

Antifungal susceptibility testing practices in mycology laboratories in France, 2018

A.-P. Bellanger, F. Persat, F. Foulet, C. Bonnal, I. Accoceberry, C.

Angebault, A. Angoulvant, O. Augereau, E. Bailly, F. Bert, et al.

▶ To cite this version:

A.-P. Bellanger, F. Persat, F. Foulet, C. Bonnal, I. Accoceberry, et al.. Antifungal susceptibility testing practices in mycology laboratories in France, 2018. Journal of Medical Mycology = Journal de Mycologie Médicale, 2020, 30 (2), pp.100970. 10.1016/j.mycmed.2020.100970. hal-02566987

HAL Id: hal-02566987 https://amu.hal.science/hal-02566987

Submitted on 11 May 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Antifungal susceptibility testing practices in mycology laboratories in France, 2018

Anne-Pauline Bellanger¹, Florence Persat², Françoise Foulet^{3,4}, Christine Bonnal⁵, Isabelle Accoceberry⁶, Cécile Angebault^{3,4}, Adela Angoulvant⁷, Olivier Augereau⁸, Eric Bailly⁹, Frédéric Bert¹⁰, Julie Bonhomme¹¹, Jean-Philippe Bouchara¹², Marie-Elisabeth Bougnoux^{13,14}, Patrick Bourdeau¹⁵, Bernard Bouteille¹⁶, Sophie Brun¹⁷, Kevin Brunet¹⁸, Anne-Marie Camin-Ravenne¹⁹, Sophie Cassaing²⁰, Taieb Chouaki²¹, Muriel Cornet²², Damien Costa²³, Nicole Desbois²⁴, Joséphine Dorin²⁵, Arnaud Fekkar²⁶, Alain Fiacre²⁷, Emilie Fréalle²⁸, Jean-Pierre Gangneux²⁹, Jacques Guillot^{4,30}, Juliette Guitard³¹, Lilia Hasseine³², Antoine Huguenin³³, Laurence Lachaud³⁴, Sébastien Larréché³⁵, Rose-Anne Lavergne³⁶, Solène Le Gal³⁷, Yohann Le Govic¹², Valérie Letscher-Bru³⁸, Marie Machouart³⁹, Edith Mazars⁴⁰, Céline Nourrisson⁴¹, André Paugam⁴², Stéphane Ranque⁴³, Veronica Risco-Castillo^{4,30}, Milène Sasso⁴⁴, Marc Sautour⁴⁵, Boualem Sendid^{28,46}, Yaye Senghor⁴⁷, Françoise Botterel^{3,4}, Eric Dannaoui^{3,48}

¹Hôpital Universitaire Jean Minjoz, laboratoire de Parasitologie-Mycologie, Besançon, France ²Hospices Civils de Lyon, laboratoire de Parasitologie-Mycologie, Institut des Agents Infectieux Lyon 1, Lyon, France

³Hôpital Universitaire Mondor, laboratoire de Parasitologie-Mycologie, Créteil, France

⁴EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 8 rue du Général Sarrail, 94010 Créteil, France

⁵Hôpital Universitaire Bichat, laboratoire de Parasitologie-Mycologie, Paris, France

⁶Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, CHU Bordeaux, 33000 Bordeaux, France

⁷Service de Parasitologie-mycologie, Hôpital universitaire Bicêtre, APHP, Le Kremlin-Bicêtre, France. GQE Le Moulon, INRA, Univ. Paris-Sud / Université ParisSaclay, CNRS, AgroParisTech, Orsay, France.

⁸ Hôpitaux Civils de Colmar, laboratoire de Microbiologie, Colmar, France

⁹Hôpital Universitaire Tours, laboratoire de Parasitologie-Mycologie, Tours, France

¹⁰Hôpital Universitaire Beaujon, laboratoire de Microbiologie, Clichy, France

¹¹Hôpital Universitaire Caen, laboratoire de Microbiologie, Normandie Univ, UNICAEN, Caen, France

¹²Hôpital Universitaire Angers, laboratoire de Parasitologie-Mycologie, Angers, France

¹³Hôpital Universitaire Necker, laboratoire de Parasitologie-Mycologie, Paris, France

¹⁴ Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, 25 rue du Dr Roux 75015 Paris, France

¹⁵Ecole Vétérinaire de Nantes-ONIRIS, laboratoire de Parasitologie-Mycologie, Nantes, France

¹⁶Hôpital Universitaire Dupuytren, Centre de biologie et de recherche en santé, laboratoire de Parasitologie-Mycologie, Limoges, France

¹⁷Hôpital Universitaire Avicenne, laboratoire de Parasitologie-Mycologie, AP-HP, Bobigny, France

¹⁸ Hôpital Universitaire Poitiers, laboratoire de Parasitologie-Mycologie, France, INSERM U1070, Université de Poitiers, France

¹⁹Centre Hospitalier de Bigorre, laboratoire, Tarbes, France

²⁰Hôpital Universitaire Toulouse, laboratoire de Parasitologie-Mycologie, Toulouse, France

²¹Hôpital Universitaire Amiens, laboratoire de Parasitologie-Mycologie, Amiens, France

²² Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP,TIMC-IMAG, 38000 Grenoble, France

²³Hôpital Universitaire de Rouen, laboratoire de Parasitologie-Mycologie, Rouen, France

²⁴Hôpital Universitaire de la Martinique, laboratoire de Parasitologie-Mycologie, Martinique, France

²⁵Centre Hospitalier d'Antibes Juan les Pins, Service de Biologie, Antibes, France

²⁶ AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie ; Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France

²⁷Laboratoire multi site d'analyses médicales, Meaux, France

²⁸ CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France

²⁹Hôpital Universitaire Rennes, laboratoire de Parasitologie-Mycologie, Rennes, France

³⁰ Ecole nationale vétérinaire d'Alfort, laboratoire de Parasitologie-Mycologie, BioPôle Alfort, Maisons-Alfort, France

³¹ Sorbonne Université, Inserm, Centre de Recherche St Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France

³²Hôpital Universitaire de Nice, laboratoire de Parasitologie-Mycologie, Nice, France

³³ Laboratoire de Parasitologie Mycologie, CHU de Reims, Hôpital Maison Blanche, 45 rue Cognacq Jay, 51092 Reims CEDEX, France.

³⁴Hôpital Universitaire de Montpellier, laboratoire de Parasitologie-Mycologie, Montpellier, France

³⁵Hôpital d'instruction des armées Bégin, département de biologie médicale, Saint-Mandé, France

³⁶Laboratoire de Parasitologie et Mycologie, Institut de Biologie, CHU de Nantes, Nantes, France

³⁷ Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), Université de Brest-Université d'Angers, Hôpital Universitaire de Brest, laboratoire de Parasitologie-Mycologie, Brest, France
 ³⁸Hôpital Universitaire de Strasbourg, laboratoire de Parasitologie-Mycologie, Strasbourg, France

³⁹Hôpital Universitaire de Nancy, laboratoire de Parasitologie-Mycologie, Nancy, France

⁴⁰Centre Hospitalier de Valenciennes, laboratoire de Parasitologie-Mycologie, Valenciennes, France

⁴¹ CHU Gabriel Montpied, Service de Parasitologie-Mycologie, 3IHP, Clermont-Ferrand, France

⁴²Hôpital Universitaire de Cochin, laboratoire de Parasitologie-Mycologie, Paris, France

⁴³ Aix Marseille Univ, IHU Méditerranée Infection, IRD, AP-HM, SSA, VITROME, Marseille, France

⁴⁴Hôpital Universitaire de Nîmes, laboratoire de Parasitologie-Mycologie, Nîmes, France

⁴⁵Hôpital Universitaire de Dijon, laboratoire de Parasitologie-Mycologie, Dijon, France

⁴⁶ CHU Lille, Laboratoire de Parasitologie Mycologie, Univ. Lille, Inserm U995 -LIRIC, Fungal Associated Invasive & Inflammatory Diseases, F-59000 Lille, France.

⁴⁷Groupement Hospitalier Paris Saint Joseph, laboratoire de Microbiologie, Paris, France
 ⁴⁸ Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, Service de Microbiologie, Université Paris Descartes, Paris, France.

Running heading: AFST practices

Abstract word count: 165

Text word count : 1990

*Corresponding author: Eric DANNAOUI, MD, PhD, Hôpital Européen Georges Pompidou,

Unité de Parasitologie-Mycologie, Service de Microbiologie, Paris, France Phone: +33 1 56

09 39 48 Fax: +33 1 56 09 24 46 E-mail:eric.dannaoui@aphp.fr

Abstract

A survey of mycology laboratories for antifungal susceptibility testing (AFST) was undertaken in France in 2018, to better understand the difference in practices between the participating centers and to identify the difficulties they may encounter as well as eventual gaps with published standards and guidelines. The survey captured information from 45 mycology laboratories in France on how they perform AFST (number of strains tested, preferred method, technical and quality aspects, interpretation of the MIC values, reading and interpretation difficulties). Results indicated that 86% of respondents used Etest as AFST method, with a combination of one to seven antifungal agents tested. Most of the participating laboratories used similar technical parameters to perform their AFST method and a large majority used, as recommended, internal and external quality assessments. Almost all the participating mycology laboratories (98%) reported difficulties to interpret the MIC values, especially when no clinical breakpoints are available. The survey highlighted that the current AFST practices in France need homogenization, particularly for MIC reading and interpretation.

Key words: antifungal susceptibility testing; Etest; MIC value interpretation; laboratory practice

1 Introduction

2 In vitro antifungal susceptibility testing (AFST) is required to determine the best treatment for 3 a specific fungal species [1-3] and to detect resistance. Two reference techniques (Clinical 4 Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial 5 Susceptibility Testing (EUCAST)), that are both microdilution methods, are available [4-7] but 6 rarely incorporated in the routine hospital workflow because they are time-consuming and 7 laborious [8]. Commercial techniques (microdilution systems or strip test on solid media), 8 which are simple, rapid and cost effective, are generally the AFST methods applied in routine 9 daily practice by mycology laboratories.

10 The main difficulties encountered by the microbiologists while performing AFST are i) the 11 choice of the clinical breakpoints (CBs) which are validated for the reference techniques (CLSI 12 and EUCAST) but not for the commercial techniques; ii) the CBs availability only for a few 13 species, recognized as the most frequently isolated (such as Candida albicans, C. glabrata, C. 14 krusei, C. parapsilosis, C. tropicalis, and Aspergillus fumigatus) and only for a few antifungal 15 agents (fluconazole, posaconazole, itraconazole, voriconazole, and echinocandins, mostly); iii) 16 the possible confusion between CBs and epidemiological cut-off values (ECOFFs/ ECVs), and 17 thus interpretation difficulties.

In this context, a survey was undertaken in 2018 to clarify the current practices of the mycology laboratories for AFST: type of method used, criteria to perform and interpret AFST, detailed technical parameters and quality aspects. The preliminary results of this survey were presented and discussed during a national meeting organized by the French Society of Medical Mycology in Paris in November 2018.

23

24

25

26 Methods

27 In November 2018, a meeting dedicated to AFST was organized by the French Society of Medical Mycology. Before the meeting, in September 2018, an online survey was performed 28 29 to assess the practices of AFST in mycology laboratories in France. All the mycology 30 laboratories within University Hospitals in France were contacted. Additionally, all 31 microbiologists registered to the meeting were also enrolled in the survey. The original 32 questionnaire was designed by the organizers of the meeting and first beta-tested by two 33 mycologists not involved in its set-up. After modifications, the final questionnaire was uploaded in a web-based electronic platform. The electronic questionnaire consisted of 43 questions 34 35 divided into 16 sections (Suppl Material 1). Briefly, the survey included questions on i) the type 36 of center (type of hospital, number of hospital beds), ii) the mycology laboratory activity 37 (number of fungal isolates tested, type of method used for AFST, antifungal agents 38 systematically tested for yeast and filamentous fungi, way of interpreting the MIC value, 39 screening for emerging resistant species), iii) technical aspects such as method for inoculum 40 preparation, temperature of incubation, incubation time and rules used for reading MICs and 41 iv) quality aspects (internal and external quality assessments). Laboratories failing to respond 42 initially were contacted by personalized emails. All data were downloaded from the platform 43 and analyzed in Microsoft Excel (Office 365).

44

45 **Results**

46 Study participants and AFST activity

Among the 48 French mycology laboratories contacted, a total of 45 answered the equestionnaire (overall response rate of 94%). A majority (82%) of the participants were University Hospital mycology laboratories. The size of the participating hospitals varied from less than 500 beds (7%), between 500 and 1500 beds (41%), to more than 1500 beds (52%). 51 A majority (77%) of the participating mycology laboratories (PML) performed antifungal 52 susceptibility testing (AFST) on more than 150 fungal isolates per year. A ratio was calculated 53 to assess the number of fungal isolates tested according to the size of the hospital (number of 54 beds). Most of the PML (72%) tested annually 100 to 500 fungal isolates per 1000 beds, 14% tested less than 100 fungal isolates per 1000 beds and 14% more than 500 fungal isolates per 55 56 1000 beds. All the PML performed AFST on both yeasts and filamentous fungi except five 57 centers which tested only yeasts, all of which but one, were non-university hospitals. AFST was 58 more often performed on yeasts than on filamentous fungi with 60% of the PML testing 100 to 59 500 yeasts per year and 58% testing at least 50 filamentous fungi. Among the PML that tested 60 both yeasts and filamentous fungi, the percentage of AFST performed against filamentous fungi ranged from 1 to 39%. 61

The three situations mainly triggering AFST were "yeast isolates from deep sites" (86%),
"isolates from blood cultures" (91%) and "case-by-case decision of the microbiologist" (79%)
(Table 1).

65 Methods of AFST

The Etest was the most frequently used method (86%) to perform AFST. The laboratories 66 67 performing AFST with Etest tested from one to seven antifungal drugs against yeasts, whereas 68 the five Sensititre YeastOne users tested nine drugs. For yeasts (Figure 1A), all centers using 69 Etest tested fluconazole, 97% at least one echinocandin and 41% tested 5-fluorocytosine (5FC). 70 Among the PML using Etest for AFST, 85% of them used routinely a combination of at least 71 four antifungal molecules to test yeasts (one echinocandin, fluconazole, voriconazole and 72 amphotericin B). Among the PML testing only one echinocandin (n=20), 50% chose caspofungin, 15% micafungin, and 35% anidulafungin. Among the PML testing two 73 74 echinocandins (n=13), 85% associated caspofungin and micafungin. The four molecules more often tested against filamentous fungi by Etest (Figure 1B) were voriconazole (100%),
amphotericin B (97%), posaconazole (86%) and itraconazole (71%).

77 Technical parameters of AFST

78 Concerning the technical aspects of AFST, the PML generally used a spectrophotometrically 79 adjusted inoculum for yeasts (78%) and filamentous fungi (76%) (Table 2). A large majority of 80 the PML used an incubation at $35^{\circ}C \pm 2^{\circ}C$, both for yeasts (95%) and filamentous fungi (84%) 81 (Table 2). A majority of PML declared reading the MIC results first after 24h of incubation, 82 and reading them again after 48h, both for *Candida* spp. (67%) and *Aspergillus* spp. (58%) (Table 2). Among the 39 PML using Etest on yeasts, 100% read amphotericin B (AMB) MIC 83 84 at complete inhibition, 97% read azole MIC at partial inhibition, 53% and 47% read echinocandin MIC at complete or partial inhibition, respectively (Figure 2A). Concerning the 85 86 reading of the MIC against filamentous fungi, 97% of the PML using Etest read AMB MIC at 87 complete inhibition, 73% read azole MIC at complete inhibition, and 79% read echinocandin 88 MIC at partial inhibition (Figure 2B).

89 Internal quality assessment (IQA) and external quality assessment (EQA) (Table 3)

A majority of the PML used an IQA (78%) made of an ATCC strain (76%), that was performed either for each new batch delivery (42%) or at least monthly (52%) (Table 3). The two most frequently used ATCC strains used were *Candida krusei* ATCC 6258 (76%) and *C. parapsilosis* ATCC 22019 (67%). Seventy percent of the PML subscribed to at least one of the several EQA available in France (UKNEQAS, ABP, Prospective biology, AGLAE, LABQUALITY and RCPA QAP). Overall, 89% of the PML used either an IQA or an EQA and 62% used both IQA and EQA.

97 MIC interpretation and reporting of results

98 Forty-six percent of the PML used the EUCAST clinical breakpoints (CBs), when available, to

99 interpret the MIC values (as Susceptible/Intermediate/Resistant), and a large majority (89%)

100 declared reporting the interpretation of the MIC values on the medical report (Table 4). In the 101 absence of CBs for the species tested, 58% of the PML declared reporting the MIC values 102 without interpretation, while others interpret MIC values based either on CBs from other species 103 or based on ECOFF/ECVs (Figure 3). Most of those trying to interpret the MIC values in 104 absence of CBs discussed the case directly with the physician in charge (53%) (Figure 3). 105 Almost all the PML (98%) declared that the interpretation of MIC values was their main 106 problem encountered during AFST and 40% reported difficulties with MIC values reading 107 (Table 4).

108 Screening of resistant strains

109 Considering emerging antifungal resistant species, only a minority (11%) of the PML had 110 already incorporated into their routine work flow the screening for azole-resistant *Aspergillus* 111 *fumigatus* strains and even less of them (7%) used molecular techniques to detect antifungal 112 resistance in yeasts.

113

114 **Discussion**

This survey showed that AFST is performed by a majority of the PML both on yeasts and filamentous fungi. The present survey highlighted some common practices: similar commercial method used (Etest), similar AFST indication criteria (0% systematically, 86% yeast isolates from deep sites, 91% isolates from blood culture, 79% case-by-case discussion), similar panels of antifungal agents tested (a combination of four antifungals for more than 80% of the PML),

120 similar applied technical parameters (inoculum preparation and temperature of incubation).

121 This survey also showed that the mycologists face some difficulties while performing AFST. 122 The first issue is the reading of MIC values: the Etest manufacturer is unclear about the fact 123 that the reading should be made at 24h or at 48h. In the present survey, 67% of the PML declared 124 reading twice the MIC values for yeasts, 1st at 24h and a 2nd time at 48h. Considering that the

125 MIC value read at 48h may change the categorization (Susceptible / Intermediate / Resistant) 126 of the microorganism compared to the MIC value read at 24h, the optimal time for MIC reading 127 remains to be defined. This variation of the incubation time (e.g. 24h vs 48h) may explain some 128 low essential agreements between Etest and reference methods reported in the literature [9]. 129 Therefore, new studies for determination of the optimal reading time are warranted. Moreover, 130 the time of reading probably differs according to the type of fungal microorganisms, depending 131 on their ability to grow more or less rapidly (yeasts vs molds for example). The manufacturer 132 and/or the French Society of Medical Mycology (or other international societies) should provide 133 clear recommendations on the optimal time of reading, detailed per group of fungal species. In 134 the same way, only 40% of the PML reported that the reading of the MIC value was a problem. 135 Nevertheless, they reported that MICs were read according to different criteria, especially for 136 the echinocandins against yeasts (about half/half of the PML read these MICs either at complete 137 inhibition or at partial inhibition). Reading at partial inhibition is more complex and more 138 subjective, as some parameters, such as the size of the colonies, may influence the MIC value. 139 It should be noted that there is clear guidance, supplied by the manufacturers of Etest, for 140 reading of micro- versus macro-colonies within the zone of inhibition to aid with result 141 interpretation [10]. Again, more detailed recommendations provided by both the manufacturer 142 and the French Society of Medical Mycology (or other international societies) would be helpful 143 to standardize MIC values determination.

The second issue is the choice of the drug to be tested for echinocandins. Caspofungin is the most often tested molecule, while some PML are testing two molecules (mostly caspofungin and micafungin). It has been clearly shown that caspofungin should not be tested with CLSI or EUCAST methodology due to inter-laboratory variability [11]. Therefore, micafungin or anidulafungin should be used as a marker of class for echinocandin susceptibility when using these reference microbroth dilution techniques. Although, there are few evidences that this problem also applied with Etest, a recent literature analysis showed that anidulafungin is probably the best choice for testing echinocandins against *Candida* spp. by Etest [12].

152 The third main issue is that the interpretation of MICs is not always performed according to 153 recommendations: while about 86% of the PML use Etest as routine AFST method, only 38% 154 use the recommended CLSI CBs to interpret MIC values [10], while 46% use the EUCAST 155 CBs. This discrepancy may be explained by the fact that more data are available with EUCAST 156 in terms of species diversity and antifungal agents. It should be highlighted that CBs are 157 method-specific, and laboratories should not choose to use alternative CBs either due to better 158 availability or comfort. Applying non-CLSI breakpoints to MICs obtained by Etest may result 159 in some mis-interpretations of MICs (as the two sets of CBs are different), therefore, this 160 practice should be avoided. In contrast, when no CBs are available, about 31% of the PML 161 already use the ECOFFS/ECVs, showing that they are familiar with these criteria. Recently 162 published works proposing specific ECOFFS/ECVs, for Etest, for a large panel of species, 163 should be helpful to extend this attitude and help to categorize an isolate as wild-type or non-164 wild-type [13-15].

Another point is that this survey, performed in 2018, showed that a large majority (89%) of the PML used either an IQA or an EQA, many of them (62%) using both. This demonstrates that quality assessment is a major preoccupation of mycologists performing AFST. In contrast, this survey showed that systematic routine screening of resistance was performed by very few PML (\approx 10%) in 2018. As early detection of azole resistance in *Aspergillus fumigatus* is now recommended [3] and may be important for management of patients with aspergillosis, measures should be taken to improve a more widespread use of resistance screening.

172

173 Conclusion

A majority of French mycology laboratories are routinely using Etest as AFST method, both for yeasts and filamentous fungi. If several parameters are similar between the 45 PML, the two main issues that highlighted this survey were: the reading and the interpretation of MIC value. Detailed guidelines and instructions are needed to standardize AFST practices, which could be implemented by both the manufacturer and the French Society of Medical Mycology (or other international societies).

180

181 Acknowledgments

We are very grateful to Dominique Toubas for all the help she provided for the preparation and smooth running of our meeting. We also thank all our colleagues who participate to the meeting and discuss the results of the present survey.

185

186 **Conflict of interest**

187 During the past 5 years:

188 Eric Dannaoui has received research grants from MSD and Gilead: travel grants from Gilead, 189 MSD, Pfizer, & Astellas; speaker's fee from Gilead, MSD and Astellas. Anne-Pauline 190 Bellanger has received travel grants from Gilead and MSD. Florence Persat has received travel 191 grants from Gilead. Yohann Le Govic has received travel grants from Gilead. Stéphane Ranque 192 has received travel grants from LDBio, Pfizer, and MSD. Kevin Brunet has received travel 193 grants from Gilead and MSD. Jacques Guillot has received research grants from MSD and 194 speaker's fee from Gilead and MSD. Céline Nourisson has received travel grants from Gilead, 195 MSD, and Pfizer. Arnaud Fekkar has received research grants from MSD and Astellas, travel 196 grants from Gilead, MSD, Pfizer, and Astellas, speaker's fee from Gilead and MSD. Adela 197 Angoulvant has received a travel grant from Pfizer. MEB has received research grants from 198 Astellas: travel grants from Gilead, MSD, Pfizer, & Astellas; speaker's fee from Gilead, MSD 199 and Astellas. Sophie Brun has received travels grant from MSD and Pfizer. Bernard Bouteille 200 has received travel grants from Gilead, MSD, and Pfizer. Sophie Cassaing has received travels 201 grant from MSD, Pfizer and Gilead. Isabelle Accoceberry has received travels grant from MSD, 202 Pfizer and Gilead, speaker's fee from Pfizer and MSD. Emilie Fréalle has received travel grants 203 from Gilead. Boualem Sendid received travel grant from Pfizer and MSD, and research grants 204 from bioMérieux, Bio-Rad and Lesaffre International Milène Sasso has received travels grant 205 from Astellas, Pfizer and Gilead Damien Costa has received travel grant and speaker's fee from 206 Gilead. Alain Fiacre has received travel grant from Pfizer. Rose-Anne Lavergne has received 207 research grants from Gilead. The other authors have no conflicts of interest to disclose.

208

References

- [1] Cuenca-Estrella M, Verweij PE, Arendrup MC, Arikan-Akdagli S, Bille J, Donnelly JP, et al. ESCMID* guideline for the diagnosis and management of *Candida* diseases 2012: diagnostic procedures. Clin Microbiol Infect 2012;18 Suppl 7:9-18.
- [2] Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 2016;62(4):e1-e50.
- Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, et al.
 Diagnosis and management of *Aspergillus* diseases: executive summary of the 2017
 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018;24 Suppl 1:e1-e38.
- [4] Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J, et al. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. EUCAST definitive document E.Def 7.3.1. 2017.
- [5] Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J, et al. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. EUCAST definitive document E.Def 9.3.1. 2017.
- [6] Clinical and laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, 2nd ed. Approved standard.
 Document M-38A2. Clinical and Laboratory Standards Institute, Wayne, Pa; 2008.
- [7] Clinical and laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard - third edition. CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne, Pa; 2008.

- [8] Alastruey-Izquierdo A, Melhem MS, Bonfietti LX, Rodriguez-Tudela JL. Susceptibility test for fungi: clinical and laboratorial correlations in medical mycology. Rev Inst Med Trop Sao Paulo 2015;57 Suppl 19:57-64.
- [9] Dannaoui E, Espinel-Ingroff A. Antifungal susceptibly testing by concentration gradient strip Etest method for fungal isolates, a review. J Fungi 2019;5(4):108.
- [10] BioMérieux SA. Etest antifungal susceptibility testing package insert. BioMérieux SA,Marcy-l'Etoile, France. 2013.
- [11] Espinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, Canton E, et al. Interlaboratory variability of caspofungin MICs for *Candida* spp. using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrob Agents Chemother 2013;57(12):5836-42.
- [12] Espinel-Ingroff A, Dannaoui E. Should Etest MICs for yeasts be categorized by reference (BPs/ECVs) or by Etest (ECVs) cutoffs as determinants of emerging resistance? Current Fungal Infection Reports 2020.
- [13] Espinel-Ingroff A, Arendrup M, Canton E, Cordoba S, Dannaoui E, Garcia-Rodriguez J, et al. Multicenter study of method-dependent epidemiological cutoff values for detection of resistance in *Candida* spp. and *Aspergillus* spp. to amphotericin B and echinocandins for the Etest agar diffusion method. Antimicrob Agents Chemother 2017;61(1):e01792-16.
- [14] Espinel-Ingroff A, Turnidge J, Alastruey-Izquierdo A, Botterel F, Canton E, Castro C, et al. Method-dependent epidemiological cutoff values for detection of triazole resistance in *Candida* and *Aspergillus* species for the Sensititre YeastOne colorimetric broth and Etest agar diffusion methods. Antimicrob Agents Chemother 2019;63(1):e01651-18.

[15] Salse M, Gangneux JP, Cassaing S, Delhaes L, Fekkar A, Dupont D, et al. Multicentre study to determine the Etest epidemiological cut-off values of antifungal drugs in *Candida* spp. and *Aspergillus fumigatus* species complex. Clin Microbiol Infect 2019;May 11:DOI: 10.1016/j.cmi.2019.04.027.

Table 1. Responses to the questionnaire considering AFST strategy (several answers by PML were possible).

In which situation do you perform AFST?	%
For all isolates systematically	0
For all isolates from blood cultures	91
For all patients treated with ATF	20
For all yeast isolates from deep sites	86
Decided by the microbiologist, on a case-by-case basis	79

AFST: Antifungal susceptibility testing; ATF: antifungal; PML: participating mycology laboratories.

How do you prepare your inoculum for AFST for yeasts?	%
Mc Farland spectrometer	78
Mc Farland by eye	15
Inoclic [®] (I2A)	2
Densitometer	5
How do you prepare your inoculum for AFST for filamentous fungi?	
Mc Farland spectrometer	76
Mc Farland by eye	19
Inoclic [®] (I2A)	3
Densitometer	2
At which temperature do you incubate your AFST method for yeasts?	
$35 \pm 2^{\circ}\mathrm{C}$	95
$30 \pm 2^{\circ}C$	5
At which temperature do you incubate your AFST method for	
filamentous fungi?	
$35 \pm 2^{\circ}\mathrm{C}$	84
$27 \pm 2^{\circ}C$	8
$30 \pm 2^{\circ}\mathrm{C}$	5
27°C if non thermophilic species and 35°C if thermophilic species	3
When do you read the AFST results for yeasts?	
First reading at 24h, then second reading at 48h	67
A 24h reading only	
	20
A 48h reading only	13
When do you read the AFST results for filamentous fungi?	
First reading at 24h, then second reading at 48h	58
A 24h reading only	27
A 48h reading only	15

Table 2. Responses to the questionnaire considering technical parameters of AFST by Etest

Do you use an intern quality assessment (IQA)?	%
Yes	78
No	22
Do you use an ATCC strain as IQA?	
Yes	76
No	24
More specifically, which ATCC strain do you use as IQA?*	
Candida krusei ATCC 6258	76
C. parapsilosis ATCC 22019	67
C. albicans ATCC 90028	35
C. krusei ATCC 12243	3
C. tropicalis ATCC 1369	3
Aspergillus fumigatus ATCC 204305	44
Aspergillus flavus ATCC 204304	6
At which frequency do you test the IQA?	
At each change of reagent batch	42
Monthly (at least)	52
Less frequently than monthly	6
Do you use extern quality assessment (EQA)?	
Yes	70
No	30

Table 3. Responses to the questionnaire considering quality aspect of AFST

*Several strains used per PML

How do you interpret the MIC value to classify the strain S/I/R		
EUCAST clinical breakpoints (CB)	46	
CLSI CB	27	
CB recommended by the manufacturer (CLSI for Etest)	11	
ECOFFs /ECVs	4	
Other	16	
Do you write the interpretation of the MIC values on the medical report?		
Yes	89	
No	11	
What is the main problem that you encounter while performing ATFS testing?		
Reading	40	
MIC interpretation	98	

 Table 4. Responses to the questionnaire considering MIC interpretation

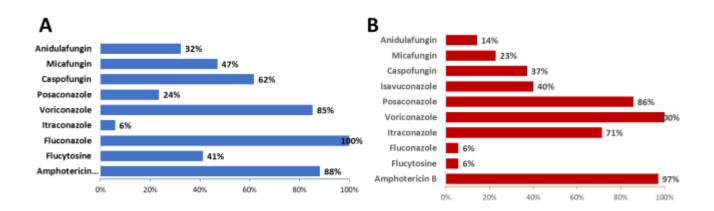

Figure legends

Figure 1: Antifungal tested against yeasts (1A) and filamentous fungi (1B) by laboratories using Etest for AFST

Figure 2: Type of reading of the MIC value for yeasts (2A) and fungi (2B) for azole, echinocandins and amphotericin B

Figure 3: Details of MIC interpretation in absence of clinical breakpoints available.

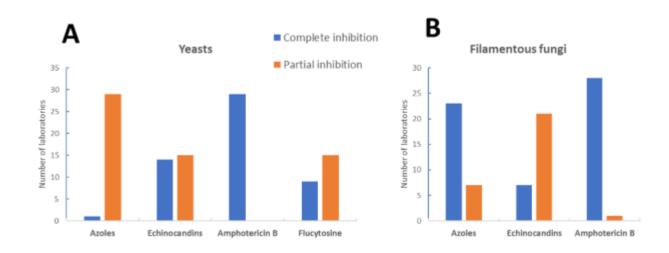
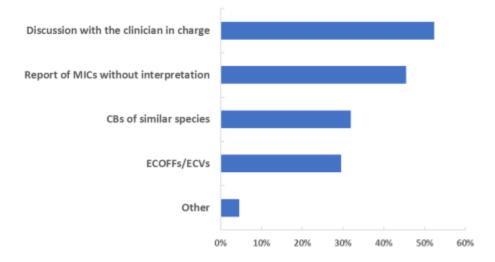



Figure 2

Figure 3

Supplementary Material 1

Questionnaire concernar ests de sensibilité aux a				
Sect est une empetès des praiques et pas une évaluation de la qualité des aborationes. Nous souhabercons dans des réponses météant les praiques padidiennes, treux souhabercons dans des passantes les recommandations des participantes méters et celens à ne sont pas en saccet avec les recommandations des participantes de les résultats traitée de tagon confidenteste.				
nformations - Höpital - Labor our Thipital, ne pas complabilitier les lis de la				
1. Hightal Nom				
2. Höpitul Type				
Une soule réponse possible.				
O ere				
C Autor				
3. Húpital, Nombre de Lits (hospitalisation convertionnelle et HCU) (approximatif)				
4. Laboratoire, Non.				
5. Admité en B+BHN7 an (approximatif)				
5. Siom du biologiete ayant complèté le questionnaire				
7. Emuil du biolograte ayant complété le gamationnaire				