalized in a developmentally plausible computational model 
of reading acquisition. The model is used to understand normal and impaired reading development (dyslexia). In 
particular, we show that it is possible to simulate individual learning trajectories and intervention outcomes on the 
basis of three component skills: orthography, phonology, and vocabulary. We therefore advocate a multifactorial 
computational approach to understanding reading that has practical implications for dyslexia and intervention.
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be analyzed through computer simulations (Harm & 
Seidenberg, 1999; Perry, Zorzi, & Ziegler, 2019; Woollams, 
2014; Ziegler et al., 2008; Ziegler, Perry, & Zorzi, 2014). 
This allows one to establish causal relations between defi-
cits in components of the reading network and reading 
outcomes.

The first computational model of reading, the inter-
active activation model (McClelland & Rumelhart, 1981), 
did not have any phonological components and did not 
learn—all connections were hardwired. Subsequent 
models implemented phonological processes in order 
to tackle reading aloud. Although some models used 
connectionist learning mechanisms to acquire the map-
ping between letter strings and their corresponding 
sounds (Harm & Seidenberg, 1999; Plaut, McClelland, 
Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 
1989; Zorzi, Houghton, & Butterworth, 1998), it is prob-
ably fair to say that none of these models simulated 
reading development in a developmentally plausible 
way (for a discussion, see Ziegler et  al., 2014). For 
example, the very influential model of reading develop-
ment by Harm and Seidenberg (1999) required 10 mil-
lion supervised learning trials to learn a few thousand 
monosyllabic words. Such a training regimen is akin to 
learning all words through direct instruction, which is 
very different from the way children learn to read (see 
below; Share, 1995).

In the present article, we first introduce the major 
theory of how children learn to read. We then present 
a developmentally plausible computational reading 
model that is an implementation of this theory (Ziegler 
et al., 2014). We finally present our recent attempt to 
personalize computational models to simulate normal 
and impaired reading development for individual chil-
dren (Perry et al., 2019). This approach has important 
implications for our understanding of dyslexia and 
allows us to predict intervention outcomes for individual 
children.

How Do Children Learn to Read?

Although the ultimate goal of learning to read is to 
comprehend what we read (Castles, Rastle, & Nation, 
2018), the initial stages of learning to read are all about 
cracking the orthographic code. That is, writing systems 
code spoken language, and to some extent meaning, 
through morphology and etymology. Children have to 
understand how this code works in their language. In 
alphabetic writing systems, children have to learn how 
letters or groups of letters (graphemes) map onto their 
corresponding phonemes. In some alphabetic writing 
systems, such as English, there is a trade-off between 
the extent to which spellings prioritize the consistent 
spelling of morphemes over the consistent spelling of 

phonemes (see Bowers & Bowers, 2018). This creates 
inconsistencies at the phoneme level, which are a major 
hurdle for learning to read (Ziegler & Goswami, 2006). 
Yet in most alphabetic writing systems, including Eng-
lish, learning instruction starts through the explicit 
teaching of letter–sound or grapheme–phoneme rules. 
Children can then use these rules or associations to 
decode words they have heard but never seen before. 
This process is referred to as phonological decoding 
(Share, 1995). Phonological decoding is at the heart of 
reading acquisition in all alphabetic writing systems 
because it provides an extremely parsimonious and 
straightforward way to retrieve the spoken form and 
therefore the meaning of the thousands of words chil-
dren have stored in their phonological lexicon (Ziegler 
& Goswami, 2005).

In fact, such a theory predicts that inconsistency in 
the mapping between letters and sounds (i.e., when 
the same letter has multiple pronunciations) should 
slow down the initial stages of reading acquisition 
(decoding, reading aloud, word identification, spelling). 
As can be seen in Figure 1, comparisons of the rate of 
single-word reading aloud across different languages 
show that this is indeed the case. The more inconsistent 
a writing system is, the longer it takes children to 
acquire basic reading skills. Thus, the difficulty with 
which basic grapheme–phoneme correspondences can 
be taught and learned predicts the speed of reading 
acquisition in different languages.

Once children have learned basic decoding skills, 
explicit teaching is largely replaced by self-teaching 
(Share, 1995). That is, children start to decode words 
autonomously. If they find a word in the phonological 
lexicon that fits the context, they create an orthographic 
representation for the decoded and retrieved word. 
Every successfully decoded word provides children 
with an opportunity to acquire the word-specific ortho-
graphic information that is the foundation of skilled 
word recognition. Thus, phonological decoding pro-
vides a powerful self-teaching device because the 
explicit learning of a small set of spelling-sound cor-
respondences allows children to decode an increasingly 
large number of words or, as Share (1995) puts it, “mini-
mum number of rules, maximum generative power” 
(p. 156). We refer to this learning loop as the phonological-
decoding self-teaching theory (Ziegler et al., 2014).

A Computational Model  
of Reading Development

We have developed a computational model that imple-
ments the core principles of the phonological decoding 
and self-teaching theory (Ziegler et al., 2014) within the 
processing architecture of the connectionist dual-process 
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model, which is a leading computational model of skilled 
reading aloud (Perry, Ziegler, & Zorzi, 2007, 2010). Figure 
2 illustrates the developmental connectionist dual-
process model. In a nutshell, we first implemented a 
decoding network that was pretrained on a small set of 
grapheme–phoneme correspondences (e.g., b → /b/, 
p → /p/). We chose to implement this process in a 
simple two-layer associative network that takes graph-
emes (letters or simple letter combinations, e.g., TH, OO, 
EA) as input and uses phonemes as output. During this 
stage, learning is supervised. We believe that this process 
mirrors, to a large extent, the explicit teaching of graph-
eme–phoneme correspondences (Department for 

Education, 2014; Hulme, Bowyer-Crane, Carroll, Duff, & 
Snowling, 2012). Note that the model would also acquire 
grapheme–phoneme correspondences even if the teach-
ing were based on syllables, morphemes, or whole 
words, although at the expense of a slower learning rate 
(see simulations in Hutzler, Ziegler, Perry, Wimmer, & 
Zorzi, 2004).

From there on, the model enters the self-teaching 
phase. Thus, the model is presented with several thou-
sand written words to be learned (i.e., a real-sized child 
lexicon). The initially rudimentary decoding network 
generates a phoneme sequence that potentially activates 
entries in the phonological lexicon (i.e., phonological 
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Fig. 1. Reading performance at the end of Grade 1 in six European countries and a measure of the inconsistency of a 
writing system in terms of letter–sound correspondences (i.e., onset entropy; see Ziegler et al., 2010). Reading performance 
is indexed by both the percentage of errors (left) and speed of reading (right). Reading data were taken from Seymour, 
Aro, and Erskine (2003).
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Fig. 2. Implementation of the phonological-decoding self-teaching hypothesis in the developmental connectionist dual-process 
model. After initial explicit teaching on a small set of grapheme–phoneme correspondences (GPCs), the decoding network is able 
to decode words that have a preexisting representation in the phonological lexicon but no orthographic representation. If the 
decoding mechanism activates a word in the phonological lexicon, an orthographic entry is created, and the phonology is used 
as an internally generated teaching signal (red arrows) to refine and strengthen letter–sound connections, thereby improving the 
efficiency of the decoding network. Figure was adapted from Ziegler, Perry, and Zorzi (2014).
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candidates). Critically, we assume that context, meaning, 
and morphosyntactic information are used to select the 
correct candidate among the activated phonological 
competitors (for a review, see Tunmer & Chapman, 
2004). Although the specification of these mechanisms 
was beyond the scope of our model, there is substantial 
evidence to suggest that children can use their oral 
vocabulary to correct a partial decoding attempt (Tunmer 
& Chapman, 2012) and can correct imperfect decoding 
attempts by reference to the known pronunciation and 
meaning of a word (Dyson, Best, Solity, & Hulme, 2017). 
Importantly, the internally generated phonological rep-
resentation is then used as a teaching signal (i.e., self-
teaching) to improve the decoding network. This leads 
to the learning of a richer, more complex, and context-
sensitive set of spelling–sound associations.

In a first set of simulations (Ziegler et al., 2014), we 
assessed whether such a simple but developmentally 
plausible learning mechanism can work for a language 
such as English, which is known for its rather difficult 
letter–sound mapping (see Fig. 1). We pretrained the 
two-layer associative network with 65 correspondences 
and then let it run through cycles of self-teaching with 
several thousands of words. The results showed that it 
successfully learned more than 80% of the words 
through decoding and self-teaching.1 In addition, very 
rapidly in the course of learning, the most active item 
in the phonological lexicon tended to be the correct 
word. This is the reason why self-teaching works so 
well. This simulation is a proof of concept for the claim 
that phonological decoding and self-teaching provide 
a powerful bootstrapping mechanism (Share, 1995) that 
allows the beginning reader to start small (i.e., with a 
small set of explicitly taught letter–sound correspon-
dences) and to build on this knowledge to self-learn 
the majority of words through a simple decoding mech-
anism that gets more efficient with every successfully 
decoded word (see also Hutzler et al., 2004; Pritchard, 
Coltheart, Marinus, & Castles, 2018).

How do we learn the remaining 20%, which are too 
irregular to be learned through decoding, such as yacht, 
aisle, or choir? To simulate irregular word learning and 
reading, we had to add a mechanism that gets irregular 
words into the orthographic lexicon (Perry et al., 2019). 
The basic idea is that children use a variety of strategies 
to do this. These include direct instruction (Department 
for Education, 2014), the teaching of a small number of 
sight words (Shapiro & Solity, 2016), the use of context 
and partial decoding (Share, 1995; Tunmer & Chapman, 
2004), and morphological information and etymology 
(Bowers & Bowers, 2018). It was not possible to faith-
fully implement these processes, so each time a phono-
logical decoding attempt was unsuccessful, we allowed 
for the possibility that a word might enter the orthographic 
lexicon. To do this, we used a computational shortcut in 

which high-frequency words had a greater chance of being 
learned by other means than low-frequency words. The 
results showed that the combination of these strategies, 
which can vary from one child to another, allowed the 
model to learn as well as children do.

Modeling Dyslexia: The Multideficit-
Component Approach

Our model has five critical components: letters, pho-
nemes, a phonological lexicon, a decoding network, 
and an orthographic lexicon (see Fig. 2). We have pre-
viously shown that one can impair these components 
and investigate the consequences of such impairments 
for the learning-to-read process (Ziegler et al., 2014). 
For example, it is well known that many children with 
dyslexia in different countries have poor phoneme-
awareness skills (Landerl et  al., 2013; Ziegler et  al., 
2010). We can assume that children with poor phoneme 
awareness have problems mapping letters onto pho-
nemes, a process that is modeled by the two-layer asso-
ciative decoding network. One can simulate such a 
deficit through the switching of phonetically similar 
phonemes during learning, which is a reasonable 
assumption because children with dyslexia tend to con-
fuse phonetically similar phonemes (Ziegler, Pech-
Georgel, George, & Lorenzi, 2009). Thus, the core idea 
of the multideficit-component approach was to estimate 
the efficiency of the component processes through com-
ponent tasks and then create personalized models for 
each child to simulate his or her learning trajectory.

In the simulations reported by Perry et al. (2019), we 
selected three component tasks from one of the biggest 
dyslexia samples, which contained reading-aloud data 
(on regular words, irregular words, and nonwords) as 
well as performance measures in other nonreading 
tasks for 622 English-speaking children, including 388 
children with dyslexia (Peterson, Pennington, & Olson, 
2012). We specified how performance on these com-
ponent tasks could map onto the component processes 
in the model. Orthographic choice was taken as a mea-
sure for processing efficiency in the orthographic lexi-
con, phoneme deletion was taken as a measure for the 
efficiency of activating phonemes correctly, and vocab-
ulary score was taken as a measure of the size of a 
child’s phonological lexicon. We used performance on 
these three tasks to create individual models, one for 
each child, in which the parameterization of the mod-
els’ components and processes was changed using a 
simple linear function based on the child’s performance 
on the three component tasks.

A full learning simulation was performed for each 
individual model, and its performance after learning 
was assessed by presenting the same words and non-
words used by Peterson et al. (2012). This allowed a 
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direct comparison between learning outcomes in the 
simulation and actual reading performance of the child 
that the simulation was meant to capture. Note that we 
investigated only accuracy (whether a word or nonword 
has been pronounced correctly) and not fluency. This 
was done because fluency for individual words was not 
available in Peterson et al.’s data. Also, because of the 
high inconsistency of English (see Fig. 1), accuracy 
rather than fluency tends to be a more sensitive mea-
sure in beginning and dyslexic readers. We obtained a 
striking correlation between the model predictions and 
the real learning outcomes (see Fig. 3, top row). Note 
that the model read exactly the same words as the 622 
children from the Peterson et al. (2012) study.

We then compared the model with a number of alterna-
tive models: a phonological-deficit model, which assumed 
deficits in activating correct phonemes (i.e., deficits in 
phonological awareness, phoneme discrimination, and 
categorical perception of phonemes); a visual-deficit 
model, which assumed impoverished orthographic pro-
cessing due to poor letter-position coding (e.g., letter 
reversals); and a global-noise model, which assumed gen-
eral processing inefficiency (set as a function of the child’s 
overall level of performance) due to noisy computations 
(Hancock, Pugh, & Hoeft, 2017). The phonological-deficit 
model was best, followed by the visual-deficit and the 
noisy-computation models, but none of them reached the 

performance of the multideficit model. For illustrative pur-
poses, the results of the noisy computation model are 
presented in the bottom row of Figure 3. As can be seen, 
the model fits are much poorer, which suggests that one 
needs to take into account the specific deficits on the three 
component tasks. Just adding noise to these components 
to fit the overall reading level does not work.

Predicting Intervention Outcomes

The strong correlations between predicted and actual 
reading performance on different types of words make 
it possible to use the model as a tool to predict how 
remediating one component would change reading per-
formance on the different types of words. To do this, we 
set up a three-dimensional deficit space in which each 
component task had one dimension (see Perry et al., 
2019, for details). This allowed each child to be repre-
sented as a point in this space (see Fig. 4). We then 
obtained simulations that sampled the entire space, which 
is akin to moving each point along the three dimensions. 
This makes it possible to predict how reading perfor-
mance on words and nonwords changes as a function of 
improving component skills through intervention.

Such simulations of potential intervention outcomes 
are of great theoretical interest because in a model, in 
contrast to real life, one can test all possible changes and 
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their direct effects on reading. Further, the link between 
changes and outcomes is necessarily causal. However, 
we do not want to give the false impression that these 
components are independent and should be trained inde-
pendently. We know from an accumulating number of 
studies on evidence-based approaches to early reading 
intervention that the highly structured, early, and intense 
teaching of decoding skills, metaphonological awareness, 
and fluency are key ingredients of effective intervention 
programs (Savage & Carless, 2005; Vellutino et al., 1996). 
From a developmental standpoint, it is actually highly 
questionable whether one can train orthographic effi-
ciency without improving phonological decoding skills 
first. At the same time, there is an interplay between 
decoding and oral language because vocabulary and 
knowledge of word meanings are important to correct 
incorrect or partial decoding attempts, and these skills 
can be trained efficiently (Dyson et al., 2017). Indeed, 
in  a longitudinal study, Nation and Snowling (2004) 
showed  that three measures of nonphonological oral 
language tapping vocabulary knowledge and listening 

comprehension predicted individual differences in 
reading comprehension, word recognition, and irregu-
lar word reading a few years later, which suggests that 
the developing reading system is, of course, part of a 
wider language system.

Conclusions

Children come to the task of learning to read with large 
interindividual differences in vocabulary, phonology, 
and orthographic skills. Our work shows that taking into 
account the starting point of each child in this multidi-
mensional space allows one to predict individual learning 
outcomes through large-scale personalized computational 
models. This is highly relevant for our understanding of 
dyslexia. It has become increasingly clear over the years 
that there is not a single developmental trajectory 
(Pennington, 2006), and the idea that children with 
dyslexia have deficits on either the orthographic route 
(surface dyslexia) or the phonological route (phonological 
dyslexia) has been shown to be false (Sprenger-Charolles, 
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Siegel, Jimenez, & Ziegler, 2011; Ziegler et al., 2008). 
Instead, we show that knowing the efficiency of the com-
ponent skills of the reading network is helpful for our 
understanding of reading difficulties. Alternative models 
that affect only one component or randomly affect all 
components (noisy computation) do not fare as well and 
cannot predict interindividual differences. Importantly, 
although the human data are only correlational, the rela-
tion between deficits and outcomes in the model is a 
causal one and can be used to derive empirical predic-
tions. Finally, such personalized models can be used to 
explore how changing the efficiency of one component 
through intervention is likely to change reading perfor-
mance for an individual child. We believe that personal-
ized computational modeling will play an important role 
not only in the early detection of dyslexia but also in the 
context of evidence-based interventions.
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Note

1. In later simulations (Perry et al., 2019), orthographic learning 
was made a probabilistic process. That is, a word has a certain 
chance of entering the orthographic lexicon depending on an 
individual parameter reflecting the child’s orthographic-learning 
potential (e.g., a standardized measure of orthographic ability).
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