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 37 

Abstract 38 

Objectives: The outcome of American tegumentary leishmaniasis (ATL) may depend on the presence 39 

of the Leishmania RNA virus (LRV). This virus may be involved in treatment failure. We aimed to 40 

determine whether genetic clusters of LRV1 are involved in this therapeutic outcome.  41 

Methods: The presence of LRV1 was assessed in 129 L. guyanensis isolates from patients treated with 42 

pentamidine in French Guiana. Among the 115 (89%) isolates found to carry LRV1, 96 were 43 

successfully genotyped. Patient clinical data were linked to the LRV data. 44 
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Results: The rate of treatment failure for LRV1-positive isolates was 37% (15/41) versus 40% (2/5) 45 

among LRV1-negative isolates (p = 0.88). Concerning LRV1 genotypes, two predominant LRV1 groups 46 

emerged, groups A (23% (22/96)) and B (70% (67/96)). The treatment failure rate was 37% (3/8) for 47 

group A and 45% (9/20) for group B (p = 0.31).  48 

Conclusion: Neither the presence or genotype of LRV1 in patients with L. guyanensis seemed to 49 

correlate with pentamidine treatment failure.  50 

 51 

Key words: Leishmania guyanensis, LRV1, genotype, treatment failure, pentamidine 52 

 53 

Introduction 54 

Leishmaniases are infectious diseases caused by Leishmania (Trypanosomatidae) parasites, which are 55 

transmitted through the bites of infected female sandflies. The disease is characterized by a wide 56 

range of clinical presentations, from asymptomatic to severe forms, depending on the Leishmania 57 

species. American tegumentary leishmaniasis (ATL) is characterized by cutaneous lesions and can 58 

result in self-healing or spread of the lesions. Localized cutaneous leishmaniasis (LCL) is defined as a 59 

skin lesion localized at the point of the vector bite. In some patients, parasites spread throughout the 60 

body, causing cutaneous diffuse leishmaniasis (CDL). Mucocutaneous leishmaniasis (MCL) occurs 61 

when the parasite spreads from a cutaneous lesion to nasopharyngeal areas of the face, leading to 62 

destructive metastatic secondary lesions. 63 

The presence of the Leishmania RNA virus (LRV) may be a factor associated with the development of 64 

mucosal leishmaniasis (1–4). LRV is a non-enveloped double-stranded RNA virus belonging to the 65 

Totiviridae family. This virus, initially believed to be exclusively hosted by Leishmania parasites, was 66 

recently found in another Trypanosomatidae of the genus Blechomonas (5). LRV has been described 67 

in New- and Old-World strains of Leishmania, named LRV1 and LRV2, respectively, and has been 68 
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particularly studied for the Viannia subgenus. Six phylogenetic groups of LRV1 can be distinguished in 69 

this subgenus, from A to F, with two predominant clusters, A and B. Clusters A to E are comprised of 70 

L. guyanensis parasites and cluster F includes two isolates from L. braziliensis (6).  71 

LRV1 appears to play a role in disease progression by directing it towards the severe MCL (1). Indeed, 72 

the presence of this virus, carried by L. guyanensis parasites, appears to modulate the host immune 73 

response in a murine model, leading to a higher susceptibility to the infection, an increase in parasite 74 

burden, swelling of the lesions, and metastases. The virus appears to activate host immune 75 

receptors, such as Toll-Like Receptor-3 (TLR-3), inducing pro-inflammatory cytokine synthesis and 76 

leading to an excessive immune response. The exaggerated immune response directed initially 77 

against the parasites simultaneously affects host tissues, leading to their substantial degradation (1). 78 

This exacerbation may be amplified by association of the virus with parasitic exosomes (7) but can be 79 

prevented by immunization with LRV capsid proteins in mice (8). In humans, LRV1 appears to be a 80 

predictive factor of first-line treatment failure and symptomatic relapses (9). However, a recent study 81 

has suggested otherwise (10). Here, we aimed to determine whether the presence of LRV1 or one of 82 

its genotypes correlates with treatment failure. 83 

Materials and methods 84 

Patients 85 

The study, conducted in French Guiana, included patients with a diagnosis of tegumentary 86 

leishmaniasis due to L. guyanensis between February 2012 and May 2016.  87 

The diagnosis consisted of a biopsy of the interior of the lesions of the patients, followed by 88 

incubation of the biopsy in RPMI-1640 (Gibco®), containing L-glutamine, 20 mM HEPES, and phenol 89 

red, supplemented with 20% heat- inactivated fetal calf serum (FCS) (Gibco), 50 IU/mL penicillin 90 

(Invitrogen®), 0.05 mg/mL streptomycin (Invitrogen), and nonessential amino acids (Gibco), at 26°C 91 

to allow development of the parasite. Part of the culture was used for the routine diagnosis of 92 

Leishmania species performed by the Cayenne hospital by PCR-RFLP (11) and the other kindly 93 
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supplied by the Cayenne hospital for LRV1 detection and analysis. Patients diagnosed as positive for 94 

L. guyanensis but with an unsuccessful culture were not included in the study. 95 

In total, 332 cultures were available. The isolates were associated with patient data. Patients without 96 

therapeutic outcome data after the first round of treatment and those under 18 years of age were 97 

excluded from the study. Finally, 129 patients were included. A sensitivity analysis was carried out to 98 

ensure that patient exclusion did not affect the study results (data not shown). 99 

LRV RNA extraction 100 

Upon reaching stationary phase, fresh Leishmania cultures were counted under a microscope. Pellets 101 

of 1.107 parasites were prepared by a 5-min centrifugation at 587 x g and elimination of the 102 

supernatant. Cells were preserved at -25°C until use.  103 

Total RNA was extracted from Leishmania promastigotes using the RNeasy mini kit® according to the 104 

manufacturer’s recommendations (except for centrifugations of 15 s, which were extended to 30 s 105 

because of the characteristics of the centrifuge). The RNA was stored at -80°C until use. 106 

LRV Reverse transcription 107 

RNA reverse transcription was performed using SuperScript™ II Reverse Transcriptase (Invitrogen) 108 

with random hexamers (Invitrogen), according to the manufacturer’s recommendations. 109 

LRV1 detection by PCR 110 

LRV1 was detected by amplification of a 124-bp fragment by PCR with the LRV1 forward primer, 111 

LRV1-F1: 5′- CTGACTGGACGGGGGGTAAT-3′ and the LRV1 reverse primer, LRV1-R1: 5′-112 

CAAAACACTCCCTTACGC-3’, at a final concentration of 0.2 µM (12). The 25-µL reaction mixture 113 

included 1X PCR master mix (BiotechRabbit™), 0.2 µM of each primer, and 2 µL cDNA. A denaturation 114 

step at 94°C for 2 min was followed by 40 cycles at 94°C for 30 s, 54°C for 30 s, and 72°C for 1 min. 115 

The PCR was completed by a final elongation step at 72°C for 5 min. PCR products were separated on 116 

a 2% agarose gel with Midori Green Advance ® to verify the presence of amplification products of the 117 
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expected size. The reference strain of L. guyanensis (MHOM/GF/97/LBC6) was used as a positive 118 

control and water as a negative control in each PCR experiment. 119 

LRV genotyping 120 

PCR 121 

Positive LRV1 samples were genotyped using the forward primer LRV1s 5’-122 

ATTCGCTAGCTGTYBGGATGGTAGYGTTAC-3’ and the reverse primer LRV2as 5’-123 

CATAGCCAAAACGTTCACAWARTGTYGRGTGT-3’ (6), amplifying a 779 bp product. These primers 124 

target the ORF1 and ORF2 sequences that encompass the sequence amplified by the LRV1-F1/LRV1-125 

R1 primers used for LRV1 detection. The 50-µL reaction mixture included 1X AmpliTaqGold master 126 

mix (Applied Biosystem™), 0.2 µM of each primer, and 5 µL cDNA. A denaturation step at 94°C for 5 127 

min was followed by 35 cycles at 94°C for 30 s, 62°C for 30 s, and 72°C for 1 min. The PCR was 128 

completed by a final elongation step at 72°C for 5 min.  129 

Fragments not amplified by the LRV1s/LRV2as primers were amplified using another primer pair 130 

proposed by Cantanhêde et. al (13), surrounding the sequence amplified by the LRV1s/LRV2as 131 

primers. These primers were LRV1 F orf1 5’-ATGCCTAAGAGTTTGGATTCG-3’ and LRV R orf2 5’-132 

AATCAATTTTCCCAGTCATGC-3’, amplifying an 850 bp sequence.   133 

The 50-µL reaction mixture included 1X AmpliTaqGold master mix (Applied Biosystem™), 0.4 µM of 134 

each primer, and 5 µL of cDNA. A denaturation step at 94°C for 2 min was followed by 40 cycles at 135 

94°C for 30 s, 56°C for 45 s, and 72°C for 30 s. The PCR was completed by a final elongation step at 136 

72°C for 3 min. 137 

PCR products were separated on a 2% agarose gel containing Midori Green Advance® to verify the 138 

presence of amplification products of the expected size. 139 

Sequencing 140 
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Sample purification and sequencing were performed from 40 µL of PCR product by the sequencing 141 

platform of l’Hôpital Cochin (Eurofins France) with the corresponding primers used for fragment 142 

amplification. Both strands of each sample were sequenced and the results delivered by the 143 

subcontractor, Eurofins. 144 

Sequence analysis 145 

Sequence complementarity (forward and reverse) obtained for each sample was tested using BioEdit 146 

software (version 7.0.5.3) (14) to confirm the sequencing. The consensus sequence resulting from 147 

two strictly identical opposed sequences was selected for the genetic analysis. We also included the 148 

24 sequences from the study of Tirera et al. (6), 11 of which corresponded to the isolates used in our 149 

study. All LRV sequences were aligned with MEGA 7 software (15) using the MUSCLE program. Some 150 

alignment corrections were made manually. A phylogenetic tree was constructed using SeaView 151 

software (16), based on maximum likelihood phylogenies (PhyML) and the K80 model (default 152 

settings).   153 

Clinical data 154 

Clinical data were retrospectively sought for the 129 Leishmania samples in the various services of 155 

the hospital or health centers spread throughout the territory. Collected data included age, gender, 156 

suspected place of infection, number of lesions, lesion size, nodules, papules, satellite papules, 157 

lymphangitis, adenopathy, and treatment failure. 158 

Data analysis 159 

R software (version 3.2.0) was used for data analysis. Univariate and multivariate variables were 160 

analyzed by logistic regression. Variables included in the statistical analysis were the presence of 161 

LRV1, LRV1 genotype, age, gender, suspected place of infection, time between infection and 162 

treatment, time between two rounds of pentamidine, number of lesions, lesion size, lymphangitis, 163 

adenopathy, nodule, papule, satellite papules, and treatment failure after one or two courses of 164 

pentamidine. 165 
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LRV1 genotypes were separated into six groups, from A to F. Only groups A and B were analyzed. The 166 

other groups were excluded due to their small size. Age was divided into two groups: from 18 to 35 167 

years and > 35. The suspected locations of infection were grouped into two areas: littoral (Iracoubo, 168 

Macouria, Sinnamary, Kourou, Matoury, Cayenne, Rémire-Montjoly) and inland (Régina, Saül, Saint-169 

Elie, Roura, Montsinéry-Tonnegrande, Saint-Georges, Camopi, Trois-Sauts, Saint-Laurent du Maroni, 170 

Apatou, Grand-Santi, Papaïchton and Maripasoula). Patients who consulted in French Guiana but 171 

were infected in neighboring countries were included in the study. Thus, Suriname and Brazil were 172 

also included in the inland group. Lesion number was divided into two groups, the first consisting of 173 

patients with one lesion and the second, those with more than one lesion. Lesion size was also 174 

divided into two groups, the first consisting of patients with lesions ≤ 2 cm and the second, those > 2 175 

cm. 176 

Patients included in the study were treated by intramuscular administration of 7 mg/kg pentamidine, 177 

divided between two injections given in a single day at different body sites. In the absence of healing 178 

of the lesion at least one month after the first treatment (treatment 1), a second dose of 179 

pentamidine was administered by the intramuscular route. Treatment failure was considered when 180 

patients presented a persistent lesion at least one month after the second course of treatment 181 

(treatment 2). Patients showing treatment failure were hospitalized for meglumine antimoniate 182 

(Glucantime®) treatment. The influence of LRV on therapeutic failure was determined after the first 183 

and second round of treatment. 184 

Ethical approval 185 

Access to these data has been authorized by the Comité de Protection des Personnes (CPP) SUD-EST 186 

II, n° ID-RCB: 2017-A00173-50. A declaration was also made to the Commission Nationale de 187 

l’Informatique et des Libertés (CNIL), n° peV2056324t. 188 

Results 189 

LRV and clinical outcomes 190 
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The study included 129 L. guyanensis isolates, for which the presence of LRV was sought. The results 191 

were associated with the available data on the various clinical features of the patients to identify the 192 

involvement of this virus in the pathophysiology of the disease (Table 1, see web-only Supplementary 193 

Table S1). Thus, among the 115 (89%) Leishmania samples harboring LRV1, 63% (73/115) resulted in 194 

the patients being unresponsive to the first round of pentamidine versus 57% (8/14) for the LRV-195 

negative patients. In the second round of treatment, 37% of the 41 positive LRV1 isolates (15/41) 196 

were associated with treatment failure versus 40% (2/5) for the LRV-negative patients. There was no 197 

significant association between treatment failure and the presence of LRV1 (p = 0.88). 198 

Statistical analysis of the other variables showed that LRV1 did not affect the development of 199 

adenopathy, lymphangitis, papules, satellite papules, nodules, or the size or number of lesions. 200 

Neither age nor gender influenced the development of LRV1. 201 

Geographical analysis showed a much stronger presence of LRV1 inlands than at the coastline (OR = 202 

9.8, p = 0.0008). 203 

LRV genotyping  204 

LRV1 amplification by PCR using the various primers, as part of the sequencing, is shown in Figure 1. 205 

Among the 115 LRV1 isolates, 96 were successfully sequenced and used to construct a phylogenic 206 

tree. Thirteen other sequences, from the study of Tirera et al., were also included (6). The phylogenic 207 

tree (see web-only Supplementary Figure S1) highlighted five groups, from A to E. The groups A and B 208 

were predominant, accounting for 22 (23%) and 67 (70%) of the LRV1 isolates, respectively. Groups D 209 

and E accounted for 1 (1%) and 6 (6%) LRV1 isolates. No LRV1 isolates used in this study belonged to 210 

groups C or F. 211 

LRV genotypes related to clinical outcome 212 

Among the 96 genotyped LRV isolates, 89 were distributed within clusters A and B. In group A, 59% 213 

(13/22) of the LRV isolates were associated with the unresponsiveness of patients to the first round 214 

of pentamidine and 63% (42/67) in group B. In the second round of treatment, 37% (3/8) of the LRV 215 
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isolates of group A were associated with treatment failure versus 45% (9/20) in group B. None of the 216 

LRV1 groups seemed to be associated with treatment failure (p = 0.31) or to the development of 217 

adenopathy, lymphangitis, papules, satellite papules, nodules, large lesions, or the number of lesions. 218 

The LRV1 groups did not appear to be associated with age, gender, or geographic area (Table 2, see 219 

web-only Supplementary Table S1). 220 

Discussion 221 

The presence of LRV1 has been shown to be a risk factor for therapeutic failure (9,17). In the present 222 

study, we found no correlation between the presence of LRV1 or its genotypes in L. guyanensis 223 

parasites and treatment failure, either after the first or second course of treatment of pentamidine. 224 

The main difference, and limitation, of this study relative to the others was that this study was 225 

retrospective and included patients with non-standardized clinical monitoring. Our results contrast 226 

with those of Bourreau et al. and Adaui et al. (9,17), but are in accordance with those of Christen et 227 

al. (10). A prominent difference between our study, that of Bourreau et al. (9), and that of Christen et 228 

al. (10) was the diagnostic methodology used. Bourreau et al. performed LRV1 detection directly on 229 

biopsies, whereas we detected LRV1 from cultures. Christen et al. used both methodologies, biopsies 230 

or cultures, depending on the case (personal communication). However, according to Bourreau et al., 231 

LRV1 prevalence was higher in parasite cultures (87%) than in biopsies (58%). Such a higher 232 

prevalence of LRV1 in cultures was observed in our study and that of Christen et al., 89% and 85%, 233 

respectively. Indeed, low amounts of LRV1 in a biopsy may render the virus undetectable by 234 

molecular biology, whereas it may be detected in culture. This may lead to bias, especially since, 235 

according to Ives et al., the magnitude of the immune response induced by LRV1 should depend on 236 

its amount (1). This could explain the absence of a correlation between the presence of LRV1 and 237 

treatment failure in the present study. Nevertheless, Adaui et al. found a correlation between the 238 

presence of LRV1 in cultivated L. braziliensis isolates and treatment failure (17). However, Bourreau 239 

et al. reported that treatment failure did not correlate with the LRV1 load per parasite (9) and 240 

another study reported that the LRV1 burden (genome equivalent) did not correlate with the state of 241 
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the lesion (active lesion, lesion in the process of scarring, or scar), as the amount of LRV1 was highly 242 

variable, regardless of  the state of the lesion (18). Another difference observed between these 243 

various studies was that Adaui et al. and Bourreau et al. included relapsing patients, which was not 244 

the case in our study or that of Christen et al. (9,10,17). Pereira et al. also reported that LRV1 was 245 

detected in patients with disease reactivation (19). Thus, LRV1 may be only responsible for relapses. 246 

Future studies to investigate the association of LRV1 genotypes with disease should therefore only be 247 

carried out on samples from relapsing patients. 248 
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 Figure 1 : LRV PCR with the different primers : LRV1-F1/LRV1-R1 [12] used for the LRV detection, 

LRV1s/LRV2as [6] and LRV1-F-orf1/LRV-R-orf2 [13] used for the LRV genotyping. LRVa 

corresponded to the non-amplified sample using LRV1s/LRV2as primers, but amplified using the 

LRV1-F-orf1/LRV-R-orf2 primers. LRVb corresponded to the non-amplified sample using 

LRV1s/LRV2as primers or LRV1-F-orf1/LRV-R-orf2 primers. 

 



Table 1 : Statistical analysis of variables tested with LRV 

Univariate analysis 

      LRV- LRV+   OR p-value 

Age 
  18-35 years hold 5 53   0,65 0,46 

  > 35 years hold 9 62       

Gender 
  female 4 12   3,04 0,10 

  male 8 73       

Time between two rounds of 

pentamidine 

  1 month 1 20   0,28 0,29 

  > 1 month 3 17       

Time between infection and 

treatment 

  ≤ 50 days 4 44   0,56 0,40 

  > 50 days 6 37       

Treatment 1 
cure 6 42 1,30 0,64 

failure 8 73 

Treatment 2 
  cure 3 26   0,87 0,88 

  failure 2 15       

Suspected place of infection 
Littoral 6 8 9,87 0,0008 

Inland 6 79 

Lesion size 
  ≤ 2 cm 1 41   0,16 0,12 

  > 2 cm 3 20       

Number of lesions 
  1 8 64   1,02 0,97 

  >1 6 49       

Lymphangitis 
  absent 7 49   1,17 0,80 

  present 5 41       

Adenopathy 
  absent 8 66   0,70 0,58 

present 4 23 

Papule 
  absent 11 69   6782796,24 0,99 

present 0 6 

Satellite papules 
  absent 10 70   0,86 0,89 

present 1 6 

Nodule 
  absent 9 59   0,86 0,84 

present 3 17 

 



Table 2 : Statistical analysis of variables tested with LRV genotypes 

LRV group Univariate analysis 

      A B   OR p-value 

Age 
  18-35 years hold 12 29   1,58 0,35 

  > 35 years hold 10 38       

Gender 
  female 4 6   2,43 0,21 

  male 12 46       

Time between two rounds of 

pentamidine 

  1 month 5 11   1,07 0,93 

  > 1 month 1 7       

Time between infection and 

treatment 

  ≤ 50 days 6 29   0,58 0,37 

  > 50 days 8 22       

Treatment 1 
cure 9 25 1,21 0,70 

failure 13 42 

Treatment 2 
  cure 5 11   3,33 0,31 

  failure 3 9       

Suspected place of infection 
Littoral 2 4 1,47 0,67 

Inland 18 47 

Lesion size 
  ≤ 2 cm 7 23   1,12 0,88 

  > 2 cm 3 11       

Number of lesions 
  1 12 39   0,81 0,67 

  >1 10 26       

Lymphangitis 
  absent 10 30   1,07 0,90 

  present 8 27       

Adenopathy 
  absent 11 44   0,42 0,13 

present 7 12 

Papule 
  absent 14 47   0,82 0,87 

present 1 3 

Satellite papules 
  absent 15 48   ND 0,99 

present 0 2 

Nodule 
  absent 10 41   0,44 0,21 

  present 5 9       

ND : Not determined 




