
HAL Id: hal-02586125
https://amu.hal.science/hal-02586125

Submitted on 15 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Flagella and Swimming Behavior of Marine
Magnetotactic Bacteria

Wei-Jia Zhang, Long-Fei Wu

To cite this version:
Wei-Jia Zhang, Long-Fei Wu. Flagella and Swimming Behavior of Marine Magnetotactic Bacteria.
Biomolecules, 2020, 10 (3), pp.460. �10.3390/biom10030460�. �hal-02586125�

https://amu.hal.science/hal-02586125
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


biomolecules

Review

Flagella and Swimming Behavior of Marine
Magnetotactic Bacteria

Wei-Jia Zhang 1,2 and Long-Fei Wu 2,3,*
1 Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese

Academy of Sciences, Sanya 572000, China; wzhang@idsse.ac.cn
2 International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular

Organisms, F-13402 CNRS-Marseille, France/CAS-Sanya 572000, China
3 Aix Marseille Univ, CNRS, LCB, IMM, IM2B, CENTURI, F-13402 Marseille, France
* Correspondence: wu@imm.cnrs.fr; Tel.: +33-4-9116-4157

Received: 25 February 2020; Accepted: 15 March 2020; Published: 16 March 2020
����������
�������

Abstract: Marine environments are generally characterized by low bulk concentrations of nutrients
that are susceptible to steady or intermittent motion driven by currents and local turbulence. Marine
bacteria have therefore developed strategies, such as very fast-swimming and the exploitation of
multiple directional sensing–response systems in order to efficiently migrate towards favorable places
in nutrient gradients. The magnetotactic bacteria (MTB) even utilize Earth’s magnetic field to facilitate
downward swimming into the oxic–anoxic interface, which is the most favorable place for their
persistence and proliferation, in chemically stratified sediments or water columns. To ensure the
desired flagella-propelled motility, marine MTBs have evolved an exquisite flagellar apparatus, and
an extremely high number (tens of thousands) of flagella can be found on a single entity, displaying a
complex polar, axial, bounce, and photosensitive magnetotactic behavior. In this review, we describe
gene clusters, the flagellar apparatus architecture, and the swimming behavior of marine unicellular
and multicellular magnetotactic bacteria. The physiological significance and mechanisms that govern
these motions are discussed.

Keywords: flagellar number and position; north-seeking and south-seeking; magnetic and
photo-response

1. Introduction

Magnetotactic bacteria (MTB) are a group of phylogenetically, morphologically, and physiologically
diverse Gram-negative bacteria [1,2]. They share the common capability of synthesizing unique
intracellular organelles, the magnetosomes, i.e., single-domain magnetic crystals of magnetite or
greigite, which are enveloped by membranes (Figure 1). Cytoskeleton MamK filaments enable the
magnetosomes to be organized into chains [3–5]. Magnetosome chains impart a net magnetic dipole
moment to the cell, which allows cells to align and swim along geomagnetic field lines [6]. This
behavior, referred to as magnetotaxis, is believed to facilitate microaerophilic or anaerobic MTB to
locate at the preferable oxic–anoxic interface in chemically stratified sediments or water columns [1].
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Figure 1. Magnetosomes and flagella of magnetotactic bacteria. (A) Bilophotrichously flagellated MO-
1 cells possess two sheathed flagellar bundles (green arrow) and one magnetosome chain (yellow 
arrow). (B) Peritrichously flagellated ellipsoidal magnetoglobule with flagella (blue arrows) and 
magnetosomes (yellow arrows). Only the portion of flagellar filaments in the surface matrix was 
preserved during sample preparation. Scale bar is equal to 0.5 µm. Courtesy of the electron 
cryotomography micrograph (A) from Dr. J. Ruan and Professor K. Namba, and of the Scan-TEM 
high-angle annular dark-field (STEM-HAADF) mode micrograph (B) of ultrathin sections of high-
pressure freezing/freeze substitution fixation (HPF/FS) fixed ellipsoidal magnetoglobule from 
Professor N. Menguy and Dr. A. Kosta. 

Phylogenetically, magnetotactic bacteria are members of several classes of the Proteobacteria 
phylum including the Alpha-, Gamma-, Delta-, Zeta-, Candidatus Lambda-, Candidatus Eta-classes, 
the Nitrospirae phylum, the Candidatus Omnitrophica phylum, the Candidatus Latescibacteria 
phylum, and the Planctomycetes phylum [7]. They present various morphotypes including cocci, 
spirilla, rod-shaped, vibrio, and more complex multicellular magnetotactic prokaryotes that are also 
called magnetoglobules (MMP) [1,8]. 

Magnetotactic bacteria are found worldwide in aquatic environments from freshwater to marine 
ecosystems. Here, we will discuss mainly three types of marine magnetotactic bacteria because of 
their complex flagellar architecture and peculiar motile behavior. The first is the spirillum 
Magnetospira sp. strain QH-2 isolated from the intertidal sediments of the China Sea [9]. 
Phylogenetically, QH-2 belongs to Rhodospirillaceae and is closely related to two freshwater 
magnetotactic spirilla, Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense 
MSR-1. Yet, certain traits such as the synthesis of osmoprotectant, Na+-dependent NADH-quinone 
oxidoreductase, and Na+-motive force driven flagellar motors, make QH-2 better suited to a marine 
sedimentary lifestyle than its freshwater counterparts [10]. The second is the ovoid-coccoid 
Magnetococcus massalia strain MO-1 isolated from sediments of the Mediterranean Sea (Figure 1, A) 
[11]. MO-1 belongs to the newly established class Candidatus Etatproteobacteria and possesses the 
most exquisite flagellar apparatus [12]. The third group is the magnetoglobules that have developed 
both multicellular and magnetotactic properties during their evolution. To date, magnetotactic 
multicellular prokaryotes are found only in marine environments [8]. They exhibit peculiar patterns 
of motility by coordinatively rotating tens of thousands of peritrichous flagella (Figure 1, B), 
including both polar and axis magneto-aerotaxis, ping-pong motion, and photophobic and 
photokinesis swimming patterns.  

2. Flagellar Apparatus of Marine Magnetotactic Bacteria  

Flagella provide one of the most highly efficient means of bacterial locomotion and play a pivotal 
role in adhesion, biofilm formation, and host invasion [13–16]. Bacterial flagella share a basic tripartite 
structure; the basal body, the hook, and the filament [17]. The basal body contains a reversible rotary 
motor made of a rotor, a drive shaft, a bushing, and about a dozen stators. The stator forms the proton 
or sodium ion pathway and converts ion flow across the cytoplasmic membrane into the mechanical 
work required for flagellar motor rotation. The basal body also contains the flagellar protein export 

Figure 1. Magnetosomes and flagella of magnetotactic bacteria. (A) Bilophotrichously flagellated MO-1
cells possess two sheathed flagellar bundles (green arrow) and one magnetosome chain (yellow arrow).
(B) Peritrichously flagellated ellipsoidal magnetoglobule with flagella (blue arrows) and magnetosomes
(yellow arrows). Only the portion of flagellar filaments in the surface matrix was preserved during
sample preparation. Scale bar is equal to 0.5 µm. Courtesy of the electron cryotomography micrograph
(A) from Dr. J. Ruan and Professor K. Namba, and of the Scan-TEM high-angle annular dark-field
(STEM-HAADF) mode micrograph (B) of ultrathin sections of high-pressure freezing/freeze substitution
fixation (HPF/FS) fixed ellipsoidal magnetoglobule from Professor N. Menguy and Dr. A. Kosta.

Phylogenetically, magnetotactic bacteria are members of several classes of the Proteobacteria
phylum including the Alpha-, Gamma-, Delta-, Zeta-, Candidatus Lambda-, Candidatus Eta-classes, the
Nitrospirae phylum, the Candidatus Omnitrophica phylum, the Candidatus Latescibacteria phylum,
and the Planctomycetes phylum [7]. They present various morphotypes including cocci, spirilla,
rod-shaped, vibrio, and more complex multicellular magnetotactic prokaryotes that are also called
magnetoglobules (MMP) [1,8].

Magnetotactic bacteria are found worldwide in aquatic environments from freshwater to marine
ecosystems. Here, we will discuss mainly three types of marine magnetotactic bacteria because of their
complex flagellar architecture and peculiar motile behavior. The first is the spirillum Magnetospira sp.
strain QH-2 isolated from the intertidal sediments of the China Sea [9]. Phylogenetically, QH-2 belongs
to Rhodospirillaceae and is closely related to two freshwater magnetotactic spirilla, Magnetospirillum
magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. Yet, certain traits such as the synthesis
of osmoprotectant, Na+-dependent NADH-quinone oxidoreductase, and Na+-motive force driven
flagellar motors, make QH-2 better suited to a marine sedimentary lifestyle than its freshwater
counterparts [10]. The second is the ovoid-coccoid Magnetococcus massalia strain MO-1 isolated from
sediments of the Mediterranean Sea (Figure 1A) [11]. MO-1 belongs to the newly established class
Candidatus Etatproteobacteria and possesses the most exquisite flagellar apparatus [12]. The third
group is the magnetoglobules that have developed both multicellular and magnetotactic properties
during their evolution. To date, magnetotactic multicellular prokaryotes are found only in marine
environments [8]. They exhibit peculiar patterns of motility by coordinatively rotating tens of thousands
of peritrichous flagella (Figure 1B), including both polar and axis magneto-aerotaxis, ping-pong motion,
and photophobic and photokinesis swimming patterns.

2. Flagellar Apparatus of Marine Magnetotactic Bacteria

Flagella provide one of the most highly efficient means of bacterial locomotion and play a pivotal
role in adhesion, biofilm formation, and host invasion [13–16]. Bacterial flagella share a basic tripartite
structure; the basal body, the hook, and the filament [17]. The basal body contains a reversible rotary
motor made of a rotor, a drive shaft, a bushing, and about a dozen stators. The stator forms the proton
or sodium ion pathway and converts ion flow across the cytoplasmic membrane into the mechanical
work required for flagellar motor rotation. The basal body also contains the flagellar protein export
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apparatus, which recognizes, unfolds, and translocates flagellar components into the central channel
and to the distal, growing end of the flagellum [15,17]. Flagellar filaments have a helical structure and
function as a screw, where rotation pushes or pulls the cell. Despite structural similarities, bacterial
flagella exhibit extensive variations in both number and placement between species, and this criterion
had been used in bacterial taxonomy in the past. Bacteria may have a single flagellum (monotrichous)
at one end of the cell (polar flagellum), or a single flagellum at both ends (amphitrichous), numerous
flagella in a tuft (lophotrichous), or flagella distributed all over the cell (peritrichous). The three model
magnetotactic bacteria reviewed here possess amphitrichous, bilophotrichous, and peritrichous flagella
that underpin complex magnetotactic motion.

2.1. Flagellar Apparatus of Amphitrichously Flagellated Magnetospira sp. Strain QH-2

The spirillum Magnetospira sp. strain QH-2 was isolated from the intertidal sediments of the
China Sea [9]. The cells are amphitrichously flagellated with a single flagellum at each pole, their
composition and structure are probably the simplest when compared to the bilophotrichous flagella of
MO-1 and the peritrichous flagella of the multicellular magnetoglobules. Genomic analysis identified
flagellum synthesis genes at 10 locations (Figure 2) [10]. Intriguingly, multiple genes coding for either
proton-driven or sodium ion-driven motors were identified, including a single pomA, a single motB,
and two complete sets (pomAB/pomA-motB), although the paralogs share limited similarity (below
45%). In addition to the flagellar biosynthesis genes, well conserved in most prokaryotes, two genes
annotated as O-b-N-acetylglucosaminyltransferase were identified in flagellar gene clusters. They
contain a flagellin and several flagellar biosynthesis regulatory genes, demonstrating their function in
flagellin glycosylation.
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M. massalia strain MO-1 synthesizes two sheathed flagellar bundles on the long axis side of its 
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rotate between the 7 flagellar filaments to minimize the friction that would be generated if the flagella 
were directly packed together in a tight bundle [12]. The closely related M. marinus strain MC-1 and 
several marine bilophotrichously flagellated magnetotactic cocci seem to possess a flagellar 
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consisting of 19 flagella arranged in a 3:4:5:4:3 array within the flagellar bundle has been observed in 
a magnetotactic cocci found in the biogenic sediments of a Mariana–Yap seamount [27]. Questions 

Figure 2. Organization of flagella genes in model magnetotactic bacteria. The data are derived from
genomic data of amphitrichously flagellated Magnetospira sp. QH-2 [10], bilophotrichously flagellated
M. massalia strain MO-1 [18] and M. marinus strain MC-1 [19], peritrichous flagellated spherical
magnetoglobules Ca. M. multicellularis Araruama [20], Ca. Magnetomorum strain HK-1 [21], and
ellipsoidal magnetoglobules Ca. Magnetananas updated from the incomplete genome sequence [22].
Separated localization of the gene clusters is marked by double slashes. Arrows show the genes and
their transcriptional direction; their lengths are proportional to the size of the genes.

2.2. Flagellar Apparatus of Bilophotrichously Flagellated M. massalia Strain MO-1

M. massalia strain MO-1 synthesizes two sheathed flagellar bundles on the long axis side of
its ovoid body (Figure 1A). Each bundle is composed of 7 flagella and 24 fibrils. The flagella are
organized in a 2:3:2 array, and each of them is surrounded by 6 fibrils; altogether they constitute seven
intertwined hexagonal arrays [12]. It has been hypothesized that the 24 fibrils might counter rotate
between the 7 flagellar filaments to minimize the friction that would be generated if the flagella were
directly packed together in a tight bundle [12]. The closely related M. marinus strain MC-1 and several
marine bilophotrichously flagellated magnetotactic cocci seem to possess a flagellar apparatus with a
similar architecture [11,23–26]. Recently, an even more complex flagellar apparatus consisting of 19
flagella arranged in a 3:4:5:4:3 array within the flagellar bundle has been observed in a magnetotactic
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cocci found in the biogenic sediments of a Mariana–Yap seamount [27]. Questions inevitably arose
about these exquisite flagellar apparatuses, such as: What is the factor that determines the accurate
localization of flagella and why are they constrained within a sheath structure?

Sheath or pseudo-sheaths, each enclosing a single flagellum, have been reported for Caulobacter
crescentus [28], Pseudomonas rhodos [29], Vibrio spp. [16], Helicobacter pylori [30], and Bdellovibrio
bacteriovorus [31]. These flagellar sheath structures are believed to be an extension of the outer
membrane. In contrast, the sheath of MO-1 is assembled from a large (>350 kDa) glycoprotein and
in a calcium ion-dependent manner made into a left-handed helical structure [12,32]. The sheathed
bundle of seven flagella produces a thrust force, which is nine times greater than an unsheathed one,
and this is indispensable for the smooth swimming motion of MO-1 cells [12,32]. In addition, as all
strains possessing similar flagellar structures reside in marine sediments, the presence of a sheath
could possibly protect the filaments from breaking whilst moving through sands, and this implies that
there is an evolutionary adaptation to this habitat.

The complexity of this bilophotrichous sheathed flagellar is further demonstrated by using genome
sequences. Genomic analysis revealed that the genetic structures of flagellar synthesis genes in strains
MO-1 and MC-1 are well conserved (Figure 2). Most intriguingly, they possess the highest number of
flagellin paralogs (14 flagellin genes in strain MO-1 and 15 in strain MC-1) found in bacterial genomes
to date [19,33]. In both strains, most flagellin genes are spread in a tandem array, while a single
fliC resides in a more compact flagellar gene cluster consisting of flgKL (hook-associated proteins),
fliW (antagonist of general regulator CsrA), a putative flaG gene (function unknown), fliD (filament
cap), and two fliS (chaperon) (Figure 2). There is no obvious element, such as insertion-sequence (IS)
elements or duplicated flanking sequences, which could explain the mechanism of duplication of
these fliC paralogs. As indicated by quantitative PCR (q-PCR) and mass spectrometry analyses, all 14
flagellins in MO-1 are expressed, highly glycosylated, and present in the flagellar filaments, although
they differ significantly in quantity [33]. The biological significance of highly redundant flagellins and
the way they make up the filament, i.e., whether each flagellin forms an individual simple filament or
whether multiple flagellins form complex segmented or mosaic filaments, requires in-depth research.
Nevertheless, the flagella of MO-1 cells show unprecedented complexity in spatial organization and
flagellin redundancy in unicellular microorganisms.

2.3. Peritrichous Flagella of Multicellular Magnetoglobules

There are two kinds of magnetoglobules. In 1983, Farina et al. discovered spherical or mulberry-like
magnetoglobules in the Rodrigo de Freitas lagoon in Brazil [34]. Typically, 15–45 bacterial cells
arrange themselves with a helical geometry in a multicellular entity [35]. Since then, these types of
magnetoglobules have been observed worldwide [36–42]. The second morphotype, the ellipsoidal or
pineapple-like magnetoglobules, were observed in the Mediterranean Sea [8,43,44], the China Sea, and
the Pacific Ocean [45–49]. Approximately 60 cells axisymmetrically assemble along the longitudinal
axis to achieve a one-layer hollow entity that is held by a lattice at the surface [8]. Phylogenetic studies
have identified eleven species belonging to six genera of spherical magnetoglobules and nine species
belonging to six genera of ellipsoidal magnetoglobules. They formed branches of a magnetoglobule
clade, which are affiliated with Deltaproteobacteria, but are distinguished from another multicellular
Deltaproteobacteria, the myxobacteria [8]. Both morphotypes exhibit a conspicuous periphery–core
architecture. Juxtaposed membranes adhere together cells surrounding the core lumen where material
and information exchange may occur among the cells. Magnetoglobules possess multiple magnetosome
chains arranged along their long axis at the cell periphery. The surface of magnetoglobules is covered
by approximately tens of thousands of flagella (Figure 1) [8,50].

Genomic analysis revealed the following salient features of the genes required for flagella
synthesis in magnetoglobules. First, they possess well-conserved gene clusters containing
(motA)-2motB-fliRQPONL-flhB-(flhAFG-fliA) (Figure 2). Second, they have multiple copies of several
genes involved in motor rotation, such as motAB that code for proton–ion driven motors and fliN codes
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for a part of the motor switch complex, which modulates the motor activity. It is noticeable that the
second copy of fliN is twice the size of the copy in the conserved cluster. The long fliN of the switch
complex component might be involved in the coordination of flagellar rotation. Third, they have 2–3
copies of flagellin fliC genes, of which one copy is longer than the usual fliC genes. Finally, the flhF and
flhG genes controlling the flagellar number and position are highly conserved in magnetoglobules.
They may bear intrinsic characteristics for the regular implantation of thousands of flagella at the outer
surface of magnetoglobule cells.

3. Magnetotaxis Behavior of Marine Magnetotactic Bacteria

Magnetotactic bacteria are capable of aligning and swimming along the geomagnetic field lines.
The efficiency of magnetic orientation depends on the local redox gradient and latitude of the habitats
where the MTB dwell, as well as on the flagellar apparatus of MTB cells.

3.1. Polar and Axial Magnetotaxis

Magnetotaxis and aerotaxis work together in MTB to perform a so-called “magneto-aerotaxis”.
Two different magneto-aerotactic mechanisms, termed polar and axial magnetotaxis, are found in
different bacterial species [1,24]. In droplets of samples on a microscope slide or cover, there is an
oxygen gradient that is created due to the diffusion of oxygen from the peripheric edge toward the
center. When inspected with the optical microscope under oxic conditions, polar magnetotactic bacteria
swim persistently in one direction, either the north or the south, in the magnetic field. In contrast, axial
magnetotactic cells swim in either direction along the magnetic field lines with frequent, spontaneous
reversals of swimming direction without turning around.

The bilophotrichously flagellated M. massalia strain MO-1 exhibits a polar magnetotactic behavior,
swimming northwards along the geomagnetic field lines by means of two sheathed flagellar bundles,
at speeds of up to 300 µm/s, with frequent changes from a right to a left hand helical trajectory [11].
Freshwater amphitrichously flagellated M. magneticum AMB-1 shares a similar morphology with
the marine Magnetospira sp. strain QH-2, and its swimming behavior has been the most extensively
studied. Asymmetric rotation of the flagella (counterclockwise at the lagging pole and clockwise at the
leading pole) enables the cell to “run” while symmetric rotation triggers cell tumbling [51]. AMB-1
cells frequently tumble and change swimming direction, displaying the typical axial magnetotactic
behavior. Peritrichous magnetoglobules collected from the Mediterranean Sea swim preferentially
northward, a polar magnetotaxis. However, at times, some of them randomly change swimming
direction southward and subsequently change back to a north-seeking swim [8]. This is a typical
behavior of axial magnetotaxis. The stochastic backward motion may play a similar physiological
function to the tumbling of Escherichia coli that allows bacteria to randomly explore the favorable
direction in which to go. Therefore, a given MTB may perform both polar and axial magnetotactic
motilities that are not reciprocally exclusive, and the alternative usage is part of the adaptation strategy.

3.2. Bounce Motion

Magnetoglobules display a canonical escape or ping-pong motion. It is composed of a sudden
accelerated excursion from the droplet edge towards the center opposing the direction of magnetotaxis.
At variable distances, they decelerate, stop, and swim with acceleration back to the droplet edge [8,
34–36,41,42,44,45,48,52–57]. In fact, the ping-pong motion is not restricted to magnetoglobules; other
morphotypes of MTB also display this kind of motility. The small cell sizes make observations difficult.
Some of the big rod-shaped MTB exhibit obvious escape motion as shown in Figure 3A and Vdieo S1
ping-pong motion of big rod-shaped MTB.
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Figure 3. Ping-pong motion and photo-sensitive motility. (A) a magnetotactic bacillus of ~ 4 µm
swims northward (red track) until the edge of the droplet. Then, it swims southward, opposite to the
north-seeking swimming direction to the center of the droplet (blue track), which is followed by a
returning north-seeking (magenta track). (B) is a representative photosensitive swimming behavior of
magnetoglobules and (C) is an ImageJ analysis of the data [8]. The dot-line square curve indicates the
north direction of the alternating magnetic field. Positive velocity means that the magnetoglobule swims
from left to right on the image whilst the negative values are opposite. The velocity curve colors in (C)
correspond to the same colors of the swim tracks in (B). When the velocity curve is on the same side
as the field curve using zero velocity line as a reference, the magnetoglobule exhibits a north-seeking
magnetotaxis (e.g., red and green tracks), otherwise it displays a south-seeking magnetotaxis (blue
and magenta tracks). Violet areas show the swimming of the magnetoglobule in the UV spot. Yellow
arrows with r1 and r2 indicate the sudden change of swimming direction to south-seeking; a1 to a6
show the accelerations.

The ping-pong motion can be observed when cells hit the edge of the droplets or other kinds of
obstacles, such as the wall of microchannels [8]. In addition, both the unicellular M. massalia strain
MO-1 [58] and multicellular magnetoglobules [8] exhibit a conspicuous backward motion when they
encounter particles. In all conditions, cells are prevented from swimming in a magnetotaxis direction,
and exhibit a bounce motion. The mechanism involved in the mechanical sensing of microchannel
walls and particles might be different from that of the surface/border of the droplets.

3.3. Photo-Sensitive Magnetotaxis: Photophobic Response and Photokinesis

Sunlight consists of electromagnetic waves, of which high energetic radiation is harmful for living
organisms. Fortunately, the geomagnetic field protects living beings from the deleterious effect of
radiation. In addition, the geomagnetic field provides a pervasive and reliable source of directional
and positional information for various organisms to use as an orientation cue, which maps migrating
or homing routes. Magnetotactic bacteria have developed means of sensing not only the geomagnetic
field, but also certain wavelengths of sunlight.

Microbes react to light illumination in different ways depending on their physiological properties.
Phototaxis refers to cells swimming along the direction of a light beam towards (positive) or away
from (negative) a light source [59]. In reaction to a sudden change of light intensity, photophobic
microbes will swim to lower intensity whereas scotophobic microbes will move to higher intensity
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regions. Photokinesis describes the change in velocity (speed and direction) in response to light. The
freshwater M. magneticum AMB-1 exhibits phototaxis behavior that is independent of the wavelength
and magnetotaxis [60]. Photophobic swimming has been reported for unicellular Magnetospira sp.
QH-2 [9] and multicellular magnetoglobules [20,37,41,42,44,45,48]. In this case, magnetotaxis drives
cells to the edge of droplets. In reaction to illumination with blue (450–480 nm), violet (400–410 nm),
and ultraviolet light (330–385 nm), the bacteria swim towards the center, in the opposite direction of
magnetotaxis, with increased acceleration, which is similar to ping-pong motion, but is distinct due to
the absence of a return swim. The reaction time is proportional to the wavelength: the shorter the
wavelength, the quicker the reaction.

Interestingly, ellipsoidal magnetoglobules show a photokinesis behavior. Reverse fluorescence
microscopes generally have two light-sources. One is a transmission background visible light (tungsten
halogen lamp) for observation and imaging, and the other is an epi-illumination for fluorescence
excitation. The second light source can be used to analyze the photo effect on swimming behavior by
illumination at a given wavelength on a defined area [8]. The swimming of ellipsoidal magnetoglobules
collected from the Mediterranean Sea was maintained within the illumination spots via the application
of an alternate uniform magnetic field in order to periodically reverse the swimming direction of
magnetoglobules (Figure 3B). At times, magnetoglobules suddenly changed their swimming direction
being opposite to the initial magnetotaxis direction with increased acceleration, when stimulated with
UV light (385 nm). Variable proportions of magnetoglobules reacted to violet (430 nm) [8]. This is a
typical photokinesis behavior, i.e., changing the swim speed and direction. The dependence of the
wavelength and intensity of the light stimulus remains to be characterized.

3.4. Physiological Function of Magnetotaxis

Magnetotactic bacteria live at, or just below, the oxic–anoxic interface or redoxocline in aquatic
habitats. Interestingly, magnetotactic bacteria collected from the Northern Hemisphere swim
preferentially northward, in parallel with the geomagnetic field lines (north-seeking (NS)) [23],
and those from the Southern Hemisphere swim preferentially antiparallel to the geomagnetic field lines
to the magnetic south pole (south-seeking (SS)) [61]. The geomagnetic field is inclined downward from
horizontal in the Northern Hemisphere, and upward in the Southern Hemisphere, with the inclination
magnitude increasing from the equator to the poles. Therefore, the hypothetical physiological function
of magnetotaxis can be that magnetotaxis guides the cells in each hemisphere downward to the less
oxygenated regions of the aquatic habitat [1].

Marine sediments are characterized by opposing oxygen and reductant (e.g., sulfide) gradients
within the upper millimeters of the sediments, which are covered by air-saturated seawater. The
pattern of the gradients constantly changes due to the convective water currents at the sediment
surface, dynamic metabolism of microbe populations, or periodic exposure to the air during low tide.
In order to adapt to these ever-changing environmental parameters, magnetotactic bacteria have to
combine magnetotaxis with aerotaxis. Moreover, penetration downward from the water phase into the
sediments and swimming in the water pockets requires robust flagellar propellers. As a consequence
of environmental selection, the M. massalia strain MO-1 synthesizes sheath-protected, well-organized,
and highly coordinated flagellar apparatus that ensure a high swimming velocity [11]. When they
encounter the bulk of an obstacle, MO-1 cells can squeeze through them or change direction using the
bounce motion, thereby circumventing the obstacles [58]. Backward swimming occurs using various
angles between the translation and field axes, which provides a large range of swimming directions in
order to circumvent the obstacle. The robust flagellar apparatus and versatile swimming capacity give
MO-1 cells a competitive fitness in marine sediments. In addition, studies with the axenic culture of
MO-1 provide compelling evidence to support the physiological significance of magnetotaxis.

The cultures in polystyrene plastic tubes exhibit a vertical downward oxidation–reduction potential
(ORP, or redox) gradient, and a radiate gradient with an oxygen concentration decrease from the
peripheral zone to the center, due to the diffusion of oxygen across the tube wall. During growth, MO-1
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generates an oxic–anoxic–oxic oxycline pattern and forms two bacterial swarm bands. Remarkably, the
upper band, where the magnetic field is parallel to the direction of the redox potential decrease, consists
of >95% north-seeking (NS) cells, while the lower bacterial band, where the downward magnetic
field lines are opposite to the upward direction of redox potential decrease, is composed of >90%
south-seeking (SS) cells [62]. In both loci, cells with the ‘correct’ magnetotaxis polarity that are directed
to swim towards the direction of the redox potential decrease are selected. Therefore, these observations
are consistent with the hypothesis of magnetotaxis function and indicate the configuration of the ORP
and magnetic field direction on a magnetotactic direction [62]. Further analysis by incubating MO-1
cells in a shielded, hypo-magnetic field (2 nT) showed that bacterial growth produces irregular forms
of oxycline. Most importantly, the biomass of the cultures incubated in a hypo-magnetic environment
are two orders of magnitude lower than those in the geomagnetic field, and could not grow at all when
inoculated with a low quantity of cells [58]. This clearly demonstrates that magnetotaxis does present
an advantage for the growth of MO-1 in the oxycline, and is even essential at low cell densities.

Magnetoglobules swim faster than most unicellular bacteria and are large in size, which has
an advantage in mitigating the risk of predation. Magnetoglobules dwell in intertidal sediments
as deep as 30 cm and undergo seasonal vertical movement in response to nutrient distribution
changes [63]. Shapiro et al. have suggested that photophobic behavior enables magnetoglobules to
optimize their location to adapt to circadian variations in chemical gradients and light intensity [37].
Indeed, genes involved in controlling the circadian rhythm have been found in the genomes of
magnetoglobules [20,22]. Therefore, magnetoglobules seem to have adopted a multicellularity and
photosensitive magnetotaxis in order to adapt to shallow marine environments.

4. Mechanism of Magnetotaxis

In seeking an environment optimal for their growth, bacteria change swimming direction frequently
by changing the direction of flagellar rotation. Our current understanding of chemotaxis stems mainly,
from the extensively studied, peritrichously flagellated enterobacteria E. coli and Salmonella spp. [15].
These alternate between periods of “run” and “tumble” and the swimming pattern is determined by
the direction of the flagellar motor rotation. When the motor rotates in the counterclockwise (CCW)
direction (as viewed from the distal end of the filament), several flagellar filaments form a loose bundle
to propel the cell forward to run. When the motor reverses its rotation to clockwise (CW), the bundle
falls apart and the cell tumbles [15]. Monopolar flagellum pushes marine vibrio forward by CCW
rotation and pulls it backwards through CW rotation [64]. According to the prevailing hypothesis,
magnetotactic bacteria align passively along the geomagnetic field lines, which guide swimming
downward from the oxic zone to the oxic–anoxic interface, by rotating their flagella counterclockwise [1].
When located in the anoxic zone magnetotactic bacteria swim upward by reversing the direction of
flagellar rotation from counterclockwise to clockwise. This is a simplified assumption, because it
does not explain the coordinated rotation of bilophotrichous flagella of MO-1 and tens of thousands
peritrichous flagella of magnetoglobules. MO-1 cells swim for very long distances without stopping,
until they encounter an obstacle, which causes them to turn their bodies and swim against the
magnetic field to circumvent the obstacle [58]. Such behavior is in contrast with the model of aligned
forward–backward motion. The ovoid MO-1 cells possess two flagellar bundles on the long axis side
of their body (Figure 1) [11,12]. These cells rotate around and translate along their short body axis [58].
It is consistent with the fact that the two flagellar bundles are placed on the long body axis, thus
presumably generating the propulsion along the short body axis [65]. Electron cryotomography (ECT)
analysis revealed that the magnetosome chains in MO-1 cells are roughly along the long body axis
in >90% of cells, or with angles of less than 45◦ to the short body axis in 5% of cells [12]. Therefore,
the direction of the magnetic moment is not parallel to the short body axis in most MO-1 cells, hence
MO-1 cells are not perfectly aligned along the magnetic field lines while they swim. The direction of
magnetic dipole moment exhibits a cyclical change perpendicular to their translation direction. The
poor alignment of magnetic moment along the magnetic field lines enables backward swimming with a
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body reversal in bounce motion. In contrast, ellipsoidal magnetoglobules align well in magnetic fields
and their bodies remain in the same direction when swimming backwards [8]. It is noteworthy that
the backward swimming in bounce motion and the axial magnetotaxis of magnetoglobules start with
the highest acceleration and have higher instantaneous velocity than the forward swimming. Hence,
magnetoglobules seem to steer their flagella according to the magnetic direction of their swimming.
Greenberg et al. have analyzed the kinematics of ping-pong motility in magnetic fields and proposed a
receptor-mediated mechanism for sensing the magnetic field by spherical magnetoglobules [56].

Bacteria can sense a wide range of environmental signals that steer bacterial locomotion through
the extensively studied chemotaxis mechanism [64,66]. The chemoreceptors, methyl-accepting
chemotaxis proteins (MCPs), detect the stimuli, and control, through histidine protein kinase CheA,
the phosphorylation state of the response regulator CheY. Phospho-CheY interacts with the flagellar
motor and switches the rotation direction. Rotation in one direction results in smooth swimming,
whilst switching the rotation direction may lead to backward motion, tumbling, or stopping swimming,
depending on the bacterial species [64]. We have proposed a chemotaxis-like magnetotaxis mechanism
for the freshwater M. magneticum strain AMB-1. We have shown that the Amb0994, an MCP-like
protein, lacks the periplasmic signal molecule-binding domain, and interacts with cytoskeleton MamK
filaments, on which the magnetosome chain is connected [67]. Our hypothesis is that poor alignment of
magnetosome chains in the magnetic field would generate a magnetic torque that applies a mechanical
strength on the MamK filament. Interaction between the MamK filament and Amb0994 converts the
mechanical signal to a biochemical signal, i.e., phosphorylation of CheA. Subsequent phosphorylation
of CheY and its binding onto the flagellar motor would slow down or stop the rotation of flagella, to
avoid them from swimming in the wrong direction. Two results are consistent with this hypothesis.
Overexpression of Amb0994 interferes with the AMB-1 response to the reversal of the magnetic
field [67]. Deletion of the amb0994 gene resulted in the failure of AMB-1 cells to align with the magnetic
field lines in a weak biologically relevant magnetic field, and this dysfunction was recovered by in
trans complementation of the mutant [68]. These results support the chemotaxis-like magnetotaxis
mechanism. Considering the morphological and physiological diversity of magnetotactic bacteria,
various magnetotactic mechanisms might be used.

Coordinated swimming behavior is a fundamental feature that emerged during the evolution of
multicellularity. Magnetoglobules exhibit a highly complex motion: polar and axial magnetotaxis,
bounce motion, photophobic response, and magneto-photokinesis [8]. Bacterial photo-sensing
might rely directly on dedicated photoreceptors, or indirectly on the products of photosynthesis or
other illumination by-products, i.e., reactive oxygen species, ATP, change of intracellular redox, or
force proton motif. Six types of photosensory proteins using four kinds of chromophores are well
characterized [69,70]. Among them, two groups, cryptochromes and sensory rhodopsins, are involved
in photo-responsive motion.

Flavin-based cryptochrome serves as magnetoreceptor for migratory birds to exploit the
geomagnetic field for direction and mapping [71]. Blue-light excitation of cryptochrome proteins in
the retina creates a radical–pair consisting of molecules with a single unpaired electron. The spins
of the two unpaired electrons are either antiparallel to one another (singlet state) or parallel (triplet
state). As with a compass, the spin of one unpaired electron is primarily influenced by the magnetism
of a nearby atomic nucleus, and the other is further away from the nucleus and influenced only by
Earth’s magnetic field [71,72]. The difference in the field shifts the radical pair between two quantum
states with differing chemical reactivity. Therefore, a change in surrounding magnetic field affects the
interconversion and the reaction direction, which results in an output signal being transferred to the
neural system in animals [71,73,74]. The radical pair compass is light-dependent, involves quantum
entanglement, and is thus considered as a representative example of quantum biology [72].

Prokaryotic rhodopsins (proteorhodopsins) are involved in photomotility at two levels [75]. They
function as photo-driven ion pumps, where proteorhodopsins translocate ions across cytoplasmic
membrane and establish ion gradients upon capture of light. In turn, the gradients drive the
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flagellar motors for motility [76]. Sensory rhodopsins are directly involved in phototaxis of archaea
Halobacterium halobium, which are attracted to long wavelength visible light (red-light attraction), and
repelled by shorter wavelength light (blue-light repellence). Together, two phototaxis receptors, sensory
rhodopsin I (SRI) and sensory rhodopsin II (SRII), and two transducers, haloarchaeal transducer for
SRI (HtrI) and haloarchaeal transducer for SRII (HtrII) form two phototaxis reception complexes [77].
Retinal-containing SRI or SRII are transmembrane proteins that encircle cognate HtrI or HtrII. The
transducers HtrI and HtrII are structurally and functionally similar to MCP proteins. The SR-Htr
complexes modulate the CheA kinase activity and steer flagellar rotation through integration with
a switch regulator CheY. Orange-light activates SRI that interacts with HtrI and transiently inhibits
CheA kinase activity. Reduced concentrations of phosphorylated CheY decreases the probability
of switching motor rotation. As a consequence, the cell continues swimming towards the orange
light, displaying the red-light attraction behavior [77]. In contrast, blue-light activation of SRII excites
transient activation of CheA, an increase of phospho-CheY concentration, and has the probability of
switching flagellar motor rotation direction, which leads to the blue-repellence. In addition to these
two simple, direct reaction processes, sequential activation of SRI by orange followed by near-UV
results in a strong repellent response. Sensory proteorhodopsin has been found in marine bacteria but
their physiological function has not been demonstrated yet [77].

We have not identified genes that encode for either cryptochrome or proteorhodopsin in the
genomes of Mangetospira sp. QH-2 [10], M. massalia MO-1 [18], spherical magnetoglobules [21,78],
or incomplete genomes of ellipsoidal magnetoglobules. Therefore, the photo-sensing observed in
these magnetotactic bacteria might be performed with other kinds of photoreceptors, or indirectly
through chemical and physical reactions. Short wavelength light induces photoreaction and creates
active oxygen species, which modify physiological conditions and triggers cellular reaction. In
ellipsoidal magnetoglobules, we observed the fence-like structure, which looks like photosynthetic
membrane lamellae and could be an appropriate candidate for accommodating the photoreceptors
involved in photo-sensing [8]. It might also function as a grating to relay and convert light signals.
Multicellular magnetotactic prokaryotes displayed a helical trajectory of swimming and reacted to
illumination with UV-light perpendicular to the translation direction. They changed the magnetotaxis
direction and velocity suddenly within the illumination area. Therefore, the magneto-photokinesis
is unlikely to be a result of the detection of an intracellular spatial light gradient. The sudden
change of swim direction under constant illumination would suggest the cumulating effect of
periodical exposure of photoreceptive structures to UV-light, or the production of harmful by-products.
Therefore, multicellular magnetotactic prokaryotes reversed their swimming direction to escape from
the deleterious light. It remains an enigma how thousands of flagella of 60–80 cells coordinate their
rotations to propel the swimming direction away from the default magnetotaxis orientation.

5. Conclusions

Magnetotaxis is an obvious magnetic field reactive swimming behavior, and little is known about
the mechanism of magnetoreception. Despite extensive studies of magnetotactic bacteria over the last
two decades, it remains a question of debate whether bacteria steer their flagellar motors in response
to the state of their alignment in magnetic fields. Light is electromagnetic radiation and it affects
magnetotaxis. What might be the connection between magnetic and optical stimuli? Photoreceptors
known to be responsible for photomotion have not been identified in magnetotactic bacteria, in spite
of the advances in metagenomics. The scarcity of axenic marine bacterial cultures makes the study
of photo-sensitive magnetotaxis mechanisms even more complicated. The paradigm of bacterial
chemotaxis is underpinned by intracellular diffusion of phosphorylated proteins and their binding to
flagellar motors, in order to steer the swimming behavior in response to environmental stimuli [66].
How is a signal transmitted across multiple membranes to reach tens of thousands of flagellar motors
at the surface of approximately 60 cells? Considering the particle and wave duality of photons, the
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application of the quantum concept might provide a solution and shed some light onto the complex
study of magnetic photokinesis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/3/460/s1,
Video S1: ping-pong motion of big rod-shaped MTB.
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