
HAL Id: hal-02587458
https://amu.hal.science/hal-02587458

Submitted on 15 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Transcriptomic atlas of mushroom development reveals
conserved genes behind complex multicellularity in fungi

Krisztina Krizsán, Éva Almási, Zsolt Merényi, Neha Sahu, Máté Virágh,
Tamás Kószó, Stephen Mondo, Brigitta Kiss, Balázs Bálint, Ursula Kües, et

al.

To cite this version:
Krisztina Krizsán, Éva Almási, Zsolt Merényi, Neha Sahu, Máté Virágh, et al.. Transcriptomic atlas of
mushroom development reveals conserved genes behind complex multicellularity in fungi. Proceedings
of the National Academy of Sciences of the United States of America, 2019, 116 (15), pp.7409-7418.
�10.1073/pnas.1817822116�. �hal-02587458�

https://amu.hal.science/hal-02587458
https://hal.archives-ouvertes.fr


EV
O

LU
TI

O
N

Transcriptomic atlas of mushroom development
reveals conserved genes behind complex
multicellularity in fungi
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The evolution of complex multicellularity has been one of the
major transitions in the history of life. In contrast to simple mul-
ticellular aggregates of cells, it has evolved only in a handful
of lineages, including animals, embryophytes, red and brown
algae, and fungi. Despite being a key step toward the evo-
lution of complex organisms, the evolutionary origins and the
genetic underpinnings of complex multicellularity are incom-
pletely known. The development of fungal fruiting bodies from
a hyphal thallus represents a transition from simple to complex
multicellularity that is inducible under laboratory conditions. We
constructed a reference atlas of mushroom formation based on
developmental transcriptome data of six species and comparisons
of >200 whole genomes, to elucidate the core genetic program
of complex multicellularity and fruiting body development in
mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved
gene families and >70 functional groups contained developmen-
tally regulated genes from five to six species, covering functions
related to fungal cell wall remodeling, targeted protein degrada-
tion, signal transduction, adhesion, and small secreted proteins
(including effector-like orphan genes). Several of these families,
including F-box proteins, expansin-like proteins, protein kinases,
and transcription factors, showed expansions in Agaricomycetes,
many of which convergently expanded in multicellular plants
and/or animals too, reflecting convergent solutions to genetic
hurdles imposed by complex multicellularity among indepen-
dently evolved lineages. This study provides an entry point to
studying mushroom development and complex multicellularity in
one of the largest clades of complex eukaryotic organisms.

complex multicellularity | evolution | fungi | comparative genomics |
fruiting body development

Fungi represent a diverse lineage of complex multicellular
organisms with a unique evolutionary history compared with

complex multicellular animals, embryophytes, florideophytes,
and laminarean brown algae (1–4). Within the fungal kingdom,
complex multicellularity is discussed mostly in the context of
fruiting bodies, which are found in at least eight independent lin-
eages (2), of which the Pezizomycotina (Ascomycota) and the
Agaricomycetes (Basidiomycota) contain the vast majority of
species. The mushroom-forming fungi (Agaricomycetes) com-
prise >21,000 species and originated 350 million years ago (5),
approximately coinciding with the origin of tetrapods. Fruiting
bodies of mushroom-forming fungi have immense importance in
agriculture, ecology, and medicine; they represent an important
and sustainable food source, with favorable medicinal properties

(e.g., antitumor, immunomodulatory) (6). Mushroom-forming
fungi share a single origin of fruiting body formation that
probably dates to the most recent common ancestor of the
Agaricomycetes, Dacrymycetes, and Tremellomycetes (2).

Fruiting body development in mushroom-forming fungi has
been subject to surprisingly few studies (see, e.g., refs. 7–10),
resulting in a paucity of information on the genetic underpin-
nings of the origins of complex multicellularity in this group
(2). During fruiting body development, fungi deploy mecha-
nisms for hypha-to-hypha adhesion, communication (e.g., via
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cell−cell channels; ref. 11), cell differentiation, and defense,
and execute a developmental program that results in a geneti-
cally determined shape and size (2, 10). Fruiting bodies shelter
and protect reproductive cells and facilitate spore dispersal.
Uniquely, complex multicellularity in fungi comprises short-lived
reproductive organs, whereas, in animals and plants, it com-
prises the reproducing individual. Nevertheless, fruiting bodies
evolved complexity levels comparable to that of simple ani-
mals, with up to 30 morphologically distinguishable cell types
described so far (10). Fruiting body development is triggered
by changing environmental variables (e.g., nutrient availabil-
ity), and involves a transition from vegetative mycelium to a
complex multicellular fruiting body initial. While the vegetative
mycelium is composed of loosely arranged hyphae and shows lit-
tle differentiation [hence, better regarded as a grade of simple
multicellularity (1, 2)], the emergence of a fruiting body ini-
tial involves a reprogramming of hyphal branching patterns to
form a compact, three-dimensional structure in which hyphae
adhere tightly to each other. The initial follows genetically
encoded programs to develop species-specific morphologies (9,
10), which, in the Agaricomycetes, ranges from simple crust-like
forms (e.g., Phanerochaete) to the most complex toadstools (e.g.,
Agaricus bisporus). Previous studies identified several devel-
opmental genes, including hydrophobins (12), defense-related
proteins (13), fungal cell wall (FCW) modifying enzymes (14–
17), transcriptional regulators (8, 9, 18) (e.g., mating genes),
and light receptors (19) (e.g., white collar complex). Since all
these studies focused on a single species, they provide little
information on what genes comprise the conserved and species-
specific toolkits of multicellularity and development in the
Agaricomycetes.

Here we investigate the general evolutionary and func-
tional properties of fruiting body development using compara-
tive transcriptomes of fruiting bodies of complex multicellular
Agaricomycetes (mushroom-forming fungi). We sampled RNA
from different developmental stages of six species that share
a complex multicellular ancestor and represent the levels of
fruiting body complexity found in the Agaricomycetes. We com-
bine comparative analyses of developmental transcriptomes with
comparisons of 201 whole genomes and focus on conserved
developmental functions and complex multicellularity in fruiting
bodies.

Results
We obtained fruiting bodies in the laboratory for Coprinop-
sis cinerea AmutBmut, Schizophyllum commune H4-8, Phane-
rochaete chrysosporium RP78, and Lentinus tigrinus RLG9953-sp
and, from the field, for Rickenella mellea SZMC22713 and pro-
filed gene expression in three to nine developmental stages
and tissue types (Fig. 1B). For Armillaria ostoyae C18/9, we
used RNA-Seq data of five developmental stages and three tis-
sue types from our previous work (20). Besides, we report the
de novo draft genome of R. mellea (Hymenochaetales). The
phylogenetically most distant species in our dataset are Rick-
enella and Coprinopsis, spanning >200 million years of evolution
(5) and having a complex multicellular last common ancestor.
Species with the most complex fruiting bodies are A. ostoyae,
C. cinerea, L. tigrinus (21), and R. mellea form fruiting bodies
with cap, stipe, and gills, whereas P. chrysosporium and S. com-
mune produce plesiomorphically and secondarily simple fruiting
bodies, respectively. To construct a reference atlas of mushroom
development, we performed poly(A)+ RNA-Seq on Illumina
platforms, in triplicates (totaling to >120 libraries; Dataset S1).
We obtained an average of 60.8 million reads per sample, of
which, on average, 83.3% mapped to the genomes (SI Appendix,
Fig. S1). For each species, the first and last developmental stages
sampled were vegetative mycelium and mature fruiting body at
the time of spore release, respectively. This spans all develop-

mental events of fruiting bodies except senescence. We defined
two groups of developmentally regulated genes: those that show
greater than fourfold change and a fragment per kilobase per
million mapped reads of >4 between any two stages of fruit-
ing body development (referred to as “FB development genes”)
and that show greater than fourfold increase in expression from
vegetative mycelium to the first primordium stage (referred
to as “FB-init genes”). These definitions exclude genes that
show highest expression in vegetative mycelium and little or no
dynamics later on. Using this strategy, we could recover >80%
of previously reported developmental genes of Coprinopsis
(Dataset S2). To more broadly infer functionalities enriched in
mushroom-forming fungi, we analyzed Interpro domain counts
across 201 fungal genomes (including 104 Agaricomycetes),
which revealed 631 significantly overrepresented domains in
mushroom-forming fungi (P < 0.01, Fisher exact test Benjamini
Hochberg adjusted P values, abbreviated as FET; Datasets S3
and S4).

Dynamic Reprogramming of the Fungal Transcriptome. We detected
12,003 to 17,822 expressed genes, of which 938 to 7,605 were
developmentally regulated in the six species (Fig. 1A and Dataset
S5). We found 192 to 7,584 genes that showed significant expres-
sion dynamics during fruiting body development (FB devel-
opment genes). Of developmentally regulated genes, 188 to
1,856 genes were upregulated at fruiting body initiation (FB-
init genes), which represents a transition from simple to complex
multicellular organization. Only P. chrysosporium had more FB-
init genes than FB development genes, which is consistent with
its fruiting bodies being among the least complex types in the
Agaricomycetes. The number of genes significantly differentially
expressed (DEGs) at fruiting body initiation further suggests that
the transition to complex multicellularity is associated with a
major reprogramming of gene expression (SI Appendix, Fig. S2).
The largest numbers of DEGs were observed in cap and gill
tissues in all four species with complex fruiting bodies. On the
other hand, the expression profiles of stipes changed little rela-
tive to primordium stages in Armillaria, Lentinus, and Rickenella,
which is explained by the completion of primordial stipe early
during development in these species [epinodular development
(22)], as opposed to Coprinopsis, in which stipe and cap initials
develop simultaneously inside the fruiting body initial [endon-
odular development (22)]. Many Gene Ontology (GO) terms
were partitioned between vegetative mycelium and fruiting body
samples (P < 0.05, FET). Terms related to FCW, oxidoreduc-
tase activity, and carbohydrate metabolism were enriched in
FB-init and FB development genes of all six species (SI Appendix,
Fig. S3 and Dataset S6), suggesting that cell wall remodeling
is a common function during fruiting body development. Other
commonly enriched terms cover functions such as DNA replica-
tion, transmembrane sugar transport, and ribosome, membrane,
and lipid biosynthesis, while many others were specific to single
species (SI Appendix, Fig. S3).

To obtain a higher-resolution picture of developmental events,
we arranged developmentally regulated genes into coexpres-
sion modules using the Short Time-Series Expression Miner
(STEM) (23). Developmentally regulated genes grouped into
28 to 40 modules, except Phanerochaete, which had 11. The
largest modules in all species contained genes expressed at
fruiting body initiation or in early primordia and genes with
tissue-specific expression peaks, in young fruiting body caps,
gills, stipes, mature fruiting bodies, and stipes or caps (Fig. 1C;
only results for C. cinerea are shown; for the other species, see
SI Appendix, Figs. S4–S9 and Supplementary Text). Many early-
expressed modules show upregulation across multiple stages
(hyphal knot, stage 1 and 2 primordia), suggestive of an early
expression program overarching multiple primordium stages.
Coexpression modules display distinct functional enrichment
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Fig. 1. Overview of the developmental transcriptomes. (A) The distribution of developmentally regulated genes and significantly differentially expressed
genes (DEGs) of cap and stipe in six mushroom-forming species (“up” denotes significantly upregulated). Fruiting bodies are shown on the right (Phane-
rochaete, K.K.; Rickenella, Bálint Dima; others, L.G.N.). (B) Schematic of the developmental time series data with C. cinerea as an example. C, cap; FB, fruiting
body; G, spore producing gills; HN, hyphal knot; P1, stage 1 primordium; P2, stage 2 primordium; S, stipe; VM, vegetative mycelium; YFB, young fruiting
body. (C) Analysis of coexpression modules in C. cinerea. Heatmap of 7,475 developmentally expressed genes is arranged based on module assignment,
with simplified expression profiles and enriched GO terms (no term means no enriched GO) given for each module (see also Dataset S7). We graphically
depict only 27 modules with >50 genes (refer to SI Appendix, Figs. S4–S9 for the complete list of modules and data for other species). The distribution of
key developmental genes is given on the right side of the heatmap. (D) UpSetR representation of gene families developmentally regulated in at least five
species (see also SI Appendix, Fig. S10).

signatures, as shown in Fig. 1C and Dataset S7. For exam-
ple, DNA replication and mitosis were characteristic for early-
expressed modules, consistent with an early wave of nuclear and
cellular division events followed by cell expansion without sig-
nificant change in cell numbers (9). Growth by cell expansion
is a mechanism shared with plants and possibly reflects con-

straints imposed by independently evolved rigid cell walls in
these groups.

Splicing Patterns Associate with Development. We reconstructed
transcript isoforms across developmental stages and tissue
types in the six species using region-restricted probabilistic
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modeling, a strategy developed for gene-dense fungal genomes
(24). We found evidence of alternative splicing for 36 to 46%
of the expressed genes (Dataset S9), which is significantly higher
than what was reported for fungi outside the Agaricomycetes (25,
26) (1 to 8%). This transcript diversity was generated by 6,414 to
13,780 splicing events in the six species. Of the four main types
of events, intron retention (44.3 to 60.5%) was the most abun-
dant in all species, followed by alternative 3′ splice site (22.9
to 30.1%), alternative 5′ SS (15.6 to 24.1%), and exon skipping
(0.8 to 2.9%) (SI Appendix, Fig. S11A), consistent with obser-
vations made on other fungi (25–27). No substantial difference
in the proportion of spliced genes and of splicing events was
observed across developmental stages, tissue types, or species.
Nevertheless, we found that several genes with nearly constant
overall expression level had developmentally regulated tran-
script isoforms (SI Appendix, Fig. S11 B and C). The six species
had 159 to 1,278 such genes, the highest number in Rickenella
(1,278) and the lowest in Phanerochaete (159) (SI Appendix,
Fig. S11D and Dataset S9). Based on their expression dynam-
ics, these transcripts potentially also contribute to development,
expanding the space of developmentally regulated genes through
alternative splicing.

Conserved Transcriptomic Signatures of Mushroom Development.
Our transcriptome data are particularly suited to detecting
shared patterns of gene expression across species. We analyzed
common functional signals in the six species by estimating the
percent of developmentally regulated genes shared by all or sub-
sets of the species based on Markov clustering (28) of protein
sequences. We found 100 clusters containing developmentally
regulated genes from all six species, and 196 in five species
(Fig. 1D and Dataset S10). These are enriched for GO terms
related to oxidation−reduction processes, oxidoreductase activ-
ity, and carbohydrate metabolism, among others, corresponding
to a suite of carbohydrate active enzymes. Of the 100 fami-
lies shared by six species, 15 can be linked to the FCW, while
the remaining families cover diverse cellular functions such as
transmembrane transport (6 families), cytochrome p450s (5 fam-
ilies), targeted protein degradation (5 families), or peptidases
(3 families). One hundred and four gene families are shared
by five species excluding Phanerochaete (Fig. 1D), which comes
as no surprise, as this species produces the simple crust-like,
fruiting bodies. Besides these highly conserved families, genes
containing another 73 InterPro terms are developmentally reg-
ulated in six or five species but didn’t group into gene families
due to their higher rate of evolution. These include most tran-
scription factors (TFs), kinases, aquaporins, certain peptidase
families, and enzymes of primary carbohydrate metabolism (tre-
halose and mannitol; SI Appendix, Fig. S13), among others
(Dataset S10).

Shared developmentally regulated gene families included a
conserved suite of CAZymes active on the main chitin and β-
1,3- and β-1,6-glucan polymers as well as minor components of
the FCW. These included various glycoside hydrolases (GH),
hydrophobins, expansin-like proteins, and cerato-platanins,
among others. A large suite of β-glucanases, chitinases, lac-
cases, endo-β-1,4-mannanases, and α-1,3-mannosidases were
developmentally regulated, many of which are also expanded in
Agaricomycetes (SI Appendix, Table S2 and Fig. S12). The
expression of glucan-, chitin-, and mannose-active enzymes is
consistent with active FCW remodeling during fruiting body
formation and recent reports of similar genes upregulated in
the fruiting bodies of Lentinula (16, 17, 29), Flammulina (30),
and Coprinopsis (31). Kre9/Knh1 homologs are developmentally
regulated in all species and are overrepresented in mushroom-
forming fungi (P = 1.45 ×10−5, FET; Dataset S3). This family is
involved in β-glucan assembly in Saccharomyces and has puta-
tive signaling roles through an interaction with MAP kinases

(32). Although generally linked to cellulose degradation (33, 34),
expansins, lytic polysaccharide monooxygenases, and cellobiose
dehydrogenases have recently been shown to target chitin poly-
mers (35, 36) or to be expressed in fruiting bodies of Pycnoporus
(37) and Flammulina (38), suggesting a role in fruiting body
development. In addition, developmental expression of two algi-
nate lyase-like families (SI Appendix, Table S2) were shared by
six species, while that of a β-glucuronidase (GH79 1) was shared
by four species (Armillaria, Coprinopsis, Rickenella, and Lenti-
nus). The targets of these families in fruiting bodies are currently
unknown, yet their conserved expression pattern suggests roles
in polysaccharide metabolism during development (39). Com-
parison across 201 genomes revealed that 24 of these families
have undergone expansions in the Agaricomycetes (SI Appendix,
Table S2 and Dataset S3). In summary, CAZymes might be
responsible for producing fruiting body-specific FCW architec-
tures, conferring adhesive properties to neighboring hyphae or
plasticity for growth by cell expansion. We, therefore, suggest
that FCW remodeling comprises one of the foundations of
the transition to complex multicellularity during the life cycle
of fungi.

A significant fraction of conserved developmentally regulated
genes carry extracellular secretion signals and were predicted
to be glycosylphosphatidylinositol (GPI) anchored (Fig. 2A
and SI Appendix, Fig. S14). These include diverse FCW-active
proteins, such as laccases (AA1), glucanases (GH5, GH16,
Kre9/Knh1 family), and NodB homologs (chitooligosaccharide
deacethylases), but also lectins, A1 aspartic peptidases, and
sedolisins, among others (Dataset S11). Homologs of rhizobial
NodB genes were developmentally regulated in all six species,
whereas, in the context of ectomycorrhizal symbioses, they were
discussed as potential elicitors of plant immune responses (40).
GPI-anchored proteins often mediate adhesion in filamentous
and pathogenic fungi (41), but it is not known whether simi-
lar mechanisms are at play in fruiting bodies (2). Laccases and
glucanases could facilitate adhesion by oxidative cross-linking
or other covalent modifications of neighboring hyphal surfaces,
although more data are needed on the biochemistry involved.
Nevertheless, it seems safe to conclude that FCW-active proteins
may bind neighboring hyphae through covalent FCW modi-
fications in fruiting bodies, which would represent a unique
adhesion mechanism among complex multicellular organisms.
Homologs of the dystroglycan-type cadherin-like domain con-
taining protein of Schizophyllum cerevisiae [Axl2p (42)] were
enriched in Agaricomycetes compared with other fungi (P =
1.1 ×10−4, FET; Dataset S3) and were developmentally regu-
lated in all species (Dataset S11). These proteins share signif-
icant sequence similarity with animal cadherins (Blast E value
of <10−30) and, although fewer in numbers than in animals,
their convergent expansion in complex multicellular fungi and
metazoans could indicate recurrent cooption for developmental
functions.

Fruiting body secretomes contained a rich suite of genes
encoding small secreted proteins (SSPs, <300 amino acids,
with extracellular secretion signal). Of the 190 to 477 SSPs
predicted in the genomes of the six species, 20 to 61% are
developmentally regulated, with 20% being conserved across
the six species (Fig. 2B and SI Appendix, Fig. S15). Con-
served and annotated genes comprise various FCW-related
families, such as hydrophobins, cerato-platanins, cupredoxins,
lectins, Kre9/Knh1, GH12 and LysM domain proteins, among
others (Fig. 2C and SI Appendix, Fig. S16). Hydrophobins and
cerato-platanins are SSPs that self-assemble into a rodlet layer
on the cell surface, conferring hydrophobic surfaces to hyphae
that hinder soaking of fruiting bodies with water. They are
hypothesized to mediate adhesion, the aeration of fruiting bodies
(12, 43), or pathogenicity (44). As reported previously (12), most
hydrophobin genes are developmentally regulated (Fig. 2D and
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Dataset S10), and the family is overrepresented in the genomes
of mushroom-forming fungi (P < 10−300, FET; Dataset S3).
Cerato-platanins are also expanded (P = 1.56 ×10−50, FET;
Dataset S3) and developmentally regulated (except in Phane-
rochaete). In addition to conserved genes, >40% of develop-
mentally regulated SSPs had no functional annotations and/or
were species-specific orphans (Fig. 2B). This proportion is sim-
ilar to that observed in ectomycorrhiza-induced SSPs (5, 45)
and suggests that species-specific secreted proteins have a role
also in fruiting body development. Although their function in
fruiting bodies is not known, their role in signaling across part-
ners in ectomycorrhizal (45) and pathogenic interactions (46),
or within species (47, 48), raises the possibility that some of
the detected SSPs might act as fruiting body effectors. This
could also explain the rich SSP repertoires of saprotrophic
Agaricomycetes (49).

Targeted Protein Degradation Shows Striking Expansion in Mush-
rooms. We found a strong signal for developmental expression
of components of the E3 ubiquitin ligase complex. Several
genes encoding F-box proteins and RING-type zinc-finger and
BTB/POZ domain proteins are developmentally regulated in all
species, often displaying tissue or developmental stage-specific
expression peaks (Fig. 3 and SI Appendix, Figs. S17–S19). These
gene families are also strongly overrepresented in the genomes
of mushroom-forming fungi compared with related filamentous
fungi and yeasts (Fig. 3A). For example, while yeasts and fil-
amentous fungi possess 20 and 60 to 90 F-box proteins (50),
respectively, mushroom-forming fungi have 67 to 1,199 copies
(mean: 274), comparable to the numbers seen in higher plants
(51) and resulting predominantly from recent tandem duplica-

tions (SI Appendix, Fig. S20). They mostly showed a single peak
in expression, and many of them were upregulated at fruiting
body initiation or in caps, gills, and stipes (Fig. 3B). The numbers
of developmentally regulated F-box, RING-type zinc-finger, and
BTB/POZ domain containing genes found in the six species show
a good correlation with fruiting body complexity but a poor cor-
relation with the number of expressed genes (Fig. 3C), suggesting
a link between the expansion of these genes and the evolution of
complex fruiting body morphologies. These genes define the tar-
get specificity of E3 ubiquitin ligases (50, 52), which enables a
tight regulation of selective proteolysis during development (51).
In plants, F-box proteins can also act as transcriptional regula-
tors (53), although this is yet to be proven in fungi. On the other
hand, ubiquitin-conjugating (E2) enzymes are developmentally
regulated only in Coprinopsis, Armillaria, and Rickenella, whereas
ubiquitin-activating (E1) enzymes, cullins, SKP1, and HECT-
type ubiquitin ligases are neither developmentally regulated
nor significantly overrepresented in mushroom-forming fungi
(Fig. 3D; P > 0.05, FET). With the exception of Coprinopsis,
we did not detect specific expression patterns of neddylation
and deneddylation genes as reported for the Ascomycota (54).
Protein ubiquitylation also has a connection with programmed
cell death (PCD), which seems to be limited to certain tissue
types in fruiting bodies (55). We did not observe an expan-
sion or systematic upregulation of PCD-related genes in the
Agaricomycetes, suggesting that the expansion of F-box proteins
is independent of the evolution of PCD in fruiting body-forming
fungi. Taken together, we observed a striking expansion and
distinctive expression patterns of genes that define target speci-
ficity of the E3 ubiquitin ligase complex (F-box, RING, and
BTB/POZ proteins) in Agaricomycetes. This parallels F-box
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gene expansion in plants which, combined with their widespread
role in development (51, 56) similarly to the apoptotic-like cell
death and SUMOylation-related proteins, suggests that they
likely have key roles in complex multicellular development in
mushroom-forming fungi.

Key Multicellularity-Related Genes Are Developmentally Regulated
in Fruiting Bodies. Complex multicellularity in fungi is imple-
mented by the reprogramming of hyphal branching patterns,
followed by their adhesion and differentiation (2). This assumes
mechanisms for cell-to-cell communication, adhesion, differen-
tiation, and defense. We examined the expression dynamics
of gene families related to these traits, including TFs, protein
kinases, adhesion and defense-related genes. Like other complex
multicellular lineages, mushroom-forming fungi make extensive
use of TFs in development. To identify development-related
TFs, we manually curated TF candidate genes to exclude ones
that nonspecifically bind DNA. The resulting TFomes contain
278 to 408 genes, of which 4.5 to 64% were developmentally
regulated (SI Appendix, Figs. S21 and S22). These were dom-
inated by C2H2 and Zn(2)C6 fungal type, fungal trans, and
homeodomain-like TFs (Fig. 4A). Although TF families were

usually not conserved, we found five TF families that contained
developmentally regulated genes from five or six species (Dataset
S10). These included C2H2-type zinc fingers [including c2h2 of
Schizophyllum (18, 57)], and Zn(2)-C6 fungal-type and homeo-
box TFs [containing hom1 of Schizophyllum (18, 57)]. Two clus-
ters of C2H2 and homeobox TFs showed expression peaks in
stipes of Coprinopsis, Lentinus, Armillaria, and Rickenella, con-
firming previous reports of Hom1 expression in Coprinopsis (58)
and Schizophyllum (57, 59). Members of the light receptor white
collar complex were developmentally regulated in all species
except Phanerochaete, mostly showing a significant increase in
expression at initiation. However, these genes did not group
into one family in the clustering, which was a common pattern
for TF families, perhaps caused by their high rate of sequence
evolution.

Communication among cells by various signaling pathways
is paramount to the increase of distinct cell types in evolu-
tion. In accordance with the higher complexity of mushroom-
forming fungi, their kinomes are significantly larger than those
of other fungi (P = 1.1 ×10−184, FET; Fig. 4B), due to expan-
sions of the eukaryotic protein kinase superfamily. We clas-
sified protein kinases into nine groups (60) using published
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Fig. 4. Expression and copy number distribution of TF and kinase genes. (A) TF family distribution and the proportions of developmentally regulated (left)
versus not regulated (right) genes across six species. (B) Circular bar diagram of eukaryotic protein kinase (Left) and TKL (Right) repertoires of mushroom-
forming fungi versus in other fungal groups and Metazoa. P values of overrepresentation in mushroom-forming fungi are given for both plots. (C and D)
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Kinome (gray) and developmentally regulated kinome (green) repertoires of the six species split by kinase classification. The families Funk1 and Agak1 of
the “Other” group are shown separately. Axes are transformed to log2 scale.

kinome classifications for Coprinopsis (7). The six mushroom
kinomes (Dataset S12) have a similar composition, with PKL,
CMGC, and CAMK families being most diverse and RGC and
tyrosine kinases missing. The Agaricomycetes-specific FunK1
family is expanded significantly, as reported earlier (7). Tyro-
sine kinase-like (TKL) kinases also show a strong expansion in
Agaricomycetes (P < 10−300), consistent with observations in
Laccaria bicolor (61) and other species (62). Histidine kinases
are underrepresented (P = 8.95 ×10−36) relative to other fungal
groups.

A kinase coexpression network revealed tissue specificity as
the main driver of network topology (Fig. 4 C and D), with
most kinases showing an expression peak late in development (SI
Appendix, Figs. S23–S25). Kinases with early expression peaks
are mostly highly expressed through multiple stages, resem-
bling early expressed modules of Coprinopsis (Fig. 1C and SI
Appendix, Figs. S23–S25). Many CAMK family members showed
expression peaks in cap and gill tissues. However, overlaying the
network with classification shows no general enrichment of any

family in developmental stages or tissues (Fig 4 C–E), indicat-
ing diverse cooption events for development at the highest level
of kinase classification. The FunK1 family has been linked to
multicellular development, based on an upregulation in fruit-
ing bodies (7). In our species, FunK1 comprises 4 to 33% of
the kinome and 0.2 to 35% of the developmentally regulated
kinases, although this figure resembles that of other kinase fam-
ilies. Members of the highly expanded TKL family (Fig. 4E)
are developmentally regulated in Coprinopsis, Armillaria, and
Rickenella, but not in species with simpler morphologies. The
expansion and developmental expression of the TKL family in
mushroom-forming fungi is a remarkable case of convergence
with complex multicellular plants (1, 63) [which is distinct from
the TK expansion of animals (64)] and may be related to par-
allel increases in organismal complexity. However, while most
plant TKL genes have receptor-like architectures (65), we found
no evidence of extracellular domains or secretion signals in TKL
and other Ser/Thr kinase genes of mushroom-forming fungi, sug-
gesting they orchestrate signal transduction via soluble kinases
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or other mechanisms different from those of multicellular plants
and animals.

Fungal immune systems comprise innate chemical defense
mechanisms against metazoan predators as well as bacterial
and fungal infections (66). We cataloged 11 families of defense
effector proteins and their expression to assess the conserva-
tion of the defensive arsenal of Agaricomycetes. Genomes of
mushroom-forming fungi harbor highly species-specific combi-
nations of defense-related genes encoding pore-forming toxins,
cerato-platanins, lectins, and copsins, among others, with most of
them being developmentally expressed and upregulated at fruit-
ing body initiation (SI Appendix, Fig. S26). Of the 11 families,
only 3 were conserved, and only 1 (thaumatins) was develop-
mentally regulated in all six species, which can display either
endoglucanase or antimicrobial activity, depending on the struc-
ture of the mature protein. In silico structure prediction iden-
tified an acidic cleft in fruiting body expressed thaumatins (SI
Appendix, Fig. S26), consistent with an antimicrobial activity.
Several defense-related lectins have been reported from fruiting
bodies (67), although lectins have been implicated in cell adhe-
sion and signaling too. Agaricomycete genomes encode at least
17 lectin and 2 lectin-like families, of which 7 are significantly
overrepresented (P < 0.05, FET; Dataset S3). Developmentally
regulated lectins belong to nine families, with four to seven
families per species, but only ricin B lectins were developmen-
tally regulated in all six species (SI Appendix, Fig. S27). Other
lectin families show a patchy phylogenetic distribution, which
is also reflected in their expression patterns in fruiting bodies.
Several lectins are induced at fruiting body initiation, including
all previously reported nematotoxic Coprinopsis lectins (CCL1-2,
CGL1-3, and CGL3). Taken together, the defense effector
and lectin-encoding arsenal of mushroom-forming fungi shows
a patchy phylogenetic distribution, consistent with high gene
turnover rates or gains via horizontal gene transfer (66). Accord-
ingly, expressed defense gene sets are highly species-specific,
with most of the encoded genes upregulated in fruiting bod-
ies, suggesting that chemical defense is a key fruiting body
function.

Most Developmental Gene Families Are Older than Fruiting Body
Formation. We investigated the evolutionary age distribution of
developmentally regulated genes using phylostratigraphy (68),
and gene tree−species tree reconciliation analyses. We assigned
genes to phylogenetic ages, “phylostrata,” by identifying for
each gene the most phylogenetically distant species in which
a homolog could be detected. The phylostratigraphic profiles
of all species show three peaks, corresponding to two major
periods of fungal gene origin: the first containing genes shared
by all living species, the second containing genes shared by
the Dikarya (Ascomycota + Basidiomycota), and the third
containing species-specific genes (SI Appendix, Fig. S28). In
terms of gene duplications and losses, we observed two major
expansion in 292 shared developmentally regulated gene fam-
ilies, one in the most recent common ancestor (mrca) of the
Dikarya and the other from the mrca of Agaricomycetes and
Dacrymycetes extending to basal nodes of the Agaricomycetes
(SI Appendix, Fig. S29). Notably, the expansion in the Agari-
comycetes roughly correlates with the origin of fruiting body
development in this class. These data suggest that many devel-
opmentally regulated genes have homologs in simple multicel-
lular or unicellular organisms: The origin of 83.3% predate
the origin of mushroom-forming fungi (SI Appendix, Fig. S28),
indicating that several conserved gene families were recruited
for fruiting body development during evolution. Neverthe-
less, Agaricomycetes-specific phylostrata showed a characteristic
enrichment for F-box genes, TFs, and protein kinases, indicating
an increased rate of origin for these in mushroom-forming fungi
(Dataset S8).

Discussion
We charted the transcriptomic landscape of multicellular
development in six phylogenetically diverse mushroom-forming
species and performed comparative analyses of >200 genomes.
We pinpointed nearly 300 conserved gene families, and another
73 gene groups with developmentally dynamic expression in five
or more species, as well as 631 domains significantly overrep-
resented in mushroom-forming fungi. These are enriched in
cell wall-modifying enzymes, various secreted proteins (includ-
ing GPI-anchored and SSPs), components of the ubiquitin ligase
complex, kinases, or TFs. Lectins and defense effectors, on
the other hand, showed species-specific repertoires, indicating a
higher rate of evolutionary turnover. These data provide a frame-
work for elucidating the core genetic program of fruiting body
formation and will serve as guideposts for a systems approach to
understanding the genetic bases of mushroom development and
multicellularity.

Complex multicellularity evolved in five lineages, of which
plants, animals, and fungi are the most diverse (1, 2). At the
broadest level of comparison, all these lineages evolved solu-
tions to cell adhesion, communication, long-range transport,
and differentiation, although the exact mechanisms often dif-
fer among lineages (1–3). As in animals and plants, protein
kinases, putative adhesive proteins, defense effectors, and cer-
tain TFs have expanded repertoires in mushroom-forming fungi
and show developmentally dynamic expression patterns. Exam-
ples for convergent expansions in mushroom-forming fungi,
plants, and/or animals include TKL family kinases, F-box pro-
teins, and cadherin-like proteins, indicating that ancient eukary-
otic gene families with apt biochemical properties have been
repeatedly coopted for complex multicellularity during evolu-
tion. F-box proteins showed the largest expansion in Agari-
comycetes across all gene families and were the largest devel-
opmentally regulated family, along with RING-type and BTB
domain proteins. Among fruiting body-forming fungi (2, 54),
Agaricomycetes share some similarity with the Pezizomycotina
(Ascomycota), many of which also produce macroscopic fruit-
ing bodies. For example, laccases, lectins, several TFs, and
signal transduction systems have also been implicated in fruit-
ing body formation in the Pezizomycotina, although, at the
moment, it is unclear whether the Pezizomycotina shares a
complex multicellular ancestor with the Agaricomycetes (2).
Comparisons of developmental genes and transcriptomes across
the Agaricomycetes and the Pezizomycotina will be neces-
sary to elucidate whether these two groups share a single
origin of or represent independent acquisitions of complex
multicellularity.

Mushroom-forming fungi also show several unique solutions
for multicellularity, as expected based on their independent evo-
lutionary origin. These are, in part, explained by the very nature
of fungi: Complex multicellularity comprises the reproductive
phase of the life cycle (except in sclerotia and rhizomorphs)
and so mechanisms have evolved for sensing when fruiting body
formation is optimal (e.g., nutrient availability, light). Mush-
room development can be partitioned into an early phase of cell
proliferation and differentiation and a growth phase of rapid
increase in cell size, a division evident on our gene coexpression
profiles as well. Broadly speaking, this is similar to the develop-
ment of fleshy plant fruits, although mechanisms are likely to be
different.

This work has provided a glimpse into the core genetic toolkit
of complex multicellularity in mushroom-forming fungi. Our
comparative transcriptomic and genomic analyses revealed sev-
eral gene families with conserved developmental expression
in fruiting bodies, with scope to increase the resolution both
phylogenetically and among cell types (e.g., by single-cell RNA-
Seq). Such data should help define the conserved genetic pro-
grams underlying multicellularity in mushroom-forming fungi,
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and uncover the evolutionary origins of a major complex
multicellular lineage in the eukaryotes.

Materials and Methods
For additional methods, see SI Appendix. We analyzed developmental tran-
scriptomes of C. cinerea AmutBmut, S. commune H4-8, P. chrysosporium
RP78, R. mellea SZMC22713, L. tigrinus RLG9953-sp, and A. ostoyae C18/9.
Gene expression profiling was used to identify developmentally regulated
genes; these were characterized by Interpro domains, and their enrichment
was analyzed across 201 fungal genomes. To reconstruct transcript isoforms,
we used region-restricted probabilistic modeling (24). Genes encoding puta-
tive carbohydrate-active enzymes were annotated using the CAZy pipeline.
Prediction of GPI-anchored proteins was performed using Pred-GPI. TFs were
identified based on Interpro domains with sequence-specific DNA-binding
activity. Kinases were predicted based on InterPro domain composition. We
excluded classical kinases involved in metabolism. Prediction of SSPs was per-
formed using a modified version of the pipeline of Pellegrin et al. (49).
Developmentally regulated genes were clustered into coexpression mod-
ules using STEM v1.3.11 (23). Phylostratigraphy and gene tree−species tree
reconciliation analysis was performed to investigate the evolutionary age
distribution of developmentally regulated genes.

Data Availability
Genome assembly and annotation of R. mellea was deposited in
the National Center for Biotechnology Information BioProject
database (accession no. PRJNA334780). A Gene Expression
Omnibus (GEO) archive of the sequenced transcriptome
libraries was deposited in the NCBI’s GEO Archive at www.
ncbi.nlm.nih.gov/geo under accession GSE125200 (individual
accessions: GSE125184, Coprinopsis; GSE125190, Lentinus;
GSE125195, Rickenella; GSE125198, Schizophyllum; GSE125199,
Phanerochaete).
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14. Buser R, Lazar Z, Käser S, Künzler M, Aebi M (2010) Identification, characteriza-
tion, and biosynthesis of a novel N-glycan modification in the fruiting body of the
basidiomycete Coprinopsis cinerea. J Biol Chem 285:10715–10723.

15. Ohga S, Cho N-S, Thurston CF, Wood DA (2000) Transcriptional regulation of laccase
and cellulase in relation to fruit body formation in the mycelium of Lentinula edodes
on a sawdust-based substrate. Mycoscience 41:149–153.

16. Konno N, Sakamoto Y (2011) An endo-β-1,6-glucanase involved in Lentinula edodes
fruiting body autolysis. Appl Microbiol Biotechnol 91:1365–1373.

17. Sakamoto Y, et al. (2006) Lentinula edodes tlg1 encodes a thaumatin-like protein
that is involved in lentinan degradation and fruiting body senescence. Plant Physiol
141:793–801.
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